
MIPS R4000 Microprocessor User's Manual A-1

CPU Instruction Set Details

A

This appendix provides a detailed description of the operation of each
R4000 instruction in both 32- and 64-bit modes. The instructions are listed
in alphabetical order.

Exceptions that may occur due to the execution of each instruction are
listed after the description of each instruction. Descriptions of the
immediate cause and manner of handling exceptions are omitted from the
instruction descriptions in this appendix.

Figures at the end of this appendix list the bit encoding for the constant
fields of each instruction, and the bit encoding for each individual
instruction is included with that instruction.

Appendix A

A-2 MIPS R4000 Microprocessor User's Manual

A.1 Instruction Classes
CPU instructions are divided into the following classes:

• Load and Store instructions move data between memory and
general registers. They are all I-type instructions, since the
only addressing mode supported is base register + 16-bit
immediate offset.

• Computational instructions perform arithmetic, logical and
shift operations on values in registers. They occur in both
R-type (both operands are registers) and I-type (one operand is
a 16-bit immediate) formats.

• Jump and Branch instructions change the control flow of a
program. Jumps are always made to absolute 26-bit word
addresses (J-type format), or register addresses (R-type), for
returns and dispatches. Branches have 16-bit offsets relative to
the program counter (I-type). Jump and Link instructions save
their return address in register 31.

• Coprocessor instructions perform operations in the
coprocessors. Coprocessor loads and stores are I-type.
Coprocessor computational instructions have coprocessor-
dependent formats (see the FPU instructions in Appendix B).
Coprocessor zero (CP0) instructions manipulate the memory
management and exception handling facilities of the processor.

• Special instructions perform a variety of tasks, including
movement of data between special and general registers, trap,
and breakpoint. They are always R-type.

MIPS R4000 Microprocessor User's Manual A-3

CPU Instruction Set Details

A.2 Instruction Formats
Every CPU instruction consists of a single word (32 bits) aligned on a word
boundary and the major instruction formats are shown in Figure A-1.

Figure A-1 CPU Instruction Formats

015162021252631

015162021252631

0252631

op rs rt immediate

op target

functop rs rt
1110 6 5

rd shamt

R-Type (Register)

J-Type (Jump)

I-Type (Immediate)

op 6-bit operation code
rs 5-bit source register specifier
rt 5-bit target (source/destination) or branch condition

immediate 16-bit immediate, branch displacement or address
displacement

target 26-bit jump target address
rd 5-bit destination register specifier
shamt 5-bit shift amount
funct 6-bit function field

Appendix A

A-4 MIPS R4000 Microprocessor User's Manual

A.3 Instruction Notation Conventions
In this appendix, all variable subfields in an instruction format (such as rs,
rt, immediate, etc.) are shown in lowercase names.

For the sake of clarity, we sometimes use an alias for a variable subfield in
the formats of specific instructions. For example, we use rs = base in the
format for load and store instructions. Such an alias is always lower case,
since it refers to a variable subfield.

Figures with the actual bit encoding for all the mnemonics are located at
the end of this Appendix, and the bit encoding also accompanies each
instruction.

In the instruction descriptions that follow, the Operation section describes
the operation performed by each instruction using a high-level language
notation. The R4000 can operate as either a 32- or 64-bit microprocessor
and the operation for both modes is included with the instruction
description.

Special symbols used in the notation are described in Table A-1.

MIPS R4000 Microprocessor User's Manual A-5

CPU Instruction Set Details

Table A-1 CPU Instruction Operation Notations

COC[z] Coprocessor unit z condition signal.
BigEndianMem Big-endian mode as configured at reset (0→ Little, 1 → Big). Specifies the en-

dianness of the memory interface (see LoadMemory and StoreMemory), and
the endianness of Kernel and Supervisor mode execution.

ReverseEndian Signal to reverse the endianness of load and store instructions. This feature is
available in User mode only, and is effected by setting the RE bit of the Status
register. Thus, ReverseEndian may be computed as (SR25 and User mode).

BigEndianCPU The endianness for load and store instructions (0 → Little, 1 → Big). In User
mode, this endianness may be reversed by setting SR25. Thus, BigEndianCPU
may be computed as BigEndianMem XOR ReverseEndian.

LLbit Bit of state to specify synchronization instructions. Set by LL, cleared by ERET
and Invalidate and read by SC.

T+i: Indicates the time steps between operations. Each of the statements within a
time step are defined to be executed in sequential order (as modified by con-
ditional and loop constructs). Operations which are marked T+i: are executed
at instruction cycle i relative to the start of execution of the instruction. Thus,
an instruction which starts at time j executes operations marked T+i: at time
i + j. The interpretation of the order of execution between two instructions or
two operations which execute at the same time should be pessimistic; the or-
der is not defined.

←

||

Symbol
Assignment.
Bit string concatenation.

+ 2’s complement or floating-point addition.
- 2’s complement or floating-point subtraction.

*
2’s complement or floating-point multiplication.

div 2’s complement integer division.
2’s complement modulo.

2’s complement less than comparison.

mod

<
and Bit-wise logical AND.
or Bit-wise logical OR.
xor Bit-wise logical XOR.
nor Bit-wise logical NOR.

xy

xy:z

Replication of bit value x into a y-bit string. Note: x is always a single-bit value.
Selection of bits y through z of bit string x. Little-endian bit notation is always
used. If y is less than z, this expression is an empty (zero length) bit string.

GPR[x]

CPR[z,x]

CCR[z,x]

Coprocessor unit z, general register x.
Coprocessor unit z, control register x.

Floating-point division./

 Meaning

General-Register x. The content of GPR[0] is always zero. Attempts to alter
the content of GPR[0] have no effect.

Appendix A

A-6 MIPS R4000 Microprocessor User's Manual

Instruction Notation Examples
The following examples illustrate the application of some of the
instruction notation conventions:

Example #1:

GPR[rt] ←

Sixteen zero bits are concatenated with an immediate
value (typically 16 bits), and the 32-bit string (with the lower
16 bits set to zero) is assigned to General-Purpose Register rt.

Example #2:

Bit 15 (the sign bit) of an immediate value is extended for
16 bit positions, and the result is concatenated with bits 15
through 0 of the immediate value to form a 32-bit sign
extended value.

immediate || 016

(immediate15)16 || immediate15...0

MIPS R4000 Microprocessor User's Manual A-7

CPU Instruction Set Details

A.4 Load and Store Instructions
In the R4000 implementation, the instruction immediately following a
load may use the loaded contents of the register. In such cases, the
hardware interlocks, requiring additional real cycles, so scheduling load
delay slots is still desirable, although not required for functional code.

Two special instructions are provided in the R4000 implementation of the
MIPS ISA, Load Linked and Store Conditional. These instructions are
used in carefully coded sequences to provide one of several
synchronization primitives, including test-and-set, bit-level locks,
semaphores, and sequencers/event counts.

In the load and store descriptions, the functions listed in Table A-2 are
used to summarize the handling of virtual addresses and physical
memory.

Table A-2 Load and Store Common Functions

Function Meaning

AddressTranslation
Uses the TLB to find the physical address given the virtual
address. The function fails and an exception is taken if the
required translation is not present in the TLB.

LoadMemory

Uses the cache and main memory to find the contents of
the word containing the specified physical address. The
low-order two bits of the address and the Access Type field
indicates which of each of the four bytes within the data
word need to be returned. If the cache is enabled for this
access, the entire word is returned and loaded into the
cache.

StoreMemory

Uses the cache, write buffer, and main memory to store the
word or part of word specified as data in the word
containing the specified physical address. The low-order
two bits of the address and the Access Type field indicates
which of each of the four bytes within the data word
should be stored.

Appendix A

A-8 MIPS R4000 Microprocessor User's Manual

As shown in Table A-3, the Access Type field indicates the size of the data
item to be loaded or stored. Regardless of access type or byte-numbering
order (endianness), the address specifies the byte which has the smallest
byte address in the addressed field. For a big-endian machine, this is the
leftmost byte and contains the sign for a 2’s complement number; for a
little-endian machine, this is the rightmost byte.

Table A-3 Access Type Specifications for Loads/Stores

The bytes within the addressed doubleword which are used can be
determined directly from the access type and the three low-order bits of
the address.

Access Type Mnemonic Value Meaning
DOUBLEWORD 7 8 bytes (64 bits)
SEPTIBYTE 6 7 bytes (56 bits)
SEXTIBYTE 5 6 bytes (48 bits)
QUINTIBYTE 4 5 bytes (40 bits)
WORD 3 4 bytes (32 bits)
TRIPLEBYTE 2 3 bytes (24 bits)
HALFWORD 1 2 bytes (16 bits)
BYTE 0 1 byte (8 bits)

MIPS R4000 Microprocessor User's Manual A-9

CPU Instruction Set Details

A.5 Jump and Branch Instructions
All jump and branch instructions have an architectural delay of exactly
one instruction. That is, the instruction immediately following a jump or
branch (that is, occupying the delay slot) is always executed while the
target instruction is being fetched from storage. A delay slot may not itself
be occupied by a jump or branch instruction; however, this error is not
detected and the results of such an operation are undefined.

If an exception or interrupt prevents the completion of a legal instruction
during a delay slot, the hardware sets the EPC register to point at the jump
or branch instruction that precedes it. When the code is restarted, both the
jump or branch instructions and the instruction in the delay slot are
reexecuted.

Because jump and branch instructions may be restarted after exceptions or
interrupts, they must be restartable. Therefore, when a jump or branch
instruction stores a return link value, register 31 (the register in which the
link is stored) may not be used as a source register.

Since instructions must be word-aligned, a Jump Register or Jump and
Link Register instruction must use a register whose two low-order bits are
zero. If these low-order bits are not zero, an address exception will occur
when the jump target instruction is subsequently fetched.

Appendix A

A-10 MIPS R4000 Microprocessor User's Manual

A.6 Coprocessor Instructions
Coprocessors are alternate execution units, which have register files
separate from the CPU. The MIPS architecture provides four coprocessor
units, or classes, and these coprocessors have two register spaces, each
space containing thirty-two 32-bit registers.

• The first space, coprocessor general registers, may be directly
loaded from memory and stored into memory, and their
contents may be transferred between the coprocessor and
processor.

• The second space, coprocessor control registers, may only have
their contents transferred directly between the coprocessor and
the processor. Coprocessor instructions may alter registers in
either space.

A.7 System Control Coprocessor (CP0) Instructions
There are some special limitations imposed on operations involving CP0
that is incorporated within the CPU. Although load and store instructions
to transfer data to/from coprocessors and to move control to/from
coprocessor instructions are generally permitted by the MIPS architecture,
CP0 is given a somewhat protected status since it has responsibility for
exception handling and memory management. Therefore, the move to/
from coprocessor instructions are the only valid mechanism for writing to
and reading from the CP0 registers.

Several CP0 instructions are defined to directly read, write, and probe TLB
entries and to modify the operating modes in preparation for returning to
User mode or interrupt-enabled states.

MIPS R4000 Microprocessor User's Manual A-11

CPU Instruction Set Details

Format:
ADD rd, rs, rt

Description:
The contents of general register rs and the contents of general register rt
are added to form the result. The result is placed into general register rd.
In 64-bit mode, the operands must be valid sign-extended, 32-bit values.

An overflow exception occurs if the carries out of bits 30 and 31 differ (2’s
complement overflow). The destination register rd is not modified when
an integer overflow exception occurs.

Operation:

Exceptions:
Integer overflow exception

ADDAdd

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 ADD

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

ADD

32 T: GPR[rd] ←GPR[rs] + GPR[rt]

64 T: temp ← GPR[rs] + GPR[rt]
GPR[rd] ← (temp31)32 || temp31...0

Appendix A

A-12 MIPS R4000 Microprocessor User's Manual

Format:
ADDI rt, rs, immediate

Description:
The 16-bit immediate is sign-extended and added to the contents of general
register rs to form the result. The result is placed into general register rt.
In 64-bit mode, the operand must be valid sign-extended, 32-bit values.

An overflow exception occurs if carries out of bits 30 and 31 differ (2’s
complement overflow). The destination register rt is not modified when
an integer overflow exception occurs.

Operation:

Exceptions:
Integer overflow exception

ADDI Add Immediate

31 2526 2021 1516 0

ADDI rs rt immediate

6 5 5 16
0 0 1 0 0 0

ADDI

32 T: GPR [rt] ← GPR[rs] +(immediate15)16 || immediate15...0

64 T: temp ← GPR[rs] + (immediate15)48 || immediate15...0
GPR[rt] ← (temp31)32 || temp31...0

MIPS R4000 Microprocessor User's Manual A-13

CPU Instruction Set Details

Format:
ADDIU rt, rs, immediate

Description:
The 16-bit immediate is sign-extended and added to the contents of general
register rs to form the result. The result is placed into general register rt.
No integer overflow exception occurs under any circumstances. In 64-bit
mode, the operand must be valid sign-extended, 32-bit values.

The only difference between this instruction and the ADDI instruction is
that ADDIU never causes an overflow exception.

Operation:

Exceptions:
None

ADDIU Add Immediate Unsigned

31 2526 2021 1516 0

ADDIU rs rt immediate

6 5 5 16
0 0 1 0 0 1

ADDIU

32 T: GPR [rt] ← GPR[rs] + (immediate15)16 || immediate15...0

64 T: temp ← GPR[rs] + (immediate15)48 || immediate15...0
GPR[rt] ← (temp31)32 || temp31...0

Appendix A

A-14 MIPS R4000 Microprocessor User's Manual

Format:
ADDU rd, rs, rt

Description:
The contents of general register rs and the contents of general register rt
are added to form the result. The result is placed into general register rd.
No overflow exception occurs under any circumstances. In 64-bit mode,
the operands must be valid sign-extended, 32-bit values.

The only difference between this instruction and the ADD instruction is
that ADDU never causes an overflow exception.

Operation:

Exceptions:
None

ADDU Add Unsigned

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 ADDU

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

ADDU

32 T: GPR[rd] ←GPR[rs] + GPR[rt]

64 T: temp ← GPR[rs] + GPR[rt]
GPR[rd] ← (temp31)32 || temp31...0

MIPS R4000 Microprocessor User's Manual A-15

CPU Instruction Set Details

Format:
AND rd, rs, rt

Description:
The contents of general register rs are combined with the contents of
general register rt in a bit-wise logical AND operation. The result is placed
into general register rd.

Operation:

Exceptions:
None

ANDAnd

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 AND

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0

AND

32 T: GPR[rd] ← GPR[rs] and GPR[rt]

64 T: GPR[rd] ← GPR[rs] and GPR[rt]

Appendix A

A-16 MIPS R4000 Microprocessor User's Manual

Format:
ANDI rt, rs, immediate

Description:
The 16-bit immediate is zero-extended and combined with the contents of
general register rs in a bit-wise logical AND operation. The result is placed
into general register rt.

Operation:

Exceptions:
None

ANDI And Immediate

31 2526 2021 1516 0

ANDI rs rt immediate

6 5 5 16
0 0 1 1 0 0

ANDI

32 T: GPR[rt] ← 016 || (immediate and GPR[rs]15...0)

64 T: GPR[rt] ← 048 || (immediate and GPR[rs]15...0)

MIPS R4000 Microprocessor User's Manual A-17

CPU Instruction Set Details

Format:
BCzF offset

Description:
A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. If coprocessor z’s condition signal (CpCond), as sampled
during the previous instruction, is false, then the program branches to the
target address with a delay of one instruction.

Because the condition line is sampled during the previous instruction,
there must be at least one instruction between this instruction and a
coprocessor instruction that changes the condition line.

Operation:

*See the table “Opcode Bit Encoding” on next page, or “CPU Instruction
Opcode Bit Encoding” at the end of Appendix A.

BCzFBranch On Coprocessor z False

5

16 15

BC

31 2526

COPz

6

0

16

offsetBCF

21 20

5
0 1 0 0 x x* 0 1 0 0 0 0 0 0 0 0

BCzF

T: target ← (offset15)14 || offset || 02
32 T–1: condition ← not COC[z]

T+1: if condition then
PC ← PC + target

endif

T: target ← (offset15)46 || offset || 02
64 T–1: condition ← not COC[z]

T+1: if condition then
PC ← PC + target

endif

Appendix A

A-18 MIPS R4000 Microprocessor User's Manual

Exceptions:
Coprocessor unusable exception

Opcode Bit Encoding:

BCzF (continued)
Branch On Coprocessor z False BCzF

BCzF
0 0 0 0 01

31 30 29 28 27 26Bit # 25 0

BC0F 0 0 0 01

24 23 22 21

Coprocessor Unit Number
Branch conditionBC sub-opcode

20 19 18 17 16

0 0 0 0 0

0 0 0 0 11

31 30 29 28 27 26Bit # 25 0

BC1F 0 0 0 01

24 23 22 21 20 19 18 17 16

0 0 0 0 0

0 0 0 1 01

31 30 29 28 27 26Bit # 25 0

BC2F 0 0 0 01

24 23 22 21 20 19 18 17 16

0 0 0 0 0

Opcode

MIPS R4000 Microprocessor User's Manual A-19

CPU Instruction Set Details

Format:
BCzFL offset

Description:
A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. If the contents of coprocessor z’s condition line, as
sampled during the previous instruction, is false, the target address is
branched to with a delay of one instruction.

If the conditional branch is not taken, the instruction in the branch delay
slot is nullified.

Because the condition line is sampled during the previous instruction,
there must be at least one instruction between this instruction and a
coprocessor instruction that changes the condition line.

*See the table “Opcode Bit Encoding” on next page, or “CPU Instruction
Opcode Bit Encoding” at the end of Appendix A.

BCzFL

5

16 15

BC

31 2526

COPz

6

0

16

offsetBCFL

21 20

5
0 1 0 0 x x* 0 1 0 0 0 0 0 0 1 0

BCzFL Branch On Coprocessor z
False Likely

Appendix A

A-20 MIPS R4000 Microprocessor User's Manual

Operation:

Exceptions:
Coprocessor unusable exception

Opcode Bit Encoding:

BCzFL
(continued)

Branch On Coprocessor z BCzFLFalse Likely

T: target ← (offset15)14 || offset || 02
32 T–1: condition ← not COC[z]

T+1: if condition then
PC ← PC + target

endif

else
NullifyCurrentInstruction

T: target ← (offset15)46 || offset || 02
64 T–1: condition ← not COC[z]

T+1: if condition then
PC ← PC + target

endif

else
NullifyCurrentInstruction

BCzFL
0 0 0 0 01

31 30 29 28 27 26Bit # 25 0

BC0FL 0 0 0 01

24 23 22 21

Branch conditionBC sub-opcode

20 19 18 17 16

0 0 0 1 0

0 0 0 0 11

31 30 29 28 27 26Bit # 25 0

BC1FL 0 0 0 01

24 23 22 21 20 19 18 17 16

0 0 0 1 0

0 0 0 1 01

31 30 29 28 27 26Bit # 25 0

BC2FL 0 0 0 01

24 23 22 21 20 19 18 17 16

0 0 0 1 0

Coprocessor Unit Number
Opcode

MIPS R4000 Microprocessor User's Manual A-21

CPU Instruction Set Details

Format:
BCzT offset

Description:
A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. If the coprocessor z’s condition signal (CpCond) is true,
then the program branches to the target address, with a delay of one
instruction.

Because the condition line is sampled during the previous instruction,
there must be at least one instruction between this instruction and a
coprocessor instruction that changes the condition line.

Operation:

*See the table “Opcode Bit Encoding” on next page, or “CPU Instruction
Opcode Bit Encoding” at the end of Appendix A.

BCzTBranch On Coprocessor z True

5

16 15

BC

31 2526

COPz

6

0

16

offsetBCT

21 20

5
0 1 0 0 x x* 0 1 0 0 0 0 0 0 0 1

BCzT

T: target ← (offset15)14 || offset || 02
32 T–1: condition ← COC[z]

T+1: if condition then
PC ← PC + target

endif

T: target ← (offset15)46 || offset || 02
64 T–1: condition ← COC[z]

T+1: if condition then
PC ← PC + target

endif

Appendix A

A-22 MIPS R4000 Microprocessor User's Manual

Exceptions:
Coprocessor unusable exception

Opcode Bit Encoding:

BCzT (continued)
Branch On Coprocessor z True BCzT

BCzT
0 0 0 0 01

31 30 29 28 27 26Bit # 25 0

BC0T 0 0 0 01

24 23 22 21

Branch conditionBC sub-opcode

20 19 18 17 16

0 0 0 0 1

0 0 0 0 11

31 30 29 28 27 26Bit # 25 0

BC1T 0 0 0 01

24 23 22 21 20 19 18 17 16

0 0 0 0 1

0 0 0 1 01

31 30 29 28 27 26Bit # 25 0

BC2T 0 0 0 01

24 23 22 21 20 19 18 17 16

0 0 0 0 1

Coprocessor Unit Number
Opcode

MIPS R4000 Microprocessor User's Manual A-23

CPU Instruction Set Details

Format:
BCzTL offset

Description:
A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. If the contents of coprocessor z’s condition line, as
sampled during the previous instruction, is true, the target address is
branched to with a delay of one instruction.

If the conditional branch is not taken, the instruction in the branch delay
slot is nullified.

Because the condition line is sampled during the previous instruction,
there must be at least one instruction between this instruction and a
coprocessor instruction that changes the condition line.

Operation:

*See the table “Opcode Bit Encoding” on next page, or “CPU Instruction
Opcode Bit Encoding” at the end of Appendix A.

BCzTLBranch On Coprocessor z

5

16 15

BC

31 2526

COPz

6

0

16

offsetBCTL

21 20

5
0 1 0 0 x x* 0 1 0 0 0 0 0 0 1 1

BCzTL True Likely

T: target ← (offset15)14 || offset || 02
32 T–1: condition ← COC[z]

T+1: if condition then
PC ← PC + target

endif

else
NullifyCurrentInstruction

T: target ← (offset15)46|| offset || 02
64 T–1: condition ← COC[z]

T+1: if condition then
PC ← PC + target

endif

else
NullifyCurrentInstruction

Appendix A

A-24 MIPS R4000 Microprocessor User's Manual

Exceptions:
Coprocessor unusable exception

Opcode Bit Encoding:

BCzTL
(continued)

Branch On Coprocessor z BCzTLTrue Likely

BCzTL
0 0 0 0 01

31 30 29 28 27 26Bit # 25 0

BC0TL 0 0 0 01

24 23 22 21 20 19 18 17 16

0 0 0 1 1

0 0 0 0 11

31 30 29 28 27 26Bit # 25 0

BC1TL 0 0 0 01

24 23 22 21 20 19 18 17 16

0 0 0 1 1

0 0 0 1 01

31 30 29 28 27 26Bit # 25 0

BC2TL 0 0 0 01

24 23 22 21 20 19 18 17 16

0 0 0 1 1

Branch conditionBC sub-opcode
Coprocessor Unit Number

Opcode

MIPS R4000 Microprocessor User's Manual A-25

CPU Instruction Set Details

Format:
BEQ rs, rt, offset

Description:
A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. The contents of general register rs and the contents of
general register rt are compared. If the two registers are equal, then the
program branches to the target address, with a delay of one instruction.

Operation:

Exceptions:
None

BEQBranch On EqualBEQ
31 2526 2021 1516 0

BEQ rs rt offset

6 5 5 16
0 0 0 1 0 0

32 T: target ← (offset15)14 || offset || 02

condition ← (GPR[rs] = GPR[rt])
T+1: if condition then

PC ← PC + target
endif

64 T: target ← (offset15)46 || offset || 02

condition ← (GPR[rs] = GPR[rt])
T+1: if condition then

PC ← PC + target
endif

Appendix A

A-26 MIPS R4000 Microprocessor User's Manual

Format:
BEQL rs, rt, offset

Description:
A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. The contents of general register rs and the contents of
general register rt are compared. If the two registers are equal, the target
address is branched to, with a delay of one instruction. If the conditional
branch is not taken, the instruction in the branch delay slot is nullified.

Operation:

Exceptions:
None

BEQL Branch On Equal Likely

31 2526 2021 1516 0

BEQL rs rt offset

6 5 5 16
0 1 0 1 0 0

BEQL

32 T: target ← (offset15)14 || offset || 02

condition ← (GPR[rs] = GPR[rt])
T+1: if condition then

PC ← PC + targetelse

endif
NullifyCurrentInstruction

64 T: target ← (offset15)46 || offset || 02

condition ← (GPR[rs] = GPR[rt])
T+1: if condition then

PC ← PC + target
else

endif
NullifyCurrentInstruction

MIPS R4000 Microprocessor User's Manual A-27

CPU Instruction Set Details

Format:
BGEZ rs, offset

Description:
A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. If the contents of general register rs have the sign bit
cleared, then the program branches to the target address, with a delay of
one instruction.

Operation:

Exceptions:
None

BGEZOr Equal To Zero
Branch On Greater Than

31 2526 2021 1516 0

REGIMM rs BGEZ offset

6 5 5 16
0 0 0 0 0 1 0 0 0 0 1

BGEZ

32 T: target ← (offset15)14 || offset || 02

condition ← (GPR[rs]31 = 0)
T+1: if condition then

PC ← PC + target
endif

64 T: target ← (offset15)46 || offset || 02

condition ← (GPR[rs]63 = 0)
T+1: if condition then

PC ← PC + target
endif

Appendix A

A-28 MIPS R4000 Microprocessor User's Manual

Format:
BGEZAL rs, offset

Description:
A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. Unconditionally, the address of the instruction after the
delay slot is placed in the link register, r31. If the contents of general
register rs have the sign bit cleared, then the program branches to the
target address, with a delay of one instruction.

General register rs may not be general register 31, because such an
instruction is not restartable. An attempt to execute this instruction is not
trapped, however.

Operation:

Exceptions:
None

BGEZAL Or Equal To Zero And Link
Branch On Greater Than

31 2526 2021 1516 0

REGIMM rs BGEZAL offset

6 5 5 16
0 0 0 0 0 1 1 0 0 0 1

BGEZAL

32 T: target ← (offset15)14 || offset || 02

condition ← (GPR[rs]31 = 0)

T+1: if condition then
PC ← PC + target

endif

GPR[31] ← PC + 8

64 T: target ← (offset15)46 || offset || 02

condition ← (GPR[rs]63 = 0)

T+1: if condition then
PC ← PC + target

endif

GPR[31] ← PC + 8

MIPS R4000 Microprocessor User's Manual A-29

CPU Instruction Set Details

Format:
BGEZALL rs, offset

Description:
A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. Unconditionally, the address of the instruction after the
delay slot is placed in the link register, r31. If the contents of general
register rs have the sign bit cleared, then the program branches to the
target address, with a delay of one instruction. General register rs may not
be general register 31, because such an instruction is not restartable. An
attempt to execute this instruction is not trapped, however. If the
conditional branch is not taken, the instruction in the branch delay slot is
nullified.

Operation:

Exceptions:
None

BGEZALLOr Equal To Zero
Branch On Greater Than

31 2526 2021 1516 0

REGIMM rs BGEZALL offset

6 5 5 16
0 0 0 0 0 1 1 0 0 1 1

BGEZALL
And Link Likely

32 T: target ← (offset15)14 || offset || 02

condition ← (GPR[rs]31 = 0)

T+1: if condition then
PC ← PC + target

endif

GPR[31] ← PC + 8

NullifyCurrentInstructionelse

64 T: target ← (offset15)46 || offset || 02

condition ← (GPR[rs]63 = 0)

T+1: if condition then
PC ← PC + target

endif

GPR[31] ← PC + 8

NullifyCurrentInstructionelse

Appendix A

A-30 MIPS R4000 Microprocessor User's Manual

Format:
BGEZL rs, offset

Description:
A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. If the contents of general register rs have the sign bit
cleared, then the program branches to the target address, with a delay of
one instruction. If the conditional branch is not taken, the instruction in
the branch delay slot is nullified.

Operation:

Exceptions:
None

BGEZL Than Or Equal To Zero Likely
Branch On Greater

31 2526 2021 1516 0

REGIMM rs BGEZL offset

6 5 5 16
0 0 0 0 0 1 0 0 0 1 1

BGEZL

32 T: target ← (offset15)14 || offset || 02

condition ← (GPR[rs]31 = 0)
T+1: if condition then

PC ← PC + target

endif

else
NullifyCurrentInstruction

64 T: target ← (offset15)46 || offset || 02

condition ← (GPR[rs]63 = 0)
T+1: if condition then

PC ← PC + target

endif

else
NullifyCurrentInstruction

MIPS R4000 Microprocessor User's Manual A-31

CPU Instruction Set Details

Format:
BGTZ rs, offset

Description:
A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. The contents of general register rs are compared to zero. If
the contents of general register rs have the sign bit cleared and are not
equal to zero, then the program branches to the target address, with a
delay of one instruction.

Operation:

Exceptions:
None

BGTZBranch On Greater Than Zero

31 2526 2021 1516 0

BGTZ rs 0 offset

6 5 5 16
0 0 0 1 1 1 0 0 0 0 0

BGTZ

32 T: target ← (offset15)14 || offset || 02

condition ← (GPR[rs]31 = 0) and (GPR[rs] ≠ 032)
T+1: if condition then

PC ← PC + target
endif

64 T: target ← (offset15)46 || offset || 02

condition ← (GPR[rs]63 = 0) and (GPR[rs] ≠ 064)
T+1: if condition then

PC ← PC + target
endif

Appendix A

A-32 MIPS R4000 Microprocessor User's Manual

Format:
BGTZL rs, offset

Description:
A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. The contents of general register rs are compared to zero. If
the contents of general register rs have the sign bit cleared and are not
equal to zero, then the program branches to the target address, with a
delay of one instruction. If the conditional branch is not taken, the
instruction in the branch delay slot is nullified.

Operation:

Exceptions:
None

BGTZL Than Zero Likely
Branch On Greater

31 2526 2021 1516 0
BGTZL rs 0 offset

6 5 5 16
0 1 0 1 1 1 0 0 0 0 0

BGTZL

32 T: target ← (offset15)14 || offset || 02

condition ← (GPR[rs]31 = 0) and (GPR[rs] ≠ 032)
T+1: if condition then

PC ← PC + target

endif

else
NullifyCurrentInstruction

64 T: target ← (offset15)46 || offset || 02

condition ← (GPR[rs]63 = 0) and (GPR[rs] ≠ 064)
T+1: if condition then

PC ← PC + target
else

NullifyCurrentInstruction
endif

MIPS R4000 Microprocessor User's Manual A-33

CPU Instruction Set Details

Format:
BLEZ rs, offset

Description:
A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. The contents of general register rs are compared to zero. If
the contents of general register rs have the sign bit set, or are equal to zero,
then the program branches to the target address, with a delay of one
instruction.

Operation:

Exceptions:
None

BLEZBranch on Less Than

31 2526 2021 1516 0

BLEZ rs 0 offset

6 5 5 16

Or Equal To Zero

0 0 0 1 1 0 0 0 0 0 0

BLEZ

32 T: target ← (offset15)14 || offset || 02

T+1: if condition then
PC ← PC + target

endif
64 T: target ← (offset15)46 || offset || 02

condition ← (GPR[rs]63 = 1) or (GPR[rs] = 064)
T+1: if condition then

PC ← PC + target
endif

condition ← (GPR[rs]31 = 1) or (GPR[rs] = 032)

Appendix A

A-34 MIPS R4000 Microprocessor User's Manual

Format:
BLEZL rs, offset

Description:
A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. The contents of general register rs is compared to zero. If
the contents of general register rs have the sign bit set, or are equal to zero,
then the program branches to the target address, with a delay of one
instruction.

If the conditional branch is not taken, the instruction in the branch delay
slot is nullified.

Operation:

Exceptions:
None

BLEZL Branch on Less Than

31 2526 2021 1516 0

BLEZL rs 0 offset

6 5 5 16

Or Equal To Zero Likely

0 1 0 1 1 0 0 0 0 0 0

BLEZL

32 T: target ← (offset15)14 || offset || 02

condition ← (GPR[rs]31 = 1) or (GPR[rs] = 032)
T+1: if condition then

PC ← PC + target

endif

else
NullifyCurrentInstruction

64 T: target ← (offset15)46 || offset || 02

condition ← (GPR[rs]63 = 1) or (GPR[rs] = 064)
T+1: if condition then

PC ← PC + target
else

NullifyCurrentInstruction
endif

MIPS R4000 Microprocessor User's Manual A-35

CPU Instruction Set Details

Format:
BLTZ rs, offset

Description:
A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. If the contents of general register rs have the sign bit set,
then the program branches to the target address, with a delay of one
instruction.

 Operation:

Exceptions:
None

BLTZBranch On Less Than Zero

31 2526 2021 1516 0

REGIMM rs BLTZ offset

6 5 5 16
0 0 0 0 0 1 0 0 0 0 0

BLTZ

32 T: target ← (offset15)14 || offset || 02

condition ← (GPR[rs]31 = 1)
T+1: if condition then

PC ← PC + target
endif

64 T: target ← (offset15)46 || offset || 02

condition ← (GPR[rs]63 = 1)
T+1: if condition then

PC ← PC + target
endif

Appendix A

A-36 MIPS R4000 Microprocessor User's Manual

Format:
BLTZAL rs, offset

Description:
A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. Unconditionally, the address of the instruction after the
delay slot is placed in the link register, r31. If the contents of general
register rs have the sign bit set, then the program branches to the target
address, with a delay of one instruction.

General register rs may not be general register 31, because such an
instruction is not restartable. An attempt to execute this instruction with
register 31 specified as rs is not trapped, however.

Operation:

Exceptions:
None

BLTZAL Than Zero And Link
Branch On Less

31 2526 2021 1516 0

REGIMM rs BLTZAL offset

6 5 5 16
0 0 0 0 0 1 1 0 0 0 0

BLTZAL

32 T: target ← (offset15)14 || offset || 02

condition ← (GPR[rs]31 = 1)

T+1: if condition then
PC ← PC + target

endif

GPR[31] ← PC + 8

64 T: target ← (offset15)46 || offset || 02

condition ← (GPR[rs]63 = 1)

T+1: if condition then
PC ← PC + target

endif

GPR[31] ← PC + 8

MIPS R4000 Microprocessor User's Manual A-37

CPU Instruction Set Details

Format:
BLTZALL rs, offset

Description:
A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. Unconditionally, the address of the instruction after the
delay slot is placed in the link register, r31. If the contents of general
register rs have the sign bit set, then the program branches to the target
address, with a delay of one instruction.

General register rs may not be general register 31, because such an
instruction is not restartable. An attempt to execute this instruction with
register 31 specified as rs is not trapped, however. If the conditional
branch is not taken, the instruction in the branch delay slot is nullified.

Operation:

Exceptions:
None

BLTZALLThan Zero And Link Likely
Branch On Less

31 2526 2021 1516 0

REGIMM rs BLTZALL offset

6 5 5 16
0 0 0 0 0 1 1 0 0 1 0

BLTZALL

32 T: target ← (offset15)14 || offset || 02

condition ← (GPR[rs]31 = 1)

T+1: if condition then
PC ← PC + target

endif

GPR[31] ← PC + 8

NullifyCurrentInstructionelse

64 T: target ← (offset15)46 || offset || 02

condition ← (GPR[rs]63 = 1)

T+1: if condition then
PC ← PC + target

endif

GPR[31] ← PC + 8

NullifyCurrentInstructionelse

Appendix A

A-38 MIPS R4000 Microprocessor User's Manual

Format:
BLTZ rs, offset

Description:
A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. If the contents of general register rs have the sign bit set,
then the program branches to the target address, with a delay of one
instruction. If the conditional branch is not taken, the instruction in the
branch delay slot is nullified.

 Operation:

Exceptions:
None

BLTZL Branch On Less Than Zero Likely

31 2526 2021 1516 0

REGIMM rs BLTZL offset

6 5 5 16
0 0 0 0 0 1 0 0 0 1 0

BLTZL

32 T: target ← (offset15)14 || offset || 02

condition ← (GPR[rs]31 = 1)
T+1: if condition then

PC ← PC + target

endif

else
NullifyCurrentInstruction

64 T: target ← (offset15)46 || offset || 02

condition ← (GPR[rs]63 = 1)
T+1: if condition then

PC ← PC + target
else

NullifyCurrentInstruction
endif

MIPS R4000 Microprocessor User's Manual A-39

CPU Instruction Set Details

Format:
BNE rs, rt, offset

Description:
A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. The contents of general register rs and the contents of
general register rt are compared. If the two registers are not equal, then
the program branches to the target address, with a delay of one
instruction.

Operation:

Exceptions:
None

BNEBranch On Not Equal

31 2526 2021 1516 0

BNE rs rt offset

6 5 5 16
0 0 0 1 0 1

BNE

32 T: target ← (offset15)14 || offset || 02

condition ← (GPR[rs] ≠ GPR[rt])
T+1: if condition then

PC ← PC + target
endif

64 T: target ← (offset15)46 || offset || 02

condition ← (GPR[rs] ≠ GPR[rt])
T+1: if condition then

PC ← PC + target
endif

Appendix A

A-40 MIPS R4000 Microprocessor User's Manual

Format:
BNEL rs, rt, offset

Description:
A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. The contents of general register rs and the contents of
general register rt are compared. If the two registers are not equal, then
the program branches to the target address, with a delay of one
instruction.

If the conditional branch is not taken, the instruction in the branch delay
slot is nullified.

Operation:

Exceptions:
None

BNEL Branch On Not Equal Likely

31 2526 2021 1516 0

BNEL rs rt offset

6 5 5 16
0 1 0 1 0 1

BNEL

32 T: target ← (offset15)14 || offset || 02

condition ← (GPR[rs] ≠ GPR[rt])
T+1: if condition then

PC ← PC + target
else

endif
NullifyCurrentInstruction

64 T: target ← (offset15)46 || offset || 02

condition ← (GPR[rs] ≠ GPR[rt])
T+1: if condition then

PC ← PC + target
else

endif
NullifyCurrentInstruction

MIPS R4000 Microprocessor User's Manual A-41

CPU Instruction Set Details

Format:
BREAK

Description:
A breakpoint trap occurs, immediately and unconditionally transferring
control to the exception handler.

The code field is available for use as software parameters, but is retrieved
by the exception handler only by loading the contents of the memory word
containing the instruction.

Operation:

Exceptions:
Breakpoint exception

BREAKBreakpoint

31 2526

SPECIAL

6

0

BREAKcode

6 5

620
0 0 0 0 0 0 0 0 1 1 0 1

BREAK

32, 64 T: BreakpointException

Appendix A

A-42 MIPS R4000 Microprocessor User's Manual

Format:
CACHE op, offset(base)

Description:
The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The virtual address is translated to
a physical address using the TLB, and the 5-bit sub-opcode specifies a
cache operation for that address.

If CP0 is not usable (User or Supervisor mode) the CP0 enable bit in the
Status register is clear, and a coprocessor unusable exception is taken. The
operation of this instruction on any operation/cache combination not
listed below, or on a secondary cache when none is present, is undefined.
The operation of this instruction on uncached addresses is also undefined.

The Index operation uses part of the virtual address to specify a cache
block.

For a primary cache of 2CACHEBITS bytes with 2LINEBITS bytes per tag,
vAddrCACHEBITS ... LINEBITS specifies the block.

For a secondary cache of 2CACHEBITS bytes with 2LINEBITS bytes per tag,
pAddrCACHEBITS ... LINEBITS specifies the block.

Index Load Tag also uses vAddrLINEBITS... 3 to select the doubleword for
reading ECC or parity. When the CE bit of the Status register is set, Hit
WriteBack, Hit WriteBack Invalidate, Index WriteBack Invalidate, and Fill
also use vAddrLINEBITS ... 3 to select the doubleword that has its ECC or
parity modified. This operation is performed unconditionally.

The Hit operation accesses the specified cache as normal data references,
and performs the specified operation if the cache block contains valid data
with the specified physical address (a hit). If the cache block is invalid or
contains a different address (a miss), no operation is performed.

CACHE Cache

31 2526 2021 1516 0

CACHE base op offset

6 5 5 16
1 0 1 1 1 1

CACHE

MIPS R4000 Microprocessor User's Manual A-43

CPU Instruction Set Details

Write back from a primary cache goes to the secondary cache (if there is
one), otherwise to memory. Write back from a secondary cache always
goes to memory. A secondary write back always writes the most recent
data; the data comes from the primary data cache, if present, and modified
(the W bit is set). Otherwise the data comes from the specified secondary
cache. The address to be written is specified by the cache tag and not the
translated physical address.

TLB Refill and TLB Invalid exceptions can occur on any operation. For
Index operations (where the physical address is used to index the cache
but need not match the cache tag) unmapped addresses may be used to
avoid TLB exceptions. This operation never causes TLB Modified or
Virtual Coherency exceptions.

Bits 17...16 of the instruction specify the cache as follows:

Code Name Cache
 0 I primary instruction
 1 D primary data
 2 SI secondary instruction
 3 SD secondary data (or combined instruction/data)

(continued)CACHE Cache CACHE

Appendix A

A-44 MIPS R4000 Microprocessor User's Manual

Bits 20...18 (this value is listed under the Code column) of the instruction
specify the operation as follows:

Code Caches Name Operation

0 I, SI Index
Invalidate Set the cache state of the cache block to Invalid.

0 D
Index
Writeback
Invalidate

Examine the cache state and Writeback bit (W bit) of the primary data
cache block at the index specified by the virtual address. If the state is
not Invalid and the W bit is set, write the block back to the secondary
cache (if present) or to memory (if no secondary cache). The address to
write is taken from the primary cache tag. When a secondary cache is
present, and the CE bit of the Status register is set, the contents of the
ECC register is XOR’d into the computed check bits during the write to
the secondary cache for the addressed doubleword. Set the cache state
of primary cache block to Invalid. The W bit is unchanged (and irrelevant
because the state is Invalid).

O SD
Index
Writeback
Invalidate

Examine the cache state of the secondary data cache block at the index
specified by the physical address. If the block is dirty (the state is Dirty
Exclusive or Dirty Shared), write the data back to memory. Like all
secondary writebacks, the operation writes any modified data for the
addresses from the primary data cache. The address to write is taken
from the secondary cache tag. The PIdx field of the secondary tag is
used to determine the locations in the primaries to check for matching
primary blocks. In all cases, set the state of the secondary cache block
and all matching primary subblocks to Invalid. No Invalidate is sent on
the R4000’s system interface.

1 All Index Load
Tag

Read the tag for the cache block at the specified index and place it iinto
the TagLo and TagHi CP0 registers, ignoring any ECC or parity errors.
Also load the data ECC or parity bits into the ECC register.

2 All Index Store
Tag

Write the tag for the cache block at the specified index from the TagLo
and TagHi CP0 registers. The processor uses computed parity for the
primary caches and the TagLo register in the case of the secondary
cache.

CACHE CACHE(continued)
Cache

MIPS R4000 Microprocessor User's Manual A-45

CPU Instruction Set Details

Code Caches Name Operation

3 SD Create Dirty
Exclusive

This operation is used to avoid loading data needlessly from memory
when writing new contents into an entire cache block. If the cache block
is valid but does not contain the specified address (a valid miss) the
secondary block is vacated. The data is written back to memory if dirty
and all matching blocks in both primary caches are invalidated. As usual
during a secondary writeback, if the primary data cache contains
modified data (matching blocks with W bit set) that modified data is
written to memory. If the cache block is valid and contains the specified
physical address (a hit), the operation cleans up the primary caches to
avoid virtual aliases: all blocks in both primary caches that match the
secondary line are invalidated without writeback. Note that the search for
matching primary blocks uses the virtual index of the PIdx field of the
secondary cache tag (the virtual index when the location was last used)
and not the virtual index of the virtual address used in the operation (the
virtual index where the location will now be used). If the secondary tag
and address do not match (miss), or the tag and address do match (hit)
and the block is in a shared state, an invalidate for the specified address
is sent over the System interface. In all cases, the cache block tag must
be set to the specified physical address, the cache state must be set to
Dirty Exclusive, and the virtual index field set from the virtual address.
The CH bit in the Status register is set or cleared to indicate a hit or miss.

3 D Create Dirty
Exclusive

This operation is used to avoid loading data needlessly from secondary
cache or memory when writing new contents into an entire cache block.
If the cache block does not contain the specified address, and the block
is dirty, write it back to the secondary cache (if present) or otherwise to
memory. In all cases, set the cache block tag to the specified physical
address, set the cache state to Dirty Exclusive.

4 I,D Hit Invalidate If the cache block contains the specified address, mark the cache block
invalid.

4 SI, SD Hit Invalidate

If the cache block contains the specified address, mark the cache block
invalid and also invalidate all matching blocks, if present, in the primary
caches (the PIdx field of the secondary tag is used to determine the
locations in the primaries to search). The CH bit in the Status register is
set or cleared to indicate a hit or miss.

5 D Hit Writeback
Invalidate

If the cache block contains the specified address, write the data back if it
is dirty, and mark the cache block invalid. When a secondary cache is
present, and the CE bit of the Status register is set, the contents of the
ECC register is XOR’d into the computed check bits during the write to
the secondary cache for the addressed doubleword.

CACHE CACHE(continued)
Cache

Appendix A

A-46 MIPS R4000 Microprocessor User's Manual

Code Caches Name Operation

5 SD Hit Writeback
Invalidate

If the cache block contains the specified address, write back the data (if
dirty), and mark the secondary cache block and all matching blocks in
both primary caches invalid. As usual with secondary writebacks,
modified data in the primary data cache (matching block with the W bit
set) is used during the writeback. The PIdx field of the secondary tag is
used to determine the locations in the primaries to check for matching
primary blocks. The CH bit in the Status register is set or cleared to
indicate a hit or miss.

5 I Fill

Fill the primary instruction cache block from secondary cache or memory.
If the CE bit of the Status register is set, the content of the ECC register
is used instead of the computed parity bits for addressed doubleword
when written to the instruction cache. For the R4000PC, the cache is
filled from memory. For the R4000SC and R4000MC, the cache is filled
from the secondary cache whether or not the secondary cache block is
valid or contains the specified address.

6 D Hit Writeback

If the cache block contains the specified address, and the W bit is set,
write back the data. The W bit is not cleared; a subsequent miss to the
block will write it back again. This second writeback is redundant, but not
incorrect. When a secondary cache is present, and the CE bit of the
Status register is set, the content of the ECC register is XOR’d into the
computed check bits during the write to the secondary cache for the
addressed doubleword. Note: The W bit is not cleared during this
operation due to an artifact of the implementation; the W bit is
implemented as part of the data side of the cache array so that it can be
written during a data write.

6 SD Hit Writeback

If the cache block contains the specified address, and the cache state is
Dirty Exclusive or Dirty Shared, data is written back to memory. The
cache state is unchanged; a subsequent miss to the block causes it to be
written back again. This second writeback is redundant, but not
incorrect. The CH bit in the Status register is set or cleared to indicate a
hit or miss. The writeback looks in the primary data cache for modified
data, but does not invalidate or clear the Writeback bit in the primary data
cache. Note: The state of the secondary block is not changed to clean
during this operation because the W bit of matching sub-blocks cannot
be cleared to put the primary block in a clean state.

6 I Hit Writeback

If the cache block contains the specified address, data is written back
unconditionally. When a secondary cache is present, and the CE bit of
the Status register is set, the contents of the ECC register is XOR’d into
the computed check bits during the write to the secondary cache for the
addressed doubleword.

CACHE CACHE(continued)
Cache

MIPS R4000 Microprocessor User's Manual A-47

CPU Instruction Set Details

Operation:

Exceptions:
Coprocessor unusable exception

Code Caches Name Operation

7 SI,SD Hit Set Virtual

This operation is used to change the virtual index of secondary cache
contents, avoiding unnecessary memory operations. If the cache block
contains the specified address, invalidate matching blocks in the primary
caches at the index formed by concatenating PIdx in the secondary
cache tag (not the virtual address of the operation) and vAddr11..4, and
then set the virtual index field of the secondary cache tag from the
specified virtual address. Modified data in the primary data cache is not
preserved by the operation and should be explicitly written back before
this operation. The CH bit in the Status register is set or cleared to
indicate a hit or miss.

CACHE CACHE(continued)
Cache

32, 64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
CacheOp (op, vAddr, pAddr)

Appendix A

A-48 MIPS R4000 Microprocessor User's Manual

Format:
CFCz rt, rd

Description:
The contents of coprocessor control register rd of coprocessor unit z are
loaded into general register rt.

This instruction is not valid for CP0.

Operation:

Exceptions:
Coprocessor unusable exception

*Opcode Bit Encoding:

CoprocessorCFCz

11

Move Control From

31 2526 2021 1516

COPz CF rt

6 5 5

rd 0

5

11 10 0

0 1 0 0 x x* 0 0 0 1 0 0 0 0 0 0

CFCz

32 T: data ← CCR[z,rd]
T+1: GPR[rt] ← data

64 T: data ← (CCR[z,rd]31)32 || CCR[z,rd]
T+1: GPR[rt] ← data

CFCz 0 0 0 0 11
31 30 29 28 27 26Bit # 25 0

CFC1 0 0 1 00
24 23 22 21

0 0 0 1 01
31 30 29 28 27 26Bit # 25 0

CFC2 0 0 1 00
24 23 22 21

Coprocessor Unit Number
Coprocessor SuboperationOpcode

MIPS R4000 Microprocessor User's Manual A-49

CPU Instruction Set Details

Format:
COPz cofun

Description:
A coprocessor operation is performed. The operation may specify and
reference internal coprocessor registers, and may change the state of the
coprocessor condition line, but does not modify state within the processor
or the cache/memory system. Details of coprocessor operations are
contained in Appendix B.

Operation:

Exceptions:
Coprocessor unusable exception
Coprocessor interrupt or Floating-Point Exception (R4000 CP1 only)

*Opcode Bit Encoding:

COPzCoprocessor Operation

31 25 2426

COPz

6

0

cofun

251

CO
0 1 0 0 x x* 1

COPz

32, 64 T: CoprocessorOperation (z, cofun)

COPz
0 0 0 0 01
31 30 29 28 27 26Bit # 25 0

C0P0 1

CO sub-opcode (see end of Appendix A)

0 0 0 0 11
31 30 29 28 27 26Bit # 25 0

C0P1 1

0 0 0 1 01
31 30 29 28 27 26Bit # 25 0

C0P2 1

Coprocessor Unit NumberOpcode

Appendix A

A-50 MIPS R4000 Microprocessor User's Manual

Format:
CTCz rt, rd

Description:
The contents of general register rt are loaded into control register rd of
coprocessor unit z.

This instruction is not valid for CP0.

Operation:

Exceptions:
Coprocessor unusable

*See “CPU Instruction Opcode Bit Encoding” at the end of Appendix A.

CTCz

11

Move Control to Coprocessor

31 2526 2021 1516

COPz CT rt

6 5 5

rd 0

5

11 10 0

0 1 0 0 x x * 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

CTCz

32,64 T: data ← GPR[rt]
T + 1: CCR[z,rd] ← data

MIPS R4000 Microprocessor User's Manual A-51

CPU Instruction Set Details

Format:
DADD rd, rs, rt

Description:
The contents of general register rs and the contents of general register rt
are added to form the result. The result is placed into general register rd.

An overflow exception occurs if the carries out of bits 62 and 63 differ (2’s
complement overflow). The destination register rd is not modified when
an integer overflow exception occurs.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

Exceptions:
Integer overflow exception
Reserved instruction exception (R4000 in 32-bit mode)

DADDDoubleword Add

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 DADD

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0

DADD

64 T: GPR[rd] ←GPR[rs] + GPR[rt]

Appendix A

A-52 MIPS R4000 Microprocessor User's Manual

Format:
DADDI rt, rs, immediate

Description:
The 16-bit immediate is sign-extended and added to the contents of general
register rs to form the result. The result is placed into general register rt.

An overflow exception occurs if carries out of bits 62 and 63 differ (2’s
complement overflow). The destination register rt is not modified when
an integer overflow exception occurs.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

Exceptions:
Integer overflow exception
Reserved instruction exception (R4000 in 32-bit mode)

DADDI Doubleword Add Immediate

31 2526 2021 1516 0

DADDI rs rt immediate

6 5 5 16
0 1 1 0 0 0

DADDI

64 T: GPR [rt] ← GPR[rs] + (immediate15)48 || immediate15...0

MIPS R4000 Microprocessor User's Manual A-53

CPU Instruction Set Details

Format:
DADDIU rt, rs, immediate

Description:
The 16-bit immediate is sign-extended and added to the contents of general
register rs to form the result. The result is placed into general register rt.
No integer overflow exception occurs under any circumstances.

The only difference between this instruction and the DADDI instruction is
that DADDIU never causes an overflow exception.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

Exceptions:
Reserved instruction exception (R4000 in 32-bit mode)

DADDIUDoubleword Add

31 2526 2021 1516 0

DADDIU rs rt immediate

6 5 5 16
0 1 1 0 0 1

DADDIU Immediate Unsigned

64 T: GPR [rt] ← GPR[rs] + (immediate15)48 || immediate15...0

Appendix A

A-54 MIPS R4000 Microprocessor User's Manual

Format:
DADDU rd, rs, rt

Description:
The contents of general register rs and the contents of general register rt
are added to form the result. The result is placed into general register rd.

No overflow exception occurs under any circumstances.

The only difference between this instruction and the DADD instruction is
that DADDU never causes an overflow exception.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

Exceptions:
Reserved instruction exception (R4000 in 32-bit mode)

DADDU Doubleword Add Unsigned

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 DADDU

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1

DADDU

64 T: GPR[rd] ←GPR[rs] + GPR[rt]

MIPS R4000 Microprocessor User's Manual A-55

CPU Instruction Set Details

Format:
DDIV rs, rt

Description:
The contents of general register rs are divided by the contents of general
register rt, treating both operands as 2’s complement values. No overflow
exception occurs under any circumstances, and the result of this operation
is undefined when the divisor is zero.

This instruction is typically followed by additional instructions to check
for a zero divisor and for overflow.

When the operation completes, the quotient word of the double result is
loaded into special register LO, and the remainder word of the double
result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of
those instructions are undefined. Correct operation requires separating
reads of HI or LO from writes by two or more instructions.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

 Exceptions:
Reserved instruction exception (R4000 in 32-bit mode)

DDIVDoubleword Divide

31 2526 2021 1516 0

rs rt

6 5 5

6 5

10 6

SPECIAL 0 DDIV
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0

DDIV

← undefined
← undefined
← undefined

HI ← GPR[rs] mod GPR[rt]

T–2: LO ← undefined

T: LO ← GPR[rs] div GPR[rt]

HI
T–1: LO

HI

64

Appendix A

A-56 MIPS R4000 Microprocessor User's Manual

Format:
DDIVU rs, rt

Description:
The contents of general register rs are divided by the contents of general
register rt, treating both operands as unsigned values. No integer
overflow exception occurs under any circumstances, and the result of this
operation is undefined when the divisor is zero.

This instruction is typically followed by additional instructions to check
for a zero divisor.

When the operation completes, the quotient word of the double result is
loaded into special register LO, and the remainder word of the double
result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of
those instructions are undefined. Correct operation requires separating
reads of HI or LO from writes by two or more instructions.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

Exceptions:
Reserved instruction exception (R4000 in 32-bit mode)

DDIVU Doubleword Divide Unsigned

31 2526 2021 1516 0

rs rt

6 5 5

6 5

10 6

SPECIAL 0 DDIVU
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

DDIVU

← undefined
← undefined
← undefined

← (0 || GPR[rs]) mod (0 || GPR[rt])

T–2: LO ← undefined

T: LO ← (0 || GPR[rs]) div (0 || GPR[rt])

HI
T–1: LO

HI

64

HI

MIPS R4000 Microprocessor User's Manual A-57

CPU Instruction Set Details

Format:
DIV rs, rt

Description:
The contents of general register rs are divided by the contents of general
register rt, treating both operands as 2’s complement values. No overflow
exception occurs under any circumstances, and the result of this operation
is undefined when the divisor is zero.

In 64-bit mode, the operands must be valid sign-extended, 32-bit values.

This instruction is typically followed by additional instructions to check
for a zero divisor and for overflow.

When the operation completes, the quotient word of the double result is
loaded into special register LO, and the remainder word of the double
result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of
those instructions are undefined. Correct operation requires separating
reads of HI or LO from writes by two or more instructions.

DIVDivide

31 2526 2021 1516 0

rs rt

6 5 5

6 5

10 6

SPECIAL 0 DIV
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0

DIV

Appendix A

A-58 MIPS R4000 Microprocessor User's Manual

Operation:

 Exceptions:
None

(continued)DIV Divide DIV

← undefined
← undefined
← undefined

HI ← GPR[rs] mod GPR[rt]

T–2: LO ← undefined

T: LO ← GPR[rs] div GPR[rt]

HI
T–1: LO

HI

← undefined
← undefined
← undefined

T–2: LO ← undefined

T: q ← GPR[rs]31...0 div GPR[rt]31...0

HI
T–1: LO

HI

LO ← (q31)32 || q31...0
HI ← (r31)32 || r31...0

r ← GPR[rs]31...0 mod GPR[rt]31...0

32

64

MIPS R4000 Microprocessor User's Manual A-59

CPU Instruction Set Details

Format:
DIVU rs, rt

Description:
The contents of general register rs are divided by the contents of general
register rt, treating both operands as unsigned values. No integer
overflow exception occurs under any circumstances, and the result of this
operation is undefined when the divisor is zero.

In 64-bit mode, the operands must be valid sign-extended, 32-bit values.

This instruction is typically followed by additional instructions to check
for a zero divisor.

When the operation completes, the quotient word of the double result is
loaded into special register LO, and the remainder word of the double
result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of
those instructions are undefined. Correct operation requires separating
reads of HI or LO from writes by two or more instructions.

DIVU Divide Unsigned

31 2526 2021 1516 0

rs rt

6 5 5

6 5

10 6

SPECIAL 0 DIVU
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1

DIVU

Appendix A

A-60 MIPS R4000 Microprocessor User's Manual

Operation:

Exceptions:
None

(continued)DIVU Divide Unsigned DIVU

← undefined
← undefined
← undefined

HI ← (0 || GPR[rs]) mod (0 || GPR[rt])

T–2: LO ← undefined

T: LO ← (0 || GPR[rs]) div (0 || GPR[rt])

HI
T–1: LO

HI

← undefined
← undefined
← undefined

T–2: LO ← undefined

T: q ← (0 || GPR[rs]31...0) div (0 || GPR[rt]31...0)

HI
T–1: LO

HI

LO ← (q31)32 || q31...0
HI ← (r31)32 || r31...0

r ← (0 || GPR[rs]31...0) mod (0 || GPR[rt]31...0)

32

64

MIPS R4000 Microprocessor User's Manual A-61

CPU Instruction Set Details

Format:
DMFC0 rt, rd

Description:
The contents of coprocessor register rd of the CP0 are loaded into general
register rt.

This operation is defined for the R4000 operating in 64-bit mode and in 32-
bit kernel mode. Execution of this instruction in 32-bit user or supervisor
mode causes a reserved instruction exception. All 64-bits of the general
register destination are written from the coprocessor register source. The
operation of DMFC0 on a 32-bit coprocessor 0 register is undefined.

Operation:

Exceptions:
Coprocessor unusable exception
Reserved instruction exception (R4000 in 32-bit user mode

 R4000 in 32-bit supervisor mode)

DMFC0 Doubleword Move From

rd

11 10

5

31 2526 2021 1516 0

COP0 DMF rt 0

6 5 5 11

System Control Coprocessor

0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 00

DMFC0

 64 T: data ←CPR[0,rd]
T+1: GPR[rt] ← data

Appendix A

A-62 MIPS R4000 Microprocessor User's Manual

Format:
DMTC0 rt, rd

Description:
The contents of general register rt are loaded into coprocessor register rd
of the CP0.

This operation is defined for the R4000 operating in 64-bit mode or in 32-
bit kernel mode. Execution of this instruction in 32-bit user or supervisor
mode causes a reserved instruction exception.

All 64-bits of the coprocessor 0 register are written from the general
register source. The operation of DMTC0 on a 32-bit coprocessor 0 register
is undefined.

Because the state of the virtual address translation system may be altered
by this instruction, the operation of load instructions, store instructions,
and TLB operations immediately prior to and after this instruction are
undefined.

Operation:

Exceptions:
Coprocessor unusable exception (R4000 in 32-bit user mode

R4000 in 32-bit supervisor mode)

DMTC0 Doubleword Move To

rd

11 10

5

31 2526 2021 1516 0

COP0 DMT rt 0

6 5 5 11

System Control Coprocessor

0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 00

DMTC0

 64 T: data ← GPR[rt]
T+1: CPR[0,rd] ← data

MIPS R4000 Microprocessor User's Manual A-63

CPU Instruction Set Details

Format:
DMULT rs, rt

Description:
The contents of general registers rs and rt are multiplied, treating both
operands as 2’s complement values. No integer overflow exception occurs
under any circumstances.

When the operation completes, the low-order word of the double result is
loaded into special register LO, and the high-order word of the double
result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of
these instructions are undefined. Correct operation requires separating
reads of HI or LO from writes by a minimum of two other instructions.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

Exceptions:
Reserved instruction exception (R4000 in 32-bit mode)

DMULT Doubleword Multiply

31 2526 2021 1516 0

rs rt

6 5 5

6 5

10 6

SPECIAL 0 DMULT
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0

DMULT

64 T–2: LO ← undefined
HI ← undefined

T–1: LO ← undefined
HI ← undefined

T: t ← GPR[rs] * GPR[rt]
LO ← t63...0
H I ← t127...64

Appendix A

A-64 MIPS R4000 Microprocessor User's Manual

Format:
DMULTU rs, rt

Description:
The contents of general register rs and the contents of general register rt
are multiplied, treating both operands as unsigned values. No overflow
exception occurs under any circumstances.

When the operation completes, the low-order word of the double result is
loaded into special register LO, and the high-order word of the double
result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of
these instructions are undefined. Correct operation requires separating
reads of HI or LO from writes by a minimum of two instructions.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

Exceptions:
Reserved instruction exception (R4000 in 32-bit mode)

DMULTUDoubleword Multiply

31 2526 2021 1516 0

rs rt

6 5 5

6 5

10 6

SPECIAL 0 DMULTU
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1

DMULTU Unsigned

64 T–2: LO ← undefined
HI ← undefined

T–1: LO ← undefined
HI ← undefined

T: t ← (0 || GPR[rs]) * (0 || GPR[rt])
LO ← t63...0
HI ←t127...64

MIPS R4000 Microprocessor User's Manual A-65

CPU Instruction Set Details

Format:
DSLL rd, rt, sa

Description:
The contents of general register rt are shifted left by sa bits, inserting zeros
into the low-order bits. The result is placed in register rd.

Operation:

Exceptions:
Reserved instruction exception (R4000 in 32-bit mode)

DSLLDoubleword Shift Left Logical

31 2526 2021 1516

SPECIAL 0 rt

6 5 5

rd sa DSLL

5 5 6

11 10 6 5 0

0 0 0 0 0 0 1 1 1 0 0 0

DSLL

0 0 0 0 0

64 T: s ← 0 || sa
GPR[rd] ← GPR[rt](63–s)...0 || 0s

Appendix A

A-66 MIPS R4000 Microprocessor User's Manual

Format:
DSLLV rd, rt, rs

Description:
The contents of general register rt are shifted left by the number of bits
specified by the low-order six bits contained in general register rs,
inserting zeros into the low-order bits. The result is placed in register rd.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

Exceptions:
Reserved instruction exception (R4000 in 32-bit mode)

DSLLV Doubleword Shift Left

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 DSLLV

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 1 0 1 0 00 0 0 0 0

DSLLVLogical Variable

64 T: s ← GPR[rs]5...0
GPR[rd]← GPR[rt](63–s)...0 || 0s

MIPS R4000 Microprocessor User's Manual A-67

CPU Instruction Set Details

Format:
DSLL32 rd, rt, sa

Description:
The contents of general register rt are shifted left by 32+sa bits, inserting
zeros into the low-order bits. The result is placed in register rd.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

Exceptions:
Reserved instruction exception (R4000 in 32-bit mode)

DSLL32 Doubleword Shift Left

31 2526 2021 1516

SPECIAL rt

6 5 5

rd sa DSLL32

5 5 6

11 10 6 5 0

0 0 0 0 0 0 1 1 1 1 0 0

DSLL32Logical + 32

0
0 0 0 0 0

64 T: s ← 1 || sa
GPR[rd]← GPR[rt](63–s)...0 || 0s

Appendix A

A-68 MIPS R4000 Microprocessor User's Manual

Format:
DSRA rd, rt, sa

Description:
The contents of general register rt are shifted right by sa bits, sign-
extending the high-order bits. The result is placed in register rd.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

Exceptions:
Reserved instruction exception (R4000 in 32-bit mode)

DSRADoubleword

31 2526 2021 1516

SPECIAL 0 rt

6 5 5

rd sa DSRA

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1

DSRA Shift Right Arithmetic

64 T: s ← 0 || sa
GPR[rd] ← (GPR[rt]63)s || GPR[rt] 63...s

MIPS R4000 Microprocessor User's Manual A-69

CPU Instruction Set Details

Format:
DSRAV rd, rt, rs

Description:
The contents of general register rt are shifted right by the number of bits
specified by the low-order six bits of general register rs, sign-extending the
high-order bits. The result is placed in register rd.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

Exceptions:
Reserved instruction exception (R4000 in 32-bit mode)

DSRAV Doubleword Shift Right

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 DSRAV

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1

DSRAVArithmetic Variable

64 T: s ← GPR[rs]5...0
GPR[rd] ← (GPR[rt]63)s || GPR[rt]63...s

Appendix A

A-70 MIPS R4000 Microprocessor User's Manual

Format:
DSRA32 rd, rt, sa

Description:
The contents of general register rt are shifted right by 32+sa bits, sign-
extending the high-order bits. The result is placed in register rd.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

Exceptions:
Reserved instruction exception (R4000 in 32-bit mode)

DSRA32Doubleword Shift Right

31 2526 2021 1516

SPECIAL 0 rt

6 5 5

rd sa DSRA32

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

DSRA32 Arithmetic + 32

64 T: s ←1 || sa
GPR[rd] ← (GPR[rt]63)s || GPR[rt] 63...s

MIPS R4000 Microprocessor User's Manual A-71

CPU Instruction Set Details

Format:
DSRL rd, rt, sa

Description:
The contents of general register rt are shifted right by sa bits, inserting
zeros into the high-order bits. The result is placed in register rd.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

Exceptions:
Reserved instruction exception (R4000 in 32-bit mode)

DSRLDoubleword

31 2526 2021 1516

SPECIAL rt

6 5 5

rd sa DSRL

5 5 6

11 10 6 5 0

0 0 0 0 0 0 1 1 1 0 1 0

DSRL

0
0 0 0 0 0

Shift Right Logical

64 T: s ← 0 || sa
GPR[rd] ← 0s || GPR[rt]63...s

Appendix A

A-72 MIPS R4000 Microprocessor User's Manual

Format:
DSRLV rd, rt, rs

Description:
The contents of general register rt are shifted right by the number of bits
specified by the low-order six bits of general register rs, inserting zeros
into the high-order bits. The result is placed in register rd.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

Exceptions:
Reserved instruction exception (R4000 in 32-bit mode)

DSRLV Doubleword Shift Right

31 2526 2021 1516

SPECIAL rt

6 5 5

rd 0 DSRLV

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0

DSRLVLogical Variable

rs

64 T: s ← GPR[rs]5...0
GPR[rd] ← 0s || GPR[rt]63...s

MIPS R4000 Microprocessor User's Manual A-73

CPU Instruction Set Details

Format:
DSRL32 rd, rt, sa

Description:
The contents of general register rt are shifted right by 32+sa bits, inserting
zeros into the high-order bits. The result is placed in register rd.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

Exceptions:
Reserved instruction exception (R4000 in 32-bit mode)

DSRL32Doubleword Shift Right

31 2526 2021 1516

SPECIAL rt

6 5 5

rd sa DSRL32

5 5 6

11 10 6 5 0

0 0 0 0 0 0 1 1 1 1 1 0

DSRL32 Logical + 32

0
0 0 0 0 0

64 T: s ← 1 || sa
GPR[rd] ← 0s || GPR[rt]63...s

Appendix A

A-74 MIPS R4000 Microprocessor User's Manual

Format:
DSUB rd, rs, rt

Description:
The contents of general register rt are subtracted from the contents of
general register rs to form a result. The result is placed into general
register rd.

The only difference between this instruction and the DSUBU instruction is
that DSUBU never traps on overflow.

An integer overflow exception takes place if the carries out of bits 62 and
63 differ (2’s complement overflow). The destination register rd is not
modified when an integer overflow exception occurs.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

Exceptions:
Integer overflow exception
Reserved instruction exception (R4000 in 32-bit mode)

DSUB DSUBDoubleword Subtract

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 DSUB

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0

64 T: GPR[rd] ← GPR[rs] – GPR[rt]

MIPS R4000 Microprocessor User's Manual A-75

CPU Instruction Set Details

Format:
DSUBU rd, rs, rt

Description:
The contents of general register rt are subtracted from the contents of
general register rs to form a result. The result is placed into general
register rd.

The only difference between this instruction and the DSUB instruction is
that DSUBU never traps on overflow. No integer overflow exception
occurs under any circumstances.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

Exceptions:
Reserved instruction exception (R4000 in 32-bit mode)

DSUBU Doubleword Subtract Unsigned

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 DSUBU

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1

DSUBU

64 T: GPR[rd] ← GPR[rs] – GPR[rt]

Appendix A

A-76 MIPS R4000 Microprocessor User's Manual

Format:
ERET

Description:
ERET is the R4000 instruction for returning from an interrupt, exception,
or error trap. Unlike a branch or jump instruction, ERET does not execute
the next instruction.

ERET must not itself be placed in a branch delay slot.

If the processor is servicing an error trap (SR2 = 1), then load the PC from
the ErrorEPC and clear the ERL bit of the Status register (SR2). Otherwise
(SR2 = 0), load the PC from the EPC, and clear the EXL bit of the Status
register (SR1).

An ERET executed between a LL and SC also causes the SC to fail.

Operation:

Exceptions:
Coprocessor unusable exception

ERETException Return

0

6

6 531 25 2426

COP0

6

0

ERET

191

CO
0 1 0 0 0 0 0 1 1 0 0 01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ERET

32, 64 T: if SR2 = 1 then
PC ← ErrorEPC
SR ← SR31...3 || 0 || SR1...0

else
PC ← EPC
SR ← SR31...2 || 0 || SR0

endif
LLbit ← 0

MIPS R4000 Microprocessor User's Manual A-77

CPU Instruction Set Details

Format:
J target

Description:
The 26-bit target address is shifted left two bits and combined with the
high-order bits of the address of the delay slot. The program
unconditionally jumps to this calculated address with a delay of one
instruction.

Operation:

Exceptions:
None

J Jump

31 2526

J

6

0

target

26
0 0 0 0 1 0

J

32 T: temp ← target
T+1: PC ← PC31...28 || temp || 02

64 T: temp ← target
T+1: PC ← PC63...28 || temp || 02

Appendix A

A-78 MIPS R4000 Microprocessor User's Manual

Format:
JAL target

Description:
The 26-bit target address is shifted left two bits and combined with the
high-order bits of the address of the delay slot. The program
unconditionally jumps to this calculated address with a delay of one
instruction. The address of the instruction after the delay slot is placed in
the link register, r31.

Operation:

Exceptions:
None

JAL Jump And Link

31 2526

JAL

6

0

target

26
0 0 0 0 1 1

JAL

GPR[31] ← PC + 8
32 T: temp ← target

T+1: PC ← PC 31...28 || temp || 02

GPR[31] ← PC + 8
64 T: temp ← target

T+1: PC ← PC 63...28 || temp || 02

MIPS R4000 Microprocessor User's Manual A-79

CPU Instruction Set Details

Format:
JALR rs
JALR rd, rs

Description:
The program unconditionally jumps to the address contained in general
register rs, with a delay of one instruction. The address of the instruction
after the delay slot is placed in general register rd. The default value of rd,
if omitted in the assembly language instruction, is 31.

Register specifiers rs and rd may not be equal, because such an instruction
does not have the same effect when re-executed. However, an attempt to
execute this instruction is not trapped, and the result of executing such an
instruction is undefined.

Since instructions must be word-aligned, a Jump and Link Register
instruction must specify a target register (rs) whose two low-order bits are
zero. If these low-order bits are not zero, an address exception will occur
when the jump target instruction is subsequently fetched.

Operation:

Exceptions:
None

JALR Jump And Link Register

31 2526 2021 1516

SPECIAL rs 0

6 5 5

rd 0 JALR

5 5 6

11 10 6 5 0

0 0 1 0 0 10 0 0 0 00 0 0 0 00 0 0 0 0 0

JALR

32, 64 T: temp ← GPR [rs]
GPR[rd] ← PC + 8

T+1: PC ← temp

Appendix A

A-80 MIPS R4000 Microprocessor User's Manual

Format:
JR rs

Description:
The program unconditionally jumps to the address contained in general
register rs, with a delay of one instruction.

Since instructions must be word-aligned, a Jump Register instruction
must specify a target register (rs) whose two low-order bits are zero. If
these low-order bits are not zero, an address exception will occur when the
jump target instruction is subsequently fetched.

Operation:

Exceptions:
None

JRJump Register

21 2031 2526

SPECIAL

6

0

JRrs 0

6 5

5 15 6
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

JR

32, 64 T: temp ← GPR[rs]
T+1: PC ← temp

MIPS R4000 Microprocessor User's Manual A-81

CPU Instruction Set Details

Format:
LB rt, offset(base)

Description:
The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of the byte at the
memory location specified by the effective address are sign-extended and
loaded into general register rt.

Operation:

Exceptions:
TLB refill exception
TLB invalid exception
Bus error exception
Address error exception

LB Load Byte

31 2526 2021 1516 0

LB base rt offset

6 5 5 16
1 0 0 0 0 0

LB

T: vAddr ← ((offset15)16 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

mem ← LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)
byte ← vAddr2...0 xor BigEndianCPU3

GPR[rt] ← (mem7+8*byte)24 || mem7+8*byte...8*byte

pAddr ← pAddrPSIZE – 1 ... 3 || (pAddr2...0 xor ReverseEndian3)

T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

mem ← LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)
byte ← vAddr2...0 xor BigEndianCPU3

GPR[rt] ← (mem7+8*byte)56 || mem7+8*byte...8*byte

pAddr ← pAddrPSIZE – 1 ... 3 || (pAddr2...0 xor ReverseEndian3)

32

64

Appendix A

A-82 MIPS R4000 Microprocessor User's Manual

Format:
LBU rt, offset(base)

Description:
The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of the byte at the
memory location specified by the effective address are zero-extended and
loaded into general register rt.

Operation:

Exceptions:
TLB refill exception TLB invalid exception
Bus error exception Address error exception

LBULoad Byte Unsigned

31 2526 2021 1516 0

LBU base rt offset

6 5 5 16
1 0 0 1 0 0

LBU

T: vAddr ← ((offset15)16 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE – 1 ...3 || (pAddr2...0 xor ReverseEndian3)
mem ← LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)
byte ← vAddr2...0 xor BigEndianCPU3

GPR[rt] ← 024 || mem7+8* byte...8* byte

T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE – 1...3 || (pAddr2...0 xor ReverseEndian3)
mem ← LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)
byte ← vAddr2...0 xor BigEndianCPU3

GPR[rt] ← 056 || mem7+8* byte...8* byte

32

64

MIPS R4000 Microprocessor User's Manual A-83

CPU Instruction Set Details

Format:
LD rt, offset(base)

Description:
The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of the 64-bit
doubleword at the memory location specified by the effective address are
loaded into general register rt.

If any of the three least-significant bits of the effective address are non-
zero, an address error exception occurs.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

Exceptions:
TLB refill exception
TLB invalid exception
Bus error exception
Address error exception
Reserved instruction exception (R4000 in 32-bit user mode

R4000 in 32-bit supervisor mode)

LDLoad Doubleword

31 2526 2021 1516 0

LD base rt offset

6 5 5 16
1 1 0 1 1 1

LD

64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
mem ← LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)
GPR[rt] ← mem

Appendix A

A-84 MIPS R4000 Microprocessor User's Manual

Format:
LDCz rt, offset(base)

Description:
The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The processor reads a doubleword
from the addressed memory location and makes the data available to
coprocessor unit z. The manner in which each coprocessor uses the data
is defined by the individual coprocessor specifications.

If any of the three least-significant bits of the effective address are non-
zero, an address error exception takes place.

This instruction is not valid for use with CP0.

This instruction is undefined when the least-significant bit of the
rt field is non-zero.

*See the table “Opcode Bit Encoding” on next page, or “CPU Instruction
Opcode Bit Encoding” at the end of Appendix A.

LDCz Load Doubleword To Coprocessor

31 2526 2021 1516 0

LDCz base rt offset

6 5 5 16
1 1 0 1 x x*

LDCz

MIPS R4000 Microprocessor User's Manual A-85

CPU Instruction Set Details

Operation:

Exceptions:
TLB refill exception
TLB invalid exception
Bus error exception
Address error exception
Coprocessor unusable exception

Opcode Bit Encoding:

(continued)LDCz Load Doubleword To Coprocessor LDCz

32 T: vAddr ← ((offset15)16 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
mem ← LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)

64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
mem ← LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)
COPzLD (rt, mem)

COPzLD (rt, mem)

LDCz
1 0 1 0 11
31 30 29 28 27 26Bit # 0

LDC1

1 0 1 1 01
31 30 29 28 27 26Bit # 0

LDC2

Coprocessor Unit NumberOpcode

Appendix A

A-86 MIPS R4000 Microprocessor User's Manual

Format:
LDL rt, offset(base)

Description:
This instruction can be used in combination with the LDR instruction to
load a register with eight consecutive bytes from memory, when the bytes
cross a doubleword boundary. LDL loads the left portion of the register
with the appropriate part of the high-order doubleword; LDR loads the
right portion of the register with the appropriate part of the low-order
doubleword.

The LDL instruction adds its sign-extended 16-bit offset to the contents of
general register base to form a virtual address which can specify an
arbitrary byte. It reads bytes only from the doubleword in memory which
contains the specified starting byte. From one to eight bytes will be
loaded, depending on the starting byte specified.

Conceptually, it starts at the specified byte in memory and loads that byte
into the high-order (left-most) byte of the register; then it loads bytes from
memory into the register until it reaches the low-order byte of the
doubleword in memory. The least-significant (right-most) byte(s) of the
register will not be changed.

LDL Load Doubleword Left

31 2526 2021 1516 0

LDL base rt offset

6 5 5 16
0 1 1 0 1 0

LDL

address 0
address 8

memory
register

LDL $24,3($0)

$24

(big-endian)

before

after

10 2 3 4 5 6 7
98 10 11 12 13 14 15

A B C D E F G H

$243 4 5 6 7 F G H

MIPS R4000 Microprocessor User's Manual A-87

CPU Instruction Set Details

The contents of general register rt are internally bypassed within the
processor so that no NOP is needed between an immediately preceding
load instruction which specifies register rt and a following LDL (or LDR)
instruction which also specifies register rt.

No address exceptions due to alignment are possible.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

(continued)LDL Load Doubleword Left LDL

endif

64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE–1...3 || (pAddr2...0 xor ReverseEndian3)

pAddr ← pAddrPSIZE–1...3 || 03

GPR[rt] ← mem7+8*byte...0 || GPR[rt]55–8*byte...0

mem ← LoadMemory (uncached, byte, pAddr, vAddr, DATA)

if BigEndianMem = 0 then

byte ← vAddr2...0 xor BigEndianCPU3

Appendix A

A-88 MIPS R4000 Microprocessor User's Manual

Given a doubleword in a register and a doubleword in memory, the
operation of LDL is as follows:

LEM Little-endian memory (BigEndianMem = 0)
BEM BigEndianMem = 1
Type AccessType (see Table 2-1) sent to memory
Offset pAddr2...0 sent to memory

Exceptions:
TLB refill exception
TLB invalid exception
Bus error exception
Address error exception
Reserved instruction exception (R4000 in 32-bit mode)

(continued)LDL Load Doubleword Left LDL

LDL
A C DBRegister

I K LJMemory

E G HF

M O PN

0 P B C D E F G H 0 0 7 I J K L M N O P 7 0 0
1 O P C D E F G H 1 0 6 J K L M N O P H 6 0 1
2 N O P D E F G H 2 0 5 K L M N O P G H 5 0 2
3 M N O P E F G P 3 0 4 L M N O P F G H 4 0 3
4 L M N O P F G H 4 0 3 M N O P E F G H 3 0 4
5 K L M N O P G H 5 0 2 N O P D E F G H 2 0 5
6 J K L M N O P H 6 0 1 O P C D E F G H 1 0 6
7 I J K L M N O P 7 0 0 P B C D E F G H 0 0 7

BigEndianCPU = 0

vAddr2..0 destination destinationtype type offsetoffset
BigEndianCPU = 1

LEM BEM LEM BEM

MIPS R4000 Microprocessor User's Manual A-89

CPU Instruction Set Details

Format:
LDR rt, offset(base)

Description:
This instruction can be used in combination with the LDL instruction to
load a register with eight consecutive bytes from memory, when the bytes
cross a doubleword boundary. LDR loads the right portion of the register
with the appropriate part of the low-order doubleword; LDL loads the left
portion of the register with the appropriate part of the high-order
doubleword.

The LDR instruction adds its sign-extended 16-bit offset to the contents of
general register base to form a virtual address which can specify an
arbitrary byte. It reads bytes only from the doubleword in memory which
contains the specified starting byte. From one to eight bytes will be
loaded, depending on the starting byte specified.

Conceptually, it starts at the specified byte in memory and loads that byte
into the low-order (right-most) byte of the register; then it loads bytes from
memory into the register until it reaches the high-order byte of the
doubleword in memory. The most significant (left-most) byte(s) of the
register will not be changed.

LDRLoad Doubleword Right

31 2526 2021 1516 0

LDR base rt offset

6 5 5 16
0 1 1 0 1 1

LDR

A

LDR $24,4($0)

after

address 0
address 8

register

$24

(big-endian)

before10 2 3 4 5 6 7
98 10 11 12 13 14 15

B C D E F G H

A
register

$24B C 0 1 2 3 4

memory

Appendix A

A-90 MIPS R4000 Microprocessor User's Manual

The contents of general register rt are internally bypassed within the
processor so that no NOP is needed between an immediately preceding
load instruction which specifies register rt and a following LDR (or LDL)
instruction which also specifies register rt.

No address exceptions due to alignment are possible.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

(continued)
LDRLoad Doubleword RightLDR

endif

64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE–1...3 || (pAddr2...0 xor ReverseEndian3)

pAddr ← pAddr31...3 || 03

GPR[rt] ← GPR[rt]63...64-8*byte || mem63...8*byte

mem ← LoadMemory (uncached, byte, pAddr, vAddr, DATA)

if BigEndianMem = 1 then

byte ← vAddr2...0 xor BigEndianCPU3

MIPS R4000 Microprocessor User's Manual A-91

CPU Instruction Set Details

Given a doubleword in a register and a doubleword in memory, the
operation of LDR is as follows:

LEM Little-endian memory (BigEndianMem = 0)
BEM BigEndianMem = 1
Type AccessType (see Table 2-1) sent to memory
Offset pAddr2...0 sent to memory

Exceptions:
TLB refill exception
TLB invalid exception
Bus error exception
Address error exception
Reserved instruction exception (R4000 in 32-bit mode)

(continued) LDRLoad Doubleword RightLDR

LDR
A C DBRegister

I K LJMemory

E G HF

M O PN

0 I J K L M N O P 7 0 0 A B C D E F G I 0 7 0
1 A I J K L M N O 6 1 0 A B C D E F I J 1 6 0
2 A B I J K L M N 5 2 0 A B C D E I J K 2 5 0
3 A B C I J K L M 4 3 0 A B C D I J K L 3 4 0
4 A B C D I J K L 3 4 0 A B C I J K L M 4 3 0
5 A B C D E I J K 2 5 0 A B I J K L M N 5 2 0
6 A B C D E F I J 1 6 0 A I J K L M N O 6 1 0
7 A B C D E F G I 0 7 0 I J K L M N O P 7 0 0

BigEndianCPU = 0

vAddr2..0 destination destinationtype type offsetoffset
BigEndianCPU = 1

LEM BEM LEM BEM

Appendix A

A-92 MIPS R4000 Microprocessor User's Manual

Format:
LH rt, offset(base)

Description:
The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of the halfword at the
memory location specified by the effective address are sign-extended and
loaded into general register rt.

If the least-significant bit of the effective address is non-zero, an address
error exception occurs.

Operation:

Exceptions:
TLB refill exception
TLB invalid exception
Bus error exception
Address error exception

LH Load Halfword

31 2526 2021 1516 0

LH base rt offset

6 5 5 16
1 0 0 0 0 1

LH

32 T: vAddr ← ((offset15)16 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

byte ← vAddr2...0 xor (BigEndianCPU2 || 0)
GPR[rt] ← (mem15+8*byte)16 || mem15+8*byte...8* byte

pAddr ← pAddrPSIZE – 1...3 || (pAddr2...0 xor (ReverseEndian || 0))
mem ← LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)

64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

byte ← vAddr2...0 xor (BigEndianCPU2 || 0)
GPR[rt] ← (mem15+8*byte)48 || mem15+8*byte...8* byte

pAddr ← pAddrPSIZE – 1...3 || (pAddr2...0 xor (ReverseEndian || 0))
mem ← LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)

MIPS R4000 Microprocessor User's Manual A-93

CPU Instruction Set Details

Format:
LHU rt, offset(base)

Description:
The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of the halfword at the
memory location specified by the effective address are zero-extended and
loaded into general register rt.

If the least-significant bit of the effective address is non-zero, an address
error exception occurs.

Operation:

Exceptions:
TLB refill exception TLB invalid exception
Bus Error exception Address error exception

LHULoad Halfword Unsigned

31 2526 2021 1516 0

LHU base rt offset

6 5 5 16
1 0 0 1 0 1

LHU

32 T: vAddr ← ((offset15)16 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

mem ← LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)
byte ← vAddr2...0 xor (BigEndianCPU2 || 0)
GPR[rt] ← 016 || mem15+8*byte...8*byte

pAddr ← pAddrPSIZE – 1...3 || (pAddr2...0 xor (ReverseEndian2 || 0))

64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

mem ← LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)
byte ← vAddr2...0 xor (BigEndianCPU2 || 0)
GPR[rt] ← 048 || mem15+8*byte...8*byte

pAddr ← pAddrPSIZE – 1...3 || (pAddr2...0 xor (ReverseEndian2 || 0))

Appendix A

A-94 MIPS R4000 Microprocessor User's Manual

Format:
LL rt, offset(base)

Description:
The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of the word at the
memory location specified by the effective address are loaded into general
register rt. In 64-bit mode, the loaded word is sign-extended.

The processor begins checking the accessed word for modification by
other processor and devices.

Load Linked and Store Conditional can be used to atomically update
memory locations as shown:

This atomically increments the word addressed by T0. Changing the ADD
to an OR changes this to an atomic bit set. This instruction is available in
User mode, and it is not necessary for CP0 to be enabled.

The operation of LL is undefined if the addressed location is uncached
and, for synchronization between multiple processors, the operation of LL
is undefined if the addressed location is noncoherent. A cache miss that
occurs between LL and SC may cause SC to fail, so no load or store
operation should occur between LL and SC, otherwise the SC may never
be successful. Exceptions also cause SC to fail, so persistent exceptions
must be avoided. If either of the two least-significant bits of the effective
address are non-zero, an address error exception takes place.

LL Load Linked

31 2526 2021 1516 0

LL base rt offset

6 5 5 16
1 1 0 0 0 0

LL

L1:
LL T1, (T0)
ADD T2, T1, 1
SC T2, (T0)
BEQ T2, 0, L1
NOP

MIPS R4000 Microprocessor User's Manual A-95

CPU Instruction Set Details

Operation:

Exceptions:
TLB refill exception
TLB invalid exception
Bus error exception
Address error exception

(continued)LL Load Linked LL

32 T: vAddr ← ((offset15)16 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

mem ← LoadMemory (uncached, WORD, pAddr, vAddr, DATA)

GPR[rt] ← mem31+8*byte...8*byte
LLbit ← 1

64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

mem ← LoadMemory (uncached, WORD, pAddr, vAddr, DATA)

GPR[rt] ← (mem31+8*byte)32 || mem31+8*byte...8*byte
LLbit ← 1

pAddr ← pAddrPSIZE-1...3 || (pAddr2...0 xor (ReverseEndian || 02))

byte ← vAddr2...0 xor (BigEndianCPU || 02)

pAddr ← pAddrPSIZE-1...3 || (pAddr2...0 xor (ReverseEndian || 02))

byte ← vAddr2...0 xor (BigEndianCPU || 02)

Appendix A

A-96 MIPS R4000 Microprocessor User's Manual

Format:
LLD rt, offset(base)

Description:
The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of the doubleword at
the memory location specified by the effective address are loaded into
general register rt.

The processor begins checking the accessed word for modification by
other processor and devices.

Load Linked Doubleword and Store Conditional Doubleword can be used
to atomically update memory locations:

This atomically increments the word addressed by T0. Changing the ADD
to an OR changes this to an atomic bit set.

LLD Load Linked Doubleword

31 2526 2021 1516 0

LLD base rt offset

6 5 5 16
1 1 0 1 0 0

LLD

L1:
LLD T1, (T0)
ADD T2, T1, 1
SCD T2, (T0)
BEQ T2, 0, L1
NOP

MIPS R4000 Microprocessor User's Manual A-97

CPU Instruction Set Details

The operation of LLD is undefined if the addressed location is uncached
and, for synchronization between multiple processors, the operation of
LLD is undefined if the addressed location is noncoherent. A cache miss
that occurs between LLD and SCD may cause SCD to fail, so no load or
store operation should occur between LLD and SCD, otherwise the SCD
may never be successful. Exceptions also cause SCD to fail, so persistent
exceptions must be avoided.

This instruction is available in User mode, and it is not necessary for CP0
to be enabled.

If any of the three least-significant bits of the effective address are non-
zero, an address error exception takes place.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

Exceptions:
TLB refill exception
TLB invalid exception
Bus error exception
Address error exception
Reserved instruction exception (R4000 in 32-bit mode)

(continued)LLD Load Linked Doubleword LLD

64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

mem ← LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)
GPR[rt] ← mem
LLbit ← 1

Appendix A

A-98 MIPS R4000 Microprocessor User's Manual

Format:
LUI rt, immediate

Description:
The 16-bit immediate is shifted left 16 bits and concatenated to 16 bits of
zeros. The result is placed into general register rt. In 64-bit mode, the
loaded word is sign-extended.

Operation:

Exceptions:
None

LUI Load Upper Immediate

31 2526 2021 1516 0

LUI rt immediate

6 5 5 16
0 0 1 1 1 1

LUI

0
0 0 0 0 0

32 T: GPR[rt] ← immediate || 016

64 T: GPR[rt] ← (immediate15)32 || immediate || 016

MIPS R4000 Microprocessor User's Manual A-99

CPU Instruction Set Details

Format:
LW rt, offset(base)

Description:
The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of the word at the
memory location specified by the effective address are loaded into general
register rt. In 64-bit mode, the loaded word is sign-extended. If either of
the two least-significant bits of the effective address is non-zero, an
address error exception occurs.

Operation:

Exceptions:
TLB refill exception TLB invalid exception
Bus error exception Address error exception

LWLoad Word

31 2526 2021 1516 0

LW base rt offset

6 5 5 16
1 0 0 0 1 1

LW

32 T: vAddr ← ((offset15)16 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

mem ← LoadMemory (uncached, WORD, pAddr, vAddr, DATA)

GPR[rt] ← mem31+8*byte...8*byte

64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

mem ← LoadMemory (uncached, WORD, pAddr, vAddr, DATA)

GPR[rt] ← (mem31+8*byte)32 || mem31+8*byte...8*byte

pAddr ← pAddrPSIZE-1...3 || (pAddr2...0 xor (ReverseEndian || 02))

byte ← vAddr2...0 xor (BigEndianCPU || 02)

pAddr ← pAddrPSIZE-1...3 || (pAddr2...0 xor (ReverseEndian || 02))

byte ← vAddr2...0 xor (BigEndianCPU || 02)

Appendix A

A-100 MIPS R4000 Microprocessor User's Manual

Format:
LWCz rt, offset(base)

Description:
The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The processor reads a word from
the addressed memory location, and makes the data available to
coprocessor unit z.

The manner in which each coprocessor uses the data is defined by the
individual coprocessor specifications.

If either of the two least-significant bits of the effective address is non-zero,
an address error exception occurs.

This instruction is not valid for use with CP0.

*See the table “Opcode Bit Encoding” on next page, or “CPU Instruction
Opcode Bit Encoding” at the end of Appendix A.

LWCz Load Word To Coprocessor

31 2526 2021 1516 0

LWCz base rt offset

6 5 5 16
1 1 0 0 x x*

LWCz

MIPS R4000 Microprocessor User's Manual A-101

CPU Instruction Set Details

Operation:

Exceptions:
TLB refill exception TLB invalid exception
Bus error exception Address error exception
Coprocessor unusable exception

Opcode Bit Encoding:

(continued)LWCz Load Word To Coprocessor LWCz

32 T: vAddr ← ((offset15)16 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1...3 || (pAddr2...0 xor (ReverseEndian || 02))
mem ← LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
byte ← vAddr2...0 xor (BigEndianCPU || 02)
COPzLW (byte, rt, mem)

64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base}
(pAddr, uncached)← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1...3 || (pAddr2...0 xor (ReverseEndian || 02))
mem ← LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
byte ← vAddr2...0 xor (BigEndianCPU || 02)
COPzLW (byte, rt, mem)

LWCz
1 0 0 0 11
31 30 29 28 27 26Bit # 0

LWC1

1 0 0 1 01
31 30 29 28 27 26Bit # 0

LWC2

Coprocessor Unit NumberOpcode

Appendix A

A-102 MIPS R4000 Microprocessor User's Manual

Format:
LWL rt, offset(base)

Description:
This instruction can be used in combination with the LWR instruction to
load a register with four consecutive bytes from memory, when the bytes
cross a word boundary. LWL loads the left portion of the register with the
appropriate part of the high-order word; LWR loads the right portion of
the register with the appropriate part of the low-order word.

The LWL instruction adds its sign-extended 16-bit offset to the contents of
general register base to form a virtual address which can specify an
arbitrary byte. It reads bytes only from the word in memory which
contains the specified starting byte. From one to four bytes will be loaded,
depending on the starting byte specified. In 64-bit mode, the loaded word
is sign-extended.

Conceptually, it starts at the specified byte in memory and loads that byte
into the high-order (left-most) byte of the register; then it loads bytes from
memory into the register until it reaches the low-order byte of the word in
memory. The least-significant (right-most) byte(s) of the register will not
be changed.

LWL Load Word Left

31 2526 2021 1516 0

LWL base rt offset

6 5 5 16
1 0 0 0 1 0

LWL

address 0
address 4

0 1 2 3
4 5 6 7

memory

A B C D
register

$24

(big-endian)

before

after 1 2 3 D $24

LWL $24,1($0)

MIPS R4000 Microprocessor User's Manual A-103

CPU Instruction Set Details

The contents of general register rt are internally bypassed within the
processor so that no NOP is needed between an immediately preceding
load instruction which specifies register rt and a following LWL (or LWR)
instruction which also specifies register rt. No address exceptions due to
alignment are possible.

Operation:

(continued)LWL Load Word Left LWL

pAddr ← pAddrPSIZE–1...2 || 02

32 T: vAddr ← ((offset15)16 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

endif

64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE–1...3 || (pAddr2...0 xor ReverseEndian3)

GPR[rt] ← (temp31)32 || temp

mem ← LoadMemory (uncached, 0 || byte, pAddr, vAddr, DATA)
temp ← mem32*word+8*byte+7...32*word || GPR[rt]23-8*byte...0

if BigEndianMem = 0 then

byte ← vAddr1...0 xor BigEndianCPU2

word ← vAddr2 xor BigEndianCPU

 if BigEndianMem = 0 then
pAddr ← pAddrPSIZE–1...2 || 02

endif
byte ← vAddr1...0 xor BigEndianCPU2

word ← vAddr2 xor BigEndianCPU

pAddr ← pAddrPSIZE–1...3 || (pAddr2...0 xor ReverseEndian3)

mem ← LoadMemory (uncached, 0 || byte, pAddr, vAddr, DATA)
temp ← mem32*word+8*byte+7...32*word || GPR[rt]23-8*byte...0
GPR[rt] ← temp

Appendix A

A-104 MIPS R4000 Microprocessor User's Manual

Given a doubleword in a register and a doubleword in memory, the
operation of LWL is as follows:

LEM Little-endian memory (BigEndianMem = 0)
BEM BigEndianMem = 1
Type AccessType (see Table 2-1) sent to memory
Offset pAddr2...0 sent to memory
S sign-extend of destination31

Exceptions:
TLB refill exception
TLB invalid exception
Bus error exception
Address error exception

LWL LWL(continued)
Load Word Left

LWL
A C DBRegister

I K LJMemory

E G HF

M O PN

0 S S S S P F G H 0 0 7 S S S S I J K L 3 4 0
1 S S S S O P G H 1 0 6 S S S S J K L H 2 4 1
2 S S S S N O P H 2 0 5 S S S S K L G H 1 4 2
3 S S S S M N O P 3 0 4 S S S S L F G H 0 4 3
4 S S S S L F G H 0 4 3 S S S S M N O P 3 0 4
5 S S S S K L G H 1 4 2 S S S S N O P H 2 0 5
6 S S S S J K L H 2 4 1 S S S S O P G H 1 0 6
7 S S S S I J K L 3 4 0 S S S S P F G H 0 0 7

BigEndianCPU = 0

vAddr2..0 destination destinationtype type offsetoffset
BigEndianCPU = 1

LEM BEM LEM BEM

MIPS R4000 Microprocessor User's Manual A-105

CPU Instruction Set Details

Format:
LWR rt, offset(base)

Description:
This instruction can be used in combination with the LWL instruction to
load a register with four consecutive bytes from memory, when the bytes
cross a word boundary. LWR loads the right portion of the register with
the appropriate part of the low-order word; LWL loads the left portion of
the register with the appropriate part of the high-order word.

The LWR instruction adds its sign-extended 16-bit offset to the contents of
general register base to form a virtual address which can specify an
arbitrary byte. It reads bytes only from the word in memory which
contains the specified starting byte. From one to four bytes will be loaded,
depending on the starting byte specified. In 64-bit mode, if bit 31 of the
destination register is loaded, then the loaded word is sign-extended.

Conceptually, it starts at the specified byte in memory and loads that byte
into the low-order (right-most) byte of the register; then it loads bytes from
memory into the register until it reaches the high-order byte of the word
in memory. The most significant (left-most) byte(s) of the register will not
be changed.

LWRLoad Word Right

31 2526 2021 1516 0

LWR base rt offset

6 5 5 16
1 0 0 1 1 0

LWR

address 0
address 4

0 1 2 3
4 5 6 7 A B C D

register

LWR $24,4($0)

$24

memory
(big-endian)

before

after A B C 4

Appendix A

A-106 MIPS R4000 Microprocessor User's Manual

The contents of general register rt are internally bypassed within the
processor so that no NOP is needed between an immediately preceding
load instruction which specifies register rt and a following LWR (or LWL)
instruction which also specifies register rt. No address exceptions due to
alignment are possible.

Operation:

(continued) LWRLoad Word RightLWR

pAddr ← pAddrPSIZE–31...3 || 03

32 T: vAddr ← ((offset15)16 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

endif

64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE–1...3 || (pAddr2...0 xor ReverseEndian3)

pAddr ← pAddrPSIZE–31...3 || 03

GPR[rt] ← (temp31)32 || temp

mem ← LoadMemory (uncached, 0 || byte, pAddr, vAddr, DATA)

if BigEndianMem = 1 then

byte ← vAddr1...0 xor BigEndianCPU2

word ← vAddr2 xor BigEndianCPU

temp ← GPR[rt]31...32-8*byte || mem31+32*word...32*word+8*byte

endif

pAddr ← pAddrPSIZE–1...3 || (pAddr2...0 xor ReverseEndian3)

GPR[rt] ← temp

mem ← LoadMemory (uncached, 0 || byte, pAddr, vAddr, DATA)

if BigEndianMem = 1 then

byte ← vAddr1...0 xor BigEndianCPU2

word ← vAddr2 xor BigEndianCPU

temp ← GPR[rt]31...32-8*byte || mem31+32*word...32*word+8*byte

MIPS R4000 Microprocessor User's Manual A-107

CPU Instruction Set Details

Given a word in a register and a word in memory, the operation of LWR
is as follows:

LEM Little-endian memory (BigEndianMem = 0)
BEM BigEndianMem = 1
Type AccessType (see Table 2-1) sent to memory
Offset pAddr2...0 sent to memory
S sign-extend of destination31
X either unchanged or sign-extend of destination31

Exceptions:
TLB refill exception
TLB invalid exception
Bus error exception
Address error exception

LWRLWR (continued)
Load Word Right

LWR
A C DBRegister

I K LJMemory

E G HF

M O PN

0 S S S S M N O P 0 0 4 X X X X E F G I 0 7 0
1 X X X X E M N O 1 1 4 X X X X E F I J 1 6 0
2 X X X X E F M N 2 2 4 X X X X E I J K 2 5 0
3 X X X X E F G M 3 3 4 S S S S I J K L 3 4 0
4 S S S S I J K L 0 4 0 X X X X E F G M 0 3 4
5 X X X X E I J K 1 5 0 X X X X E F M N 1 2 4
6 X X X X E F I J 2 6 0 X X X X E M N O 2 1 4
7 X X X X E F G I 3 7 0 S S S S M N O P 3 0 4

BigEndianCPU = 0

vAddr2..0 destination destinationtype type offsetoffset
BigEndianCPU = 1

LEM BEM LEM BEM

Appendix A

A-108 MIPS R4000 Microprocessor User's Manual

Format:
LWU rt, offset(base)

Description:
The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of the word at the
memory location specified by the effective address are loaded into general
register rt. The loaded word is zero-extended.

If either of the two least-significant bits of the effective address is non-zero,
an address error exception occurs.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

Exceptions:
TLB refill exception
TLB invalid exception
Bus error exception
Address error exception
Reserved instruction exception (R4000 in 32-bit mode)

LWULoad Word Unsigned

31 2526 2021 1516 0

LWU base rt offset

6 5 5 16
1 0 0 1 1 1

LWU

64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

mem ← LoadMemory (uncached, WORD, pAddr, vAddr, DATA)

GPR[rt] ← 032 || mem31+8*byte...8*byte

pAddr ← pAddrPSIZE-1...3 || (pAddr2...0 xor (ReverseEndian || 02))

byte ← vAddr2...0 xor (BigEndianCPU || 02)

MIPS R4000 Microprocessor User's Manual A-109

CPU Instruction Set Details

Format:
MFC0 rt, rd

Description:
The contents of coprocessor register rd of the CP0 are loaded into general
register rt.

Operation:

Exceptions:
Coprocessor unusable exception

MFC0 Move From

rd

11 10

5

31 2526 2021 1516 0

COP0 MF rt 0

6 5 5 11

System Control Coprocessor

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MFC0

32 T: data ← CPR[0,rd]
T+1: GPR[rt] ← data

64 T: data ← CPR[0,rd]
T+1: GPR[rt] ← (data31)32 || data31...0

Appendix A

A-110 MIPS R4000 Microprocessor User's Manual

Format:
MFCz rt, rd

Description:
The contents of coprocessor register rd of coprocessor z are loaded into
general register rt.

Operation:

Exceptions:
Coprocessor unusable exception

*See the table “Opcode Bit Encoding” on next page, or “CPU Instruction
Opcode Bit Encoding” at the end of Appendix A.

MFCz

11

Move From Coprocessor

31 2526 2021 1516

COPz MF rt

6 5 5

rd 0

5

11 10 0

0 1 0 0 x x* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MFCz

32 T: data ← CPR[z,rd]
T+1: GPR[rt] ← data

64 T: if rd0 = 0 then
data ← CPR[z,rd4...1 || 0]31...0
else
data ← CPR[z,rd4...1 || 0]63...32
endif

T+1: GPR[rt] ← (data31)32 || data

MIPS R4000 Microprocessor User's Manual A-111

CPU Instruction Set Details

Opcode Bit Encoding:

(continued)MFCz MFCzMove From Coprocessor

MFCz

0 0 0 0 11
31 30 29 28 27 26Bit # 25 0

MFC1 0 0 0 00
24 23 22 21

0 0 0 1 01
31 30 29 28 27 26Bit # 25 0

MFC2 0 0 0 00
24 23 22 21

Coprocessor Suboperation

0 0 0 0 01
31 30 29 28 27 26Bit # 25 0

MFC0 0 0 0 00
24 23 22 21

Coprocessor Unit Number

Opcode

Appendix A

A-112 MIPS R4000 Microprocessor User's Manual

Format:
MFHI rd

Description:
The contents of special register HI are loaded into general register rd.

To ensure proper operation in the event of interruptions, the two
instructions which follow a MFHI instruction may not be any of the
instructions which modify the HI register: MULT, MULTU, DIV, DIVU,
MTHI, DMULT, DMULTU, DDIV, DDIVU.

Operation:

Exceptions:
None

MFHI

0

Move From HI

31 2526 1516 0

rd

6 10 5

6 5

6

SPECIAL MFHI0

5

11 10

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

MFHI

32, 64 T: GPR[rd] ← HI

MIPS R4000 Microprocessor User's Manual A-113

CPU Instruction Set Details

Format:
MFLO rd

Description:
The contents of special register LO are loaded into general register rd.

To ensure proper operation in the event of interruptions, the two
instructions which follow a MFLO instruction may not be any of the
instructions which modify the LO register: MULT, MULTU, DIV, DIVU,
MTLO, DMULT, DMULTU, DDIV, DDIVU.

Operation:

Exceptions:
None

MFLOMove From Lo

0

31 2526 1516 0

rd

6 10 5

6 5

6

SPECIAL MFLO0

5

11 10

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0

MFLO

32, 64 T: GPR[rd] ← LO

Appendix A

A-114 MIPS R4000 Microprocessor User's Manual

Format:
MTC0 rt, rd

Description:
The contents of general register rt are loaded into coprocessor register rd
of CP0.

Because the state of the virtual address translation system may be altered
by this instruction, the operation of load instructions, store instructions,
and TLB operations immediately prior to and after this instruction are
undefined.

Operation:

Exceptions:
Coprocessor unusable exception

MTC0 Move To

rd

11 10

5

31 2526 2021 1516 0

COP0 MT rt 0

6 5 5 11

System Control Coprocessor

0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 00

MTC0

32, 64 T: data ← GPR[rt]
T+1: CPR[0,rd] ← data

MIPS R4000 Microprocessor User's Manual A-115

CPU Instruction Set Details

Format:
MTCz rt, rd

Description:
The contents of general register rt are loaded into coprocessor register rd
of coprocessor z.

Operation:

Exceptions:
Coprocessor unusable exception

*Opcode Bit Encoding:

MTCz

11

Move To Coprocessor
31 2526 2021 1516

COPz MT rt

6 5 5

rd 0

5

11 10 0

0 1 0 0 x x* 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

MTCz

32 T: data ← GPR[rt]
T+1: CPR[z,rd] ← data

64 T: data ← GPR[rt]31...0
T+1: if rd0 = 0

CPR[z,rd4...1 || 0] ← CPR[z, rd4...1 || 0]63...32 || data
else

CPR[z,rd4...1 || 0] ← data || CPR[z,rd4...1 || 0]31...0
endif

MTCz

0 0 0 0 11
31 30 29 28 27 26Bit # 25 0

C0P1 0 1 0 00
24 23 22 21

0 0 0 1 01
31 30 29 28 27 26Bit # 25 0

C0P2 0 1 0 00
24 23 22 21

Coprocessor Suboperation

0 0 0 0 01
31 30 29 28 27 26Bit # 25 0

C0P0 0 1 0 00
24 23 22 21

Coprocessor Unit NumberOpcode

Appendix A

A-116 MIPS R4000 Microprocessor User's Manual

Format:
MTHI rs

Description:
The contents of general register rs are loaded into special register HI.

If a MTHI operation is executed following a MULT, MULTU, DIV, or
DIVU instruction, but before any MFLO, MFHI, MTLO, or MTHI
instructions, the contents of special register LO are undefined.

Operation:

Exceptions:
None

rs

MTHI Move To HI

21 2031 2526

SPECIAL

6

0

MTHI0

6 5

5 15 6
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

MTHI

32,64 T–2: HI ← undefined

T–1: HI ← undefined
T: HI ← GPR[rs]

MIPS R4000 Microprocessor User's Manual A-117

CPU Instruction Set Details

Format:
MTLO rs

Description:
The contents of general register rs are loaded into special register LO.

If a MTLO operation is executed following a MULT, MULTU, DIV, or
DIVU instruction, but before any MFLO, MFHI, MTLO, or MTHI
instructions, the contents of special register HI are undefined.

Operation:

Exceptions:
None

rs

MTLOMove To LO

21 2031 2526

SPECIAL

6

0

MTLO0

6 5

5 15 6
0 1 0 0 1 1

MTLO

32,64 T–2: LO ← undefined

T–1: LO ← undefined
T: LO ← GPR[rs]

Appendix A

A-118 MIPS R4000 Microprocessor User's Manual

Format:
MULT rs, rt

Description:
The contents of general registers rs and rt are multiplied, treating both
operands as 32-bit 2’s complement values. No integer overflow exception
occurs under any circumstances. In 64-bit mode, the operands must be
valid 32-bit, sign-extended values.

When the operation completes, the low-order word of the double result is
loaded into special register LO, and the high-order word of the double
result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of
these instructions are undefined. Correct operation requires separating
reads of HI or LO from writes by a minimum of two other instructions.

31 2526 2021 1516 0

rs rt

6 5 5

6 5

10 6

SPECIAL 0 MULT
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

MULT Multiply MULT

MIPS R4000 Microprocessor User's Manual A-119

CPU Instruction Set Details

Operation:

Exceptions:
None

MULT Multiply MULT(continued)

32 T–2: LO ← undefined
HI ← undefined

T–1: LO ← undefined
HI ← undefined

T: t ← GPR[rs] * GPR[rt]
LO ← t31...0
H I ← t63...32

64 T–2: LO ← undefined
HI ← undefined

T–1: LO ← undefined
HI ← undefined

T: t ← GPR[rs]31...0 * GPR[rt]31...0
LO ← (t31)32 || t31...0
HI ← (t63)32 || t63...32

Appendix A

A-120 MIPS R4000 Microprocessor User's Manual

Format:
MULTU rs, rt

Description:
The contents of general register rs and the contents of general register rt
are multiplied, treating both operands as unsigned values. No overflow
exception occurs under any circumstances. In 64-bit mode, the operands
must be valid 32-bit, sign-extended values.

When the operation completes, the low-order word of the double result is
loaded into special register LO, and the high-order word of the double
result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of
these instructions are undefined. Correct operation requires separating
reads of HI or LO from writes by a minimum of two instructions.

MULTUMultiply Unsigned

31 2526 2021 1516 0

rs rt

6 5 5

6 5

10 6

SPECIAL 0 MULTU
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1

MULTU

MIPS R4000 Microprocessor User's Manual A-121

CPU Instruction Set Details

Operation:

Exceptions:
None

MULTUMultiply UnsignedMULTU (continued)

32 T–2: LO ← undefined
HI ← undefined

T–1: LO ← undefined
HI ← undefined

T: t ← (0 || GPR[rs]) * (0 || GPR[rt])
LO ← t31...0
HI ← t63...32

64 T–2: LO ← undefined
HI ← undefined

T–1: LO ← undefined
HI ← undefined

T: t ← (0 || GPR[rs]31...0) * (0 || GPR[rt]31...0)
LO ← (t31)32 || t31...0
HI ← (t63)32 || t63...32

Appendix A

A-122 MIPS R4000 Microprocessor User's Manual

Format:
NOR rd, rs, rt

Description:
The contents of general register rs are combined with the contents of
general register rt in a bit-wise logical NOR operation. The result is placed
into general register rd.

Operation:

Exceptions:
None

NOR Nor

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 NOR

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1

NOR

32, 64 T: GPR[rd] ← GPR[rs] nor GPR[rt]

MIPS R4000 Microprocessor User's Manual A-123

CPU Instruction Set Details

Format:
OR rd, rs, rt

Description:
The contents of general register rs are combined with the contents of
general register rt in a bit-wise logical OR operation. The result is placed
into general register rd.

Operation:

Exceptions:
None

OROr

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 OR

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1

OR

32, 64 T: GPR[rd] ← GPR[rs] or GPR[rt]

Appendix A

A-124 MIPS R4000 Microprocessor User's Manual

Format:
ORI rt, rs, immediate

Description:
The 16-bit immediate is zero-extended and combined with the contents of
general register rs in a bit-wise logical OR operation. The result is placed
into general register rt.

Operation:

Exceptions:
None

31 2526 2021 1516 0

ORI rs rt immediate

6 5 5 16
0 0 1 1 0 1

ORIOr ImmediateORI

32 T: GPR[rt] ← GPR[rs]31...16 || (immediate or GPR[rs]15...0)

64 T: GPR[rt] ← GPR[rs]63...16 || (immediate or GPR[rs]15...0)

MIPS R4000 Microprocessor User's Manual A-125

CPU Instruction Set Details

Format:
SB rt, offset(base)

Description:
The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The least-significant byte of register
rt is stored at the effective address.

Operation:

Exceptions:
TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception

SBStore Byte

31 2526 2021 1516 0

SB base rt offset

6 5 5 16
1 0 1 0 0 0

SB

32 T: vAddr ← ((offset15)16 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

StoreMemory (uncached, BYTE, data, pAddr, vAddr, DATA)

64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

byte ← vAddr2...0 xor BigEndianCPU3

data ← GPR[rt]63–8*byte...0 || 08*byte

StoreMemory (uncached, BYTE, data, pAddr, vAddr, DATA)

pAddr ← pAddrPSIZE-1...3 || (pAddr2...0 xor ReverseEndian3)

byte ← vAddr2...0 xor BigEndianCPU3

data ← GPR[rt]63–8*byte...0 || 08*byte

pAddr ← pAddrPSIZE-1...3 || (pAddr2...0 xor ReverseEndian3)

Appendix A

A-126 MIPS R4000 Microprocessor User's Manual

Format:
SC rt, offset(base)

Description:
The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of general register rt
are conditionally stored at the memory location specified by the effective
address.

If any other processor or device has modified the physical address since
the time of the previous Load Linked instruction, or if an ERET instruction
occurs between the Load Linked instruction and this store instruction, the
store fails and is inhibited from taking place.

The success or failure of the store operation (as defined above) is indicated
by the contents of general register rt after execution of the instruction. A
successful store sets the contents of general register rt to 1; an unsuccessful
store sets it to 0.

The operation of Store Conditional is undefined when the address is
different from the address used in the last Load Linked.

This instruction is available in User mode; it is not necessary for CP0 to be
enabled.

If either of the two least-significant bits of the effective address is non-zero,
an address error exception takes place.

If this instruction should both fail and take an exception, the exception
takes precedence.

SC Store Conditional

31 2526 2021 1516 0

SC base rt offset

6 5 5 16
1 1 1 0 0 0

SC

MIPS R4000 Microprocessor User's Manual A-127

CPU Instruction Set Details

Operation:

Exceptions:
TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception

(continued)SC Store Conditional SC

32 T: vAddr ← ((offset15)16 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1...3 || (pAddr2...0 xor (ReverseEndian || 02))
data ← GPR[rt]63-8*byte...0 || 08*byte

if LLbit then
StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

endif
GPR[rt] ← 031 || LLbit

64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1...3 || (pAddr2...0 xor (ReverseEndian || 02))
data ← GPR[rt]63-8*byte...0 || 08*byte

if LLbit then
StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

endif
GPR[rt] ← 063 || LLbit

Appendix A

A-128 MIPS R4000 Microprocessor User's Manual

Format:
SCD rt, offset(base)

Description:
The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of general register rt
are conditionally stored at the memory location specified by the effective
address.

If any other processor or device has modified the physical address since
the time of the previous Load Linked Doubleword instruction, or if an
ERET instruction occurs between the Load Linked Doubleword
instruction and this store instruction, the store fails and is inhibited from
taking place.

The success or failure of the store operation (as defined above) is indicated
by the contents of general register rt after execution of the instruction. A
successful store sets the contents of general register rt to 1; an unsuccessful
store sets it to 0.

The operation of Store Conditional Doubleword is undefined when the
address is different from the address used in the last Load Linked
Doubleword.

This instruction is available in User mode; it is not necessary for CP0 to be
enabled.

If either of the three least-significant bits of the effective address is non-
zero, an address error exception takes place.

SCD Store Conditional Doubleword

31 2526 2021 1516 0

SCD base rt offset

6 5 5 16
1 1 1 1 0 0

SCD

MIPS R4000 Microprocessor User's Manual A-129

CPU Instruction Set Details

If this instruction should both fail and take an exception, the exception
takes precedence.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

Exceptions:
TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception
Reserved instruction exception (R4000 in 32-bit mode)

(continued)SCD Store Conditional Doubleword SCD

64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
data ← GPR[rt]
if LLbit then
 StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)
endif
GPR[rt] ← 063 || LLbit

Appendix A

A-130 MIPS R4000 Microprocessor User's Manual

Format:
SD rt, offset(base)

Description:
The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of general register rt
are stored at the memory location specified by the effective address.

If either of the three least-significant bits of the effective address are non-
zero, an address error exception occurs.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

Exceptions:
TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception
Reserved instruction exception (R4000 in 32-bit user mode

 R4000 in 32-bit supervisor mode)

SDStore Doubleword

31 2526 2021 1516 0

SD base rt offset

6 5 5 16
1 1 1 1 1 1

SD

64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
data ← GPR[rt]
StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

MIPS R4000 Microprocessor User's Manual A-131

CPU Instruction Set Details

Format:
SDCz rt, offset(base)

Description:
The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. Coprocessor unit z sources a
doubleword, which the processor writes to the addressed memory
location. The data to be stored is defined by individual coprocessor
specifications.

If any of the three least-significant bits of the effective address are non-
zero, an address error exception takes place.

This instruction is not valid for use with CP0.

This instruction is undefined when the least-significant bit of the rt field is
non-zero.

Operation:

*See the table, “Opcode Bit Encoding” on next page, or “CPU Instruction
Opcode Bit Encoding” at the end of Appendix A.

SDCz Store Doubleword

31 2526 2021 1516 0

SDCz base rt offset

6 5 5 16
1 1 1 1 x x*

SDCzFrom Coprocessor

32 T: vAddr ← ((offset15)16 || offset15...0) + GPR[base]
(pAddr, uncached)← AddressTranslation (vAddr, DATA)
data ← COPzSD(rt),
StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached)← AddressTranslation (vAddr, DATA)
data ← COPzSD(rt),
StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

Appendix A

A-132 MIPS R4000 Microprocessor User's Manual

Exceptions:
TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception
Coprocessor unusable exception

Opcode Bit Encoding:

(continued)
SDCz Store Doubleword SDCzFrom Coprocessor

SDCz
1 1 1 0 11
31 30 29 28 27 26Bit # 0

SDC1

1 1 1 1 01
31 30 29 28 27 26Bit # 0

SDC2

Coprocessor Unit NumberSD opcode

MIPS R4000 Microprocessor User's Manual A-133

CPU Instruction Set Details

Format:
SDL rt, offset(base)

Description:
This instruction can be used with the SDR instruction to store the contents
of a register into eight consecutive bytes of memory, when the bytes cross
a doubleword boundary. SDL stores the left portion of the register into the
appropriate part of the high-order doubleword of memory; SDR stores the
right portion of the register into the appropriate part of the low-order
doubleword.

The SDL instruction adds its sign-extended 16-bit offset to the contents of
general register base to form a virtual address which may specify an
arbitrary byte. It alters only the word in memory which contains that byte.
From one to four bytes will be stored, depending on the starting byte
specified.

Conceptually, it starts at the most-significant byte of the register and
copies it to the specified byte in memory; then it copies bytes from register
to memory until it reaches the low-order byte of the word in memory.

No address exceptions due to alignment are possible.

SDL Store Doubleword Left

31 2526 2021 1516 0

SDL base rt offset

6 5 5 16
1 0 1 1 0 0

SDL

14

SDL $24,1($0)

after

address 0
address 8

memory
register

$24

(big-endian)

before10 2 3 4 5 6 7
98 10 11 12 13 14 15

A B C D E F G H

address 0
address 8

0
98 10 11 12 13 15

C D E F G HB

Appendix A

A-134 MIPS R4000 Microprocessor User's Manual

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

SDL Store Doubleword Left SDL(continued)

endif

If BigEndianMem = 0 then

64 T: vAddr ← ((offset15)48 || offset 15...0) + GPR[base]

data ← 056–8*byte || GPR[rt]63...56–8*byte

pAddr ← pAddr31...3 || 03

Storememory (uncached, byte, data, pAddr, vAddr, DATA)

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE –1...3 || (pAddr2...0 xor ReverseEndian3)

byte ← vAddr2...0 xor BigEndianCPU3

MIPS R4000 Microprocessor User's Manual A-135

CPU Instruction Set Details

Given a doubleword in a register and a doubleword in memory, the
operation of SDL is as follows:

LEM Little-endian memory (BigEndianMem = 0)
BEM BigEndianMem = 1
Type AccessType (see Table 2-1) sent to memory
Offset pAddr2...0 sent to memory

Exceptions:
TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception
Reserved instruction exception (R4000 in 32-bit mode)

SDL Store Doubleword Left SDL(continued)

SDL
A C DBRegister

I K LJMemory

E G HF

M O PN

0 I J K L M N O A 0 0 7 A B C D E F G H 7 0 0
1 I J K L M N A B 1 0 6 I A B C D E F G 6 0 1
2 I J K L M A B C 2 0 5 I J A B C D E F 5 0 2
3 I J K L A B C D 3 0 4 I J K A B C D E 4 0 3
4 I J K A B C D E 4 0 3 I J K L A B C D 3 0 4
5 I J A B C D E F 5 0 2 I J K L M A B C 2 0 5
6 I A B C D E F G 6 0 1 I J K L M N A B 1 0 6
7 A B C D E F G H 7 0 0 I J K L M N O A 0 0 7

offset
BigEndianCPU = 1BigEndianCPU = 0

offset

LEM BEM LEM BEMvAddr2..0 typedestination destination type

Appendix A

A-136 MIPS R4000 Microprocessor User's Manual

Format:
SDR rt, offset(base)

Description:
This instruction can be used with the SDL instruction to store the contents
of a register into eight consecutive bytes of memory, when the bytes cross
a boundary between two doublewords. SDR stores the right portion of the
register into the appropriate part of the low-order doubleword; SDL stores
the left portion of the register into the appropriate part of the low-order
doubleword of memory.

The SDR instruction adds its sign-extended 16-bit offset to the contents of
general register base to form a virtual address which may specify an
arbitrary byte. It alters only the word in memory which contains that byte.
From one to eight bytes will be stored, depending on the starting byte
specified.

Conceptually, it starts at the least-significant (rightmost) byte of the
register and copies it to the specified byte in memory; then it copies bytes
from register to memory until it reaches the high-order byte of the word in
memory. No address exceptions due to alignment are possible.

31 2526 2021 1516 0

SDR base rt offset

6 5 5 16
1 0 1 1 0 1

SDR Store Doubleword Right SDR

SDR $24,4($0)

after

Aaddress 0
address 8

register

$24

(big-endian)

before B C D E F G H

memory

address 0
address 8

(big-endian)
memory

10 2 3 4 5 6 7
98 10 11 12 13 14 15

4 5 6 7
98 10 11 12 13 14 15

E F G H

MIPS R4000 Microprocessor User's Manual A-137

CPU Instruction Set Details

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

SDR Store Doubleword Right SDR(continued)

endif

If BigEndianMem = 0 then

64 T: vAddr ← ((offset15)48 || offset 15...0) + GPR[base]

data ← GPR[rt]63–8*byte || 08*byte

pAddr ← pAddrPSIZE – 31...3 || 03

StoreMemory (uncached, DOUBLEWORD-byte, data, pAddr, vAddr, DATA)

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE – 1...3 || (pAddr2...0 xor ReverseEndian3)

byte ← vAddr1...0 xor BigEndianCPU3

Appendix A

A-138 MIPS R4000 Microprocessor User's Manual

Given a doubleword in a register and a doubleword in memory, the
operation of SDR is as follows:

LEM Little-endian memory (BigEndianMem = 0)
BEM BigEndianMem = 1
Type AccessType (see Table 2-1) sent to memory
Offset pAddr2...0 sent to memory

Exceptions:
TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception
Reserved instruction exception (R4000 in 32-bit mode)

SDR Store Doubleword Right SDR(continued)

SDR
A C DBRegister

I K LJMemory

E G HF

M O PN

0 A B C D E F G H 7 0 0 H J K L M N O P 0 7 0
1 B C D E F G H P 6 1 0 G H K L M N O P 1 6 0
2 C D E F G H O P 5 2 0 F G H L M N O P 2 5 0
3 D E F G H N O P 4 3 0 E F G H M N O P 3 4 0
4 E F G H M N O P 3 4 0 D E F G H N O P 4 3 0
5 F G H L M N O P 2 5 0 C D E F G H O P 5 2 0
6 G H K L M N O P 1 6 0 B C D E F G H P 6 1 0
7 H J K L M N O P 0 7 0 A B C D E F G H 7 0 0

offset
BigEndianCPU = 1BigEndianCPU = 0

offset
LEM BEM LEM BEM

vAddr2..0 typedestination destination type

MIPS R4000 Microprocessor User's Manual A-139

CPU Instruction Set Details

Format:
SH rt, offset(base)

Description:
The 16-bit offset is sign-extended and added to the contents of general
register base to form an unsigned effective address. The least-significant
halfword of register rt is stored at the effective address. If the least-
significant bit of the effective address is non-zero, an address error
exception occurs.

Operation:

Exceptions:
TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception

SH Store Halfword

31 2526 2021 1516 0

SH base rt offset

6 5 5 16
1 0 1 0 0 1

SH

32 T: vAddr ← ((offset15)16 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

StoreMemory (uncached, HALFWORD, data, pAddr, vAddr, DATA)
64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]

byte ← vAddr2...0 xor (BigEndianCPU2 || 0)
data ← GPR[rt]63–8*byte...0 || 08*byte

StoreMemory (uncached, HALFWORD, data, pAddr, vAddr, DATA)

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1...3 || (pAddr2...0 xor (ReverseEndian2 || 0))

byte ← vAddr2...0 xor (BigEndianCPU2 || 0)
data ← GPR[rt]63–8*byte...0 || 08*byte

pAddr ← pAddrPSIZE-1...3 || (pAddr2...0 xor (ReverseEndian2 || 0))

Appendix A

A-140 MIPS R4000 Microprocessor User's Manual

Format:
SLL rd, rt, sa

Description:
The contents of general register rt are shifted left by sa bits, inserting zeros
into the low-order bits.

The result is placed in register rd.

In 64-bit mode, the 32-bit result is sign extended when placed in the
destination register. It is sign extended for all shift amounts, including
zero; SLL with a zero shift amount truncates a 64-bit value to 32 bits and
then sign extends this 32-bit value. SLL, unlike nearly all other word
operations, does not require an operand to be a properly sign-extended
word value to produce a valid sign-extended word result.

NOTE: SLL with a shift amount of zero may be treated as a NOP by
some assemblers, at some optimization levels. If using SLL with a
zero shift to truncate 64-bit values, check the assembler you are using.

Operation:

Exceptions:
None

SLLShift Left Logical

31 2526 2021 1516

SPECIAL rt

6 5 5

rd sa SLL

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 0

SLL

0
0 0 0 0 0

32 T: GPR[rd] ← GPR[rt]31– sa...0 || 0sa

64 T: s ← 0 || sa
temp ← GPR[rt]31-s...0 || 0s

GPR[rd] ← (temp31)32 || temp

MIPS R4000 Microprocessor User's Manual A-141

CPU Instruction Set Details

Format:
SLLV rd, rt, rs

Description:
The contents of general register rt are shifted left the number of bits
specified by the low-order five bits contained in general register rs,
inserting zeros into the low-order bits.

The result is placed in register rd.

In 64-bit mode, the 32-bit result is sign extended when placed in the
destination register. It is sign extended for all shift amounts, including
zero; SLLV with a zero shift amount truncates a 64-bit value to 32 bits and
then sign extends this 32-bit value. SLLV, unlike nearly all other word
operations, does not require an operand to be a properly sign-extended
word value to produce a valid sign-extended word result.

NOTE: SLLV with a shift amount of zero may be treated as a NOP by
some assemblers, at some optimization levels. If using SLLV with a
zero shift to truncate 64-bit values, check the assembler you are using.

Operation:

Exceptions:
None

SLLV Shift Left Logical Variable

31 2526 2021 1516

SPECIAL rt

6 5 5

rd 0 SLLV

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 1 0 00 0 0 0 0

SLLV

rs

32 T: s ← GP[rs]4...0
GPR[rd]← GPR[rt](31–s)...0 || 0s

64 T: s ← 0 || GP[rs]4...0
temp ← GPR[rt](31-s)...0 || 0s

GPR[rd] ← (temp31)32 || temp

Appendix A

A-142 MIPS R4000 Microprocessor User's Manual

Format:
SLT rd, rs, rt

Description:
The contents of general register rt are subtracted from the contents of
general register rs. Considering both quantities as signed integers, if the
contents of general register rs are less than the contents of general register
rt, the result is set to one; otherwise the result is set to zero.

The result is placed into general register rd.

No integer overflow exception occurs under any circumstances. The
comparison is valid even if the subtraction used during the comparison
overflows.

Operation:

Exceptions:
None

SLTSet On Less Than

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 SLT

5 5 6

11 10 6 5 0

0 0 0 0 0 0 1 0 1 0 1 00 0 0 0 0

SLT

32 T: if GPR[rs] < GPR[rt] then
GPR[rd] ← 031 || 1

else
GPR[rd] ← 032

endif
64 T: if GPR[rs] < GPR[rt] then

GPR[rd] ← 063 || 1
else

GPR[rd] ← 064

endif

MIPS R4000 Microprocessor User's Manual A-143

CPU Instruction Set Details

Format:
SLTI rt, rs, immediate

Description:
The 16-bit immediate is sign-extended and subtracted from the contents of
general register rs. Considering both quantities as signed integers, if rs is
less than the sign-extended immediate, the result is set to one; otherwise
the result is set to zero.

The result is placed into general register rt.

No integer overflow exception occurs under any circumstances. The
comparison is valid even if the subtraction used during the comparison
overflows.

Operation:

Exceptions:
None

SLTI Set On Less Than Immediate

31 2526 2021 1516 0

SLTI rs rt immediate

6 5 5 16
0 0 1 0 1 0

SLTI

32 T: if GPR[rs] < (immediate15)16 || immediate15...0 then
GPR[rd] ← 031 || 1

else
GPR[rd] ← 032

endif

64 T: if GPR[rs] < (immediate15)48 || immediate15...0 then
GPR[rd] ← 063 || 1

else
GPR[rd] ← 064

endif

Appendix A

A-144 MIPS R4000 Microprocessor User's Manual

Format:
SLTIU rt, rs, immediate

Description:
The 16-bit immediate is sign-extended and subtracted from the contents of
general register rs. Considering both quantities as unsigned integers, if rs
is less than the sign-extended immediate, the result is set to one; otherwise
the result is set to zero.

The result is placed into general register rt.

No integer overflow exception occurs under any circumstances. The
comparison is valid even if the subtraction used during the comparison
overflows.

Operation:

Exceptions:
None

SLTIUImmediate Unsigned
Set On Less Than

31 2526 2021 1516 0

SLTIU rs rt immediate

6 5 5 16
0 0 1 0 1 1

SLTIU

32 T: if (0 || GPR[rs]) < (immediate15)16 || immediate15...0 then
GPR[rd] ← 031 || 1

else
GPR[rd] ← 032

endif

64 T: if (0 || GPR[rs]) < (immediate15)48 || immediate15...0 then
GPR[rd] ← 063 || 1

else
GPR[rd] ← 064

endif

MIPS R4000 Microprocessor User's Manual A-145

CPU Instruction Set Details

Format:
SLTU rd, rs, rt

Description:
The contents of general register rt are subtracted from the contents of
general register rs. Considering both quantities as unsigned integers, if the
contents of general register rs are less than the contents of general register
rt, the result is set to one; otherwise the result is set to zero.

The result is placed into general register rd.

No integer overflow exception occurs under any circumstances. The
comparison is valid even if the subtraction used during the comparison
overflows.

Operation:

Exceptions:
None

SLTU Set On Less Than Unsigned

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 SLTU

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1

SLTU

32 T: if (0 || GPR[rs]) < 0 || GPR[rt] then
GPR[rd] ← 031 || 1

else
GPR[rd] ← 032

endif

64 T: if (0 || GPR[rs]) < 0 || GPR[rt] then
GPR[rd] ← 063 || 1

else
GPR[rd] ← 064

endif

Appendix A

A-146 MIPS R4000 Microprocessor User's Manual

Format:
SRA rd, rt, sa

Description:
The contents of general register rt are shifted right by sa bits, sign-
extending the high-order bits.

The result is placed in register rd.

In 64-bit mode, the operand must be a valid sign-extended, 32-bit value.

Operation:

Exceptions:
None

SRAShift Right Arithmetic

31 2526 2021 1516

SPECIAL 0 rt

6 5 5

rd sa SRA

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

SRA

32 T: GPR[rd] ← (GPR[rt]31)sa || GPR[rt] 31...sa

64 T: s ← 0 || sa
temp ← (GPR[rt]31)s || GPR[rt] 31...s
GPR[rd] ← (temp31)32 || temp

MIPS R4000 Microprocessor User's Manual A-147

CPU Instruction Set Details

Format:
SRAV rd, rt, rs

Description:
The contents of general register rt are shifted right by the number of bits
specified by the low-order five bits of general register rs, sign-extending
the high-order bits.

The result is placed in register rd.

In 64-bit mode, the operand must be a valid sign-extended, 32-bit value.

Operation:

Exceptions:
None

SRAV Shift Right

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 SRAV

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

SRAVArithmetic Variable

32 T: s ← GPR[rs]4...0
GPR[rd] ← (GPR[rt]31)s || GPR[rt]31...s

64 T: s ← GPR[rs]4...0
temp ← (GPR[rt]31)s || GPR[rt]31...s
GPR[rd] ← (temp31)32 || temp

Appendix A

A-148 MIPS R4000 Microprocessor User's Manual

Format:
SRL rd, rt, sa

Description:
The contents of general register rt are shifted right by sa bits, inserting
zeros into the high-order bits.

The result is placed in register rd.

In 64-bit mode, the operand must be a valid sign-extended, 32-bit value.

Operation:

Exceptions:
None

SRLShift Right Logical

31 2526 2021 1516

SPECIAL rt

6 5 5

rd sa SRL

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 1 0

SRL

0
0 0 0 0 0

32 T: GPR[rd] ← 0 sa || GPR[rt]31...sa

64 T: s ← 0 || sa
temp ← 0s || GPR[rt]31...s
GPR[rd] ← (temp31)32 || temp

MIPS R4000 Microprocessor User's Manual A-149

CPU Instruction Set Details

Format:
SRLV rd, rt, rs

Description:
The contents of general register rt are shifted right by the number of bits
specified by the low-order five bits of general register rs, inserting zeros
into the high-order bits.

The result is placed in register rd.

In 64-bit mode, the operand must be a valid sign-extended, 32-bit value.

Operation:

Exceptions:
None

SRLV Shift Right Logical Variable

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 SRLV

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

SRLV

32 T: s ← GPR[rs]4...0
GPR[rd] ← 0s || GPR[rt]31...s

64 T: s ← GPR[rs]4...0
temp ← 0s || GPR[rt]31...s
GPR[rd] ← (temp31)32 || temp

Appendix A

A-150 MIPS R4000 Microprocessor User's Manual

Format:
SUB rd, rs, rt

Description:
The contents of general register rt are subtracted from the contents of
general register rs to form a result. The result is placed into general
register rd. In 64-bit mode, the operands must be valid sign-extended, 32-
bit values.

The only difference between this instruction and the SUBU instruction is
that SUBU never traps on overflow.

An integer overflow exception takes place if the carries out of bits 30 and
31 differ (2’s complement overflow). The destination register rd is not
modified when an integer overflow exception occurs.

Operation:

Exceptions:
Integer overflow exception

SUB SUBSubtract

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 SUB

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0

32 T: GPR[rd] ← GPR[rs] – GPR[rt]

64 T: temp ← GPR[rs] - GPR[rt]
GPR[rd] ← (temp31)32 || temp31...0

MIPS R4000 Microprocessor User's Manual A-151

CPU Instruction Set Details

Format:
SUBU rd, rs, rt

Description:
The contents of general register rt are subtracted from the contents of
general register rs to form a result.

The result is placed into general register rd.

In 64-bit mode, the operands must be valid sign-extended, 32-bit values.

The only difference between this instruction and the SUB instruction is
that SUBU never traps on overflow. No integer overflow exception occurs
under any circumstances.

Operation:

Exceptions:
None

SUBU Subtract Unsigned

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 SUBU

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1

SUBU

32 T: GPR[rd] ← GPR[rs] – GPR[rt]

64 T: temp ← GPR[rs] - GPR[rt]
GPR[rd] ← (temp31)32 || temp31...0

Appendix A

A-152 MIPS R4000 Microprocessor User's Manual

Format:
SW rt, offset(base)

Description:
The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of general register rt
are stored at the memory location specified by the effective address.

If either of the two least-significant bits of the effective address are non-
zero, an address error exception occurs.

Operation:

Exceptions:
TLB refill exception TLB invalid exception
TLB modification exception Bus error exception
Address error exception

SWStore Word

31 2526 2021 1516 0

SW base rt offset

6 5 5 16
1 0 1 0 1 1

SW

32 T: vAddr ← ((offset15)16 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1...3 || (pAddr2...0 xor (ReverseEndian || 02)
byte ← vAddr2...0 xor (BigEndianCPU || 02)
data ← GPR[rt]63-8*byte || 08*byte

StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)
64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1...3 || (pAddr2...0 xor (ReverseEndian || 02)
byte ← vAddr2...0 xor (BigEndianCPU || 02)
data ← GPR[rt]63-8*byte || 08*byte

StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

MIPS R4000 Microprocessor User's Manual A-153

CPU Instruction Set Details

Format:
SWCz rt, offset(base)

Description:
The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. Coprocessor unit z sources a word,
which the processor writes to the addressed memory location.

The data to be stored is defined by individual coprocessor specifications.

This instruction is not valid for use with CP0.

If either of the two least-significant bits of the effective address is non-zero,
an address error exception occurs.

Operation:

*See the table “Opcode Bit Encoding” on next page, or “CPU Instruction
Opcode Bit Encoding” at the end of Appendix A.

SWCz Store Word From Coprocessor

31 2526 2021 1516 0

SWCz base rt offset

6 5 5 16
1 1 1 0 x x*

SWCz

32 T: vAddr ← ((offset15)16 || offset15...0) + GPR[base]
(pAddr, uncached)← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1...3 || (pAddr2...0 xor (ReverseEndian || 02)
byte ← vAddr2...0 xor (BigEndianCPU || 02)
data ← COPzSW (byte, rt)
StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1...3 || (pAddr2...0 xor (ReverseEndian || 02)
byte ← vAddr2...0 xor (BigEndianCPU || 02)
data ← COPzSW (byte,rt)
StoreMemory (uncached, WORD, data, pAddr, vAddr DATA)

Appendix A

A-154 MIPS R4000 Microprocessor User's Manual

Exceptions:
TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception
Coprocessor unusable exception

Opcode Bit Encoding:

SWCz Store Word From Coprocessor SWCz(Continued)

SWCz
1 1 0 0 11
31 30 29 28 27 26Bit # 0

SWC1

1 1 0 1 01
31 30 29 28 27 26Bit # 0

SWC2

Coprocessor Unit NumberSW opcode

MIPS R4000 Microprocessor User's Manual A-155

CPU Instruction Set Details

Format:
SWL rt, offset(base)

Description:
This instruction can be used with the SWR instruction to store the contents
of a register into four consecutive bytes of memory, when the bytes cross
a word boundary. SWL stores the left portion of the register into the
appropriate part of the high-order word of memory; SWR stores the right
portion of the register into the appropriate part of the low-order word.

The SWL instruction adds its sign-extended 16-bit offset to the contents of
general register base to form a virtual address which may specify an
arbitrary byte. It alters only the word in memory which contains that byte.
From one to four bytes will be stored, depending on the starting byte
specified.

Conceptually, it starts at the most-significant byte of the register and
copies it to the specified byte in memory; then it copies bytes from register
to memory until it reaches the low-order byte of the word in memory.

No address exceptions due to alignment are possible.

SWL Store Word Left

31 2526 2021 1516 0

SWL base rt offset

6 5 5 16
1 0 1 0 1 0

SWL

address 0
address 4

0 1 2 3
4 5 6 7

A B C D

register

address 0
address 4

0
4 5 6 7

A B C

$24

memory
(big-endian)

before

after

SWL $24,1($0)

Appendix A

A-156 MIPS R4000 Microprocessor User's Manual

Operation:

SWL Store Word Left SWL(Continued)

32 T: vAddr ← ((offset15)16 || offset 15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE – 1...3 || (pAddr2...0 xor ReverseEndian3)
If BigEndianMem = 0 then

pAddr ← pAddr31...2 || 02

endif
byte ← vAddr1...0 xor BigEndianCPU2

if (vAddr2 xor BigEndianCPU) = 0 then
data ← 032 || 024-8*byte || GPR[rt]31...24-8*byte

else
data ← 024-8*byte || GPR[rt]31...24-8*byte || 032

endif
Storememory (uncached, byte, data, pAddr, vAddr, DATA)

64 T: vAddr ← ((offset15)48 || offset 15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE – 1...3 || (pAddr2...0 xor ReverseEndian3)
If BigEndianMem = 0 then

pAddr ← pAddr31...2 || 02

endif
byte ← vAddr1...0 xor BigEndianCPU2

if (vAddr2 xor BigEndianCPU) = 0 then
data ← 032 || 024-8*byte || GPR[rt]31...24-8*byte

else
data ← 024-8*byte || GPR[rt]31...24-8*byte || 032

endif
StoreMemory(uncached, byte, data, pAddr, vAddr, DATA)

MIPS R4000 Microprocessor User's Manual A-157

CPU Instruction Set Details

Given a doubleword in a register and a doubleword in memory, the
operation of SWL is as follows:

LEM Little-endian memory (BigEndianMem = 0)
BEM BigEndianMem = 1
Type AccessType (see Table 2-1) sent to memory
Offset pAddr2...0 sent to memory

Exceptions:
TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception

SWL Store Word Left SWL(Continued)

SWL
A C DBRegister

I K LJMemory

E G HF

M O PN

0 I J K L M N O E 0 0 7 E F G H M N O P 3 4 0
1 I J K L M N E F 1 0 6 I E F G M N O P 2 4 1
2 I J K L M E F G 2 0 5 I J E F M N O P 1 4 2
3 I J K L E F G H 3 0 4 I J K E M N O P 0 4 3
4 I J K E M N O P 0 4 3 I J K L E F G H 3 0 4
5 I J E F M N O P 1 4 2 I J K L M E F G 2 0 5
6 I E F G M N O P 2 4 1 I J K L M N E F 1 0 6
7 E F G H M N O P 3 4 0 I J K L M N O E 0 0 7

offset
BigEndianCPU = 1BigEndianCPU = 0

offset

LEM BEM LEM BEMvAddr2..0 typedestination destination type

Appendix A

A-158 MIPS R4000 Microprocessor User's Manual

Format:
SWR rt, offset(base)

Description:
This instruction can be used with the SWL instruction to store the contents
of a register into four consecutive bytes of memory, when the bytes cross
a boundary between two words. SWR stores the right portion of the
register into the appropriate part of the low-order word; SWL stores the
left portion of the register into the appropriate part of the low-order word
of memory.

The SWR instruction adds its sign-extended 16-bit offset to the contents of
general register base to form a virtual address which may specify an
arbitrary byte. It alters only the word in memory which contains that byte.
From one to four bytes will be stored, depending on the starting byte
specified.

Conceptually, it starts at the least-significant (rightmost) byte of the
register and copies it to the specified byte in memory; then copies bytes
from register to memory until it reaches the high-order byte of the word in
memory.

No address exceptions due to alignment are possible.

31 2526 2021 1516 0

SWR base rt offset

6 5 5 16
1 0 1 1 1 0

SWR Store Word Right SWR

address 0
address 4

0 1 2 3
4 5 6 7

A B C D

register

address 0
address 4

0
D 5 6 7

1 2 3

$24

memory
(big-endian)

before

after

SWR $24,1($0)

MIPS R4000 Microprocessor User's Manual A-159

CPU Instruction Set Details

Operation:

SWR Store Word Right SWR(Continued)

32 T: vAddr ← ((offset15)16 || offset 15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE – 1...3 || (pAddr2...0 xor ReverseEndian3)
If BigEndianMem = 0 then

pAddr ← pAddr31...2 || 02

endif
byte ← vAddr1...0 xor BigEndianCPU2

if (vAddr2 xor BigEndianCPU) = 0 then
data ← 032 || GPR[rt]31-8*byte...0 || 08*byte

else
data ← GPR[rt]31-8*byte...0 || 08*byte || 032

endif
Storememory (uncached, WORD-byte, data, pAddr, vAddr, DATA)

64 T: vAddr ← ((offset15)48 || offset 15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE – 1...3 || (pAddr2...0 xor ReverseEndian3)
If BigEndianMem = 0 then

pAddr ← pAddr31...2 || 02

endif
byte ← vAddr1...0 xor BigEndianCPU2

if (vAddr2 xor BigEndianCPU) = 0 then
data ← 032 || GPR[rt]31-8*byte...0 || 08*byte

else
data ← GPR[rt]31-8*byte...0 || 08*byte || 032

endif
StoreMemory(uncached, WORD-byte, data, pAddr, vAddr, DATA)

Appendix A

A-160 MIPS R4000 Microprocessor User's Manual

Given a doubleword in a register and a doubleword in memory, the
operation of SWR is as follows:

LEM Little-endian memory (BigEndianMem = 0)
BEM BigEndianMem = 1
Type AccessType (see Table 2-1) sent to memory
Offset pAddr2...0 sent to memory

Exceptions:
TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception

SWR Store Word Right SWR(Continued)

SWR
A C DBRegister

I K LJMemory

E G HF

M O PN

0 I J K L E F G H 3 0 4 H J K L M N O P 0 7 0
1 I J K L F G H P 2 1 4 G H K L M N O P 1 6 0
2 I J K L G H O P 1 2 4 F G H L M N O P 2 5 0
3 I J K L H N O P 0 3 4 E F G H M N O P 3 4 0
4 E F G H M N O P 3 4 0 I J K L H N O P 0 3 4
5 F G H L M N O P 2 5 0 I J K L G H O P 1 2 4
6 G H K L M N O P 1 6 0 I J K L F G H P 2 1 4
7 H J K L M N O P 0 7 0 I J K L E F G H 3 0 4

offset
BigEndianCPU = 1BigEndianCPU = 0

offset

LEM BEM LEM BEMvAddr2..0 typedestination destination type

MIPS R4000 Microprocessor User's Manual A-161

CPU Instruction Set Details

Format:
SYNC

Description:
The SYNC instruction ensures that any loads and stores fetched prior to the
present instruction are completed before any loads or stores after this
instruction are allowed to start. Use of the SYNC instruction to serialize
certain memory references may be required in a multiprocessor
environment for proper synchronization. For example:

The SYNC in processor A prevents DATA being written after FLAG,
which could cause processor B to read stale data. The SYNC in processor
B prevents DATA from being read before FLAG, which could likewise
result in reading stale data. For processors which only execute loads and
stores in order, with respect to shared memory, this instruction is a NOP.

LL and SC instructions implicitly perform a SYNC.

This instruction is allowed in User mode.
Operation:

Exceptions:
None

SYNC Synchronize

31 2526

SPECIAL

6 20

0 SYNC

6

6 5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

SYNC

Processor A Processor B
SW R1, DATA 1: LW R2, FLAG
LI R2, 1 BEQ R2, R0, 1B
SYNC NOP
SW R2, FLAG SYNC

LW R1, DATA

32, 64 T: SyncOperation()

Appendix A

A-162 MIPS R4000 Microprocessor User's Manual

Format:
SYSCALL

Description:
A system call exception occurs, immediately and unconditionally
transferring control to the exception handler.

The code field is available for use as software parameters, but is retrieved
by the exception handler only by loading the contents of the memory word
containing the instruction.

Operation:

Exceptions:
System Call exception

System Call

31 2526

SPECIAL

6 20

Code SYSCALL

6

6 5 0

0 0 0 0 0 0 0 0 1 1 00

SYSCALL SYSCALL

32, 64 T: SystemCallException

MIPS R4000 Microprocessor User's Manual A-163

CPU Instruction Set Details

Format:
TEQ rs, rt

Description:
The contents of general register rt are compared to general register rs. If
the contents of general register rs are equal to the contents of general
register rt, a trap exception occurs.

The code field is available for use as software parameters, but is retrieved
by the exception handler only by loading the contents of the memory word
containing the instruction.

Operation:

Exceptions:
Trap exception

Trap If Equal

31 2526 2021 1516

SPECIAL rs rt

6 5 5

code TEQ

10 6

6 5 0

0 0 0 0 0 0 1 1 0 1 0 0

TEQTEQ

32, 64 T: if GPR[rs] = GPR[rt] then
TrapException

endif

Appendix A

A-164 MIPS R4000 Microprocessor User's Manual

Format:
TEQI rs, immediate

Description:
The 16-bit immediate is sign-extended and compared to the contents of
general register rs. If the contents of general register rs are equal to the
sign-extended immediate, a trap exception occurs.

Operation:

Exceptions:
Trap exception

TEQI Trap If Equal Immediate

31 2526 2021 1516

REGIMM rs

6 5 5

immediateTEQI

16

0

0 0 0 0 0 1 0 1 1 0 0

TEQI

32 T: if GPR[rs] = (immediate15)16 || immediate15...0 then
TrapException

endif

64 T: if GPR[rs] = (immediate15)48 || immediate15...0 then
TrapException

endif

MIPS R4000 Microprocessor User's Manual A-165

CPU Instruction Set Details

Format:
TGE rs, rt

Description:
The contents of general register rt are compared to the contents of general
register rs. Considering both quantities as signed integers, if the contents
of general register rs are greater than or equal to the contents of general
register rt, a trap exception occurs.

The code field is available for use as software parameters, but is retrieved
by the exception handler only by loading the contents of the memory word
containing the instruction.

Operation:

Exceptions:
Trap exception

TGETrap If Greater Than Or Equal

31 2526 2021 1516

SPECIAL rs rt

6 5 5

code TGE

10 6

6 5 0

0 0 0 0 0 0 1 1 0 0 0 0

TGE

32, 64 T: if GPR[rs] ≥ GPR[rt] then
TrapException

endif

Appendix A

A-166 MIPS R4000 Microprocessor User's Manual

Format:
TGEI rs, immediate

Description:
The 16-bit immediate is sign-extended and compared to the contents of
general register rs. Considering both quantities as signed integers, if the
contents of general register rs are greater than or equal to the sign-
extended immediate, a trap exception occurs.

Operation:

Exceptions:
Trap exception

TGEI Trap If Greater Than Or Equal Immediate

31 2526 2021 1516

REGIMM rs

6 5 5

immediateTGEI

16

0

0 0 0 0 0 1 0 1 0 0 0

TGEI

32 T: if GPR[rs] ≥ (immediate15)16 || immediate15...0 then
TrapException

endif

64 T: if GPR[rs] ≥ (immediate15)48 || immediate15...0 then
TrapException

endif

MIPS R4000 Microprocessor User's Manual A-167

CPU Instruction Set Details

Format:
TGEIU rs, immediate

Description:
The 16-bit immediate is sign-extended and compared to the contents of
general register rs. Considering both quantities as unsigned integers, if the
contents of general register rs are greater than or equal to the sign-
extended immediate, a trap exception occurs.

Operation:

Exceptions:
Trap exception

TGEIUTrap If Greater Than Or Equal

31 2526 2021 1516

REGIMM rs

6 5 5

immediateTGEIU

16

0

Immediate Unsigned

0 0 0 0 0 1 0 1 0 0 1

TGEIU

32 T: if (0 || GPR[rs]) ≥ (0 || (immediate15)16 || immediate15...0) then
TrapException

endif

64 T: if (0 || GPR[rs]) ≥ (0 || (immediate15)48 || immediate15...0) then
TrapException

endif

Appendix A

A-168 MIPS R4000 Microprocessor User's Manual

Format:
TGEU rs, rt

Description:
The contents of general register rt are compared to the contents of general
register rs. Considering both quantities as unsigned integers, if the
contents of general register rs are greater than or equal to the contents of
general register rt, a trap exception occurs.

The code field is available for use as software parameters, but is retrieved
by the exception handler only by loading the contents of the memory word
containing the instruction.

Operation:

Exceptions:
Trap exception

TGEU Trap If Greater Than Or Equal Unsigned

31 2526 2021 1516

SPECIAL rs rt

6 5 5

code TGEU

10 6

6 5 0

0 0 0 0 0 0 1 1 0 0 0 1

TGEU

T: if (0 || GPR[rs]) ≥ (0 || GPR[rt]) then
TrapException

endif

MIPS R4000 Microprocessor User's Manual A-169

CPU Instruction Set Details

Format:
TLBP

Description:
The Index register is loaded with the address of the TLB entry whose
contents match the contents of the EntryHi register. If no TLB entry
matches, the high-order bit of the Index register is set.

The architecture does not specify the operation of memory references
associated with the instruction immediately after a TLBP instruction, nor
is the operation specified if more than one TLB entry matches.

Operation:

Exceptions:
Coprocessor unusable exception

TLBPProbe TLB For Matching Entry

0

6

6 531 25 2426

COP0

6

0

TLBP

191

CO
0 1 0 0 0 0 0 0 1 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01

TLBP

32 T: Index← 1 || 025 || undefined6

for i in 0...TLBEntries–1
if (TLB[i]95...77 = EntryHi31...12) and (TLB[i]76 or
(TLB[i]71...64 = EntryHi7...0)) then

Index ← 026 || i 5...0
endif

endfor

64 T: Index← 1 || 0 25 || undefined6

for i in 0...TLBEntries–1
if (TLB[i]167...141 and not (015 || TLB[i]216...205))
= EntryHi39...13) and not (015 || TLB[i]216...205)) and
(TLB[i]140 or (TLB[i]135...128 = EntryHi7...0)) then

Index ← 026 || i 5...0
endif

endfor

Appendix A

A-170 MIPS R4000 Microprocessor User's Manual

Format:
TLBR

Description:
The G bit (which controls ASID matching) read from the TLB is written
into both of the EntryLo0 and EntryLo1 registers.

The EntryHi and EntryLo registers are loaded with the contents of the TLB
entry pointed at by the contents of the TLB Index register. The operation
is invalid (and the results are unspecified) if the contents of the TLB Index
register are greater than the number of TLB entries in the processor.

Operation:

Exceptions:
Coprocessor unusable exception

TLBR Read Indexed TLB Entry

0

6

6 531 25 2426

COP0

6

0

TLBR

191

CO
0 1 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01

TLBR

32 T: PageMask ← TLB[Index5...0]127...96
EntryHi ← TLB[Index5...0]95...64 and not TLB[Index5...0]127...96
EntryLo1 ←TLB[Index5...0]63...32
EntryLo0 ← TLB[Index5...0]31...0

64 T: PageMask ← TLB[Index5...0]255...192
EntryHi ← TLB[Index5...0]191...128 and not TLB[Index5...0]255...192
EntryLo1 ←TLB[Index5...0]127...65 || TLB[Index5...0]140
EntryLo0 ← TLB[Index5...0]63...1 || TLB[Index5...0]140

MIPS R4000 Microprocessor User's Manual A-171

CPU Instruction Set Details

Format:
TLBWI

Description:
The G bit of the TLB is written with the logical AND of the G bits in the
EntryLo0 and EntryLo1 registers.

The TLB entry pointed at by the contents of the TLB Index register is loaded
with the contents of the EntryHi and EntryLo registers.

The operation is invalid (and the results are unspecified) if the contents of
the TLB Index register are greater than the number of TLB entries in the
processor.

Operation:

Exceptions:
Coprocessor unusable exception

TLBWIWrite Indexed TLB Entry

0

6

6 531 25 2426

COP0

6

0

TLBWI

191

CO
0 1 0 0 0 0 0 0 0 0 1 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01

TLBWI

32, 64T: TLB[Index5...0] ←

PageMask || (EntryHi and not PageMask) || EntryLo1 || EntryLo0

Appendix A

A-172 MIPS R4000 Microprocessor User's Manual

Format:
TLBWR

Description:
The G bit of the TLB is written with the logical AND of the G bits in the
EntryLo0 and EntryLo1 registers.

The TLB entry pointed at by the contents of the TLB Random register is
loaded with the contents of the EntryHi and EntryLo registers.

Operation:

Exceptions:
Coprocessor unusable exception

TLBWR Write Random TLB Entry

0

6

6 531 25 2426

COP0

6

0

TLBWR

191

CO
0 1 0 0 0 0 0 0 0 1 1 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01

TLBWR

32, 64T: TLB[Random5...0] ←
PageMask || (EntryHi and not PageMask) || EntryLo1 || EntryLo0

MIPS R4000 Microprocessor User's Manual A-173

CPU Instruction Set Details

Format:
TLT rs, rt

Description:
The contents of general register rt are compared to general register rs.
Considering both quantities as signed integers, if the contents of general
register rs are less than the contents of general register rt, a trap exception
occurs.

The code field is available for use as software parameters, but is retrieved
by the exception handler only by loading the contents of the memory word
containing the instruction.

Operation:

Exceptions:
Trap exception

TLTTrap If Less Than

31 2526 2021 1516

SPECIAL rs rt

6 5 5

code TLT

10 6

6 5 0

0 0 0 0 0 0 1 1 0 0 1 0

TLT

32, 64 T: if GPR[rs] < GPR[rt] then
TrapException

endif

Appendix A

A-174 MIPS R4000 Microprocessor User's Manual

Format:
TLTI rs, immediate

Description:
The 16-bit immediate is sign-extended and compared to the contents of
general register rs. Considering both quantities as signed integers, if the
contents of general register rs are less than the sign-extended immediate, a
trap exception occurs.

Operation:

Exceptions:
Trap exception

TLTI Trap If Less Than Immediate

31 2526 2021 1516

REGIMM rs

6 5 5

immediateTLTI

16

0

0 0 0 0 0 1 0 1 0 1 0

TLTI

32 T: if GPR[rs] < (immediate15)16 || immediate15...0 then
TrapException

endif

64 T: if GPR[rs] < (immediate15)48 || immediate15...0 then
TrapException

endif

MIPS R4000 Microprocessor User's Manual A-175

CPU Instruction Set Details

Format:
TLTIU rs, immediate

Description:
The 16-bit immediate is sign-extended and compared to the contents of
general register rs. Considering both quantities as signed integers, if the
contents of general register rs are less than the sign-extended immediate, a
trap exception occurs.

Operation:

Exceptions:
Trap exception

TLTIUTrap If Less Than Immediate Unsigned

31 2526 2021 1516

REGIMM rs

6 5 5

immediateTLTIU

16

0

0 0 0 0 0 1 0 1 0 1 1

TLTIU

32 T: if (0 || GPR[rs]) < (0 || (immediate15)16 || immediate15...0) then
TrapException

endif

64 T: if (0 || GPR[rs]) < (0 || (immediate15)48 || immediate15...0) then
TrapException

endif

Appendix A

A-176 MIPS R4000 Microprocessor User's Manual

Format:
TLTU rs, rt

Description:
The contents of general register rt are compared to general register rs.
Considering both quantities as unsigned integers, if the contents of
general register rs are less than the contents of general register rt, a trap
exception occurs.

The code field is available for use as software parameters, but is retrieved
by the exception handler only by loading the contents of the memory word
containing the instruction.

Operation:

Exceptions:
Trap exception

TLTU Trap If Less Than Unsigned

31 2526 2021 1516

SPECIAL rs rt

6 5 5

code TLTU

10 6

6 5 0

0 0 0 0 0 0 1 1 0 0 1 1

TLTU

32, 64T: if (0 || GPR[rs]) < (0 || GPR[rt]) then
TrapException

endif

MIPS R4000 Microprocessor User's Manual A-177

CPU Instruction Set Details

Format:
TNE rs, rt

Description:
The contents of general register rt are compared to general register rs. If
the contents of general register rs are not equal to the contents of general
register rt, a trap exception occurs.

The code field is available for use as software parameters, but is retrieved
by the exception handler only by loading the contents of the memory word
containing the instruction.

Operation:

Exceptions:
Trap exception

TNETrap If Not Equal

31 2526 2021 1516

SPECIAL rs rt

6 5 5

code TNE

10 6

6 5 0

0 0 0 0 0 0 1 1 0 1 1 0

TNE

32, 64T: if GPR[rs] ≠ GPR[rt] then
TrapException

endif

Appendix A

A-178 MIPS R4000 Microprocessor User's Manual

Format:
TNEI rs, immediate

Description:
The 16-bit immediate is sign-extended and compared to the contents of
general register rs. If the contents of general register rs are not equal to the
sign-extended immediate, a trap exception occurs.

Operation:

Exceptions:
Trap exception

TNEI Trap If Not Equal Immediate

31 2526 2021 1516

REGIMM rs

6 5 5

immediateTNEI

16

0

0 0 0 0 0 1 0 1 1 1 0

TNEI

32 T: if GPR[rs] ≠ (immediate15)16 || immediate15...0 then
TrapException

endif

64 T: if GPR[rs] ≠ (immediate15)48 || immediate15...0 then
TrapException

endif

MIPS R4000 Microprocessor User's Manual A-179

CPU Instruction Set Details

Format:
XOR rd, rs, rt

Description:
The contents of general register rs are combined with the contents of
general register rt in a bit-wise logical exclusive OR operation.

The result is placed into general register rd.

Operation:

Exceptions:
None

XORExclusive Or

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 XOR

5 5 6

11 10 6 5 0

0 0 0 0 0 0 1 0 0 1 1 00 0 0 0 0

XOR

32, 64 T: GPR[rd] ← GPR[rs] xor GPR[rt]

Appendix A

A-180 MIPS R4000 Microprocessor User's Manual

Format:
XORI rt, rs, immediate

Description:
The 16-bit immediate is zero-extended and combined with the contents of
general register rs in a bit-wise logical exclusive OR operation.

The result is placed into general register rt.

Operation:

 Exceptions:
None

XORI Exclusive OR Immediate

31 2526 2021 1516 0

XORI rs rt immediate

6 5 5 16
0 0 1 1 1 0

XORI

32 T: GPR[rt] ← GPR[rs] xor (016 || immediate)
64 T: GPR[rt] ← GPR[rs] xor (048 || immediate)

MIPS R4000 Microprocessor User's Manual A-181

CPU Instruction Set Details

CPU Instruction Opcode Bit Encoding
The remainder of this Appendix presents the opcode bit encoding for the
CPU instruction set (ISA and extensions), as implemented by the R4000.
Figure A-2 lists the R4000 Opcode Bit Encoding.

Figure A-2 R4000 Opcode Bit Encoding

SPECIAL
ADDI
COP0

DADDIε DADDIUε LDLε LDRε * * * *
BEQL BNEL BLEZL BGTZL

LB
SB CACHE

LWUε

*

LL LDC1 LDC2 LDε
SC SDC1 SDC2 SDε

DSLLε * DSRLε DSRAε DSLL32ε * DSRL32ε DSRA32ε
TGE TGEU TLT TLTU TEQ TNE

2...0

REGIMM rt18...16

SLL
 JR

MFHI
MULT
ADD

SLT

*
DSLLVε * DSRLVε DSRAVε
DMULTε DMULTUε DDIVε DDIVUε

DADDε DADDUε DSUBε DSUBUε* *

*

COPz rs

SPECIAL function

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

31...29
0
1
2
3
4
5
6

 5...3
0
1
2
3
4
5
6
7

20...19
0
1
2
3

7

28...26 Opcode
0 1 2 3 4 5 6 7

SYSCALL BREAK

SH SWL SW SWR
LWC1 LWC2 *
SWC1 SWC2 *

LH LWL LW LBU LHU LWR

SRL SRA SLLV SRLV SRAV
 JALR
MTHI MFLO MTLO

MULTU DIV DIVU
ADDU SUB SUBU AND OR XOR NOR

SLTU

COP1 COP2 *
ADDIU SLTI SLTIU ANDI ORI XORI LUI

REGIMM J JAL BEQ BNE BLEZ BGTZ

* *

BLTZL
TLTI

BLTZALL

BGEZL
TLTIU

BGEZALL
TNEITEQI

MF

23...21
0 1 2 3 4 5 6 725, 24

0
1
2
3

CF
BC

MT CT

CO

DMFε γ DMTε γ

SDLε
LLDε
SCDε

SDRε

* * SYNC

δ

γ γ γ γ γ γ γ

* * * * * * * *
* * * *

* * * *
* *

BLTZ

BLTZAL

BGEZ

BGEZAL
TGEI TGEIU

Appendix A

A-182 MIPS R4000 Microprocessor User's Manual

Figure A-2 (cont.) R4000 Opcode Bit Encoding

Key:
* Operation codes marked with an asterisk cause reserved

instruction exceptions in all current implementations and are
reserved for future versions of the architecture.

γ Operation codes marked with a gamma cause a reserved
instruction exception. They are reserved for future versions of the
architecture.

δ Operation codes marked with a delta are valid only for R4000
processors with CP0 enabled, and cause a reserved instruction
exception on other processors.

φ Operation codes marked with a phi are invalid but do not cause
reserved instruction exceptions in R4000 implementations.

ξ Operation codes marked with a xi cause a reserved instruction
exception on R4000 processors.

χ Operation codes marked with a chi are valid only on R4000.
ε Operation codes marked with epsilon are valid when the processor

is operating either in the Kernel mode or in the 64-bit non-Kernel
(User or Supervisor) mode. These instructions cause a reserved
instruction exception if 64-bit operation is not enabled in User or
Supervisor mode.

BCF

18...16
0 1 2 3 4 5 6 720...19

0
1
2
3

BCFL
γ γ γ γ γ γ γ

γ γBCT BCTL γ γ
γ

γ γ γ γ γ γ γγ
γ γ γ γ γ γ γγ

CP0 Function
2 ... 0

0 1 2 3 4 5 6 75 ... 3
0
1
2
3

TLBWITLBR TLBWR
TLBP

ξ

0
1
2
3

ERET χ

φ φφ

φ φ φ φ φ φ φφ

φφ

φ φ φ φ φ φ φφ
φ φ φ φ φ φ φφ
φ φ φ φ φ φ φφ
φ φ φ φ φ φ φ
φ φ φ φ φ φ φ
φ φ φ φ φ φ φ

COPz rt

MIPS R4000 Microprocessor User's Manual B-1

FPU Instruction Set Details

B

This appendix provides a detailed description of each floating-point unit
(FPU) instruction (refer to Appendix A for a detailed description of the
CPU instructions). The instructions are listed alphabetically, and any
exceptions that may occur due to the execution of each instruction are
listed after the description of each instruction. Descriptions of the
immediate causes and the manner of handling exceptions are omitted
from the instruction descriptions in this appendix (refer to Chapter 7 for
detailed descriptions of floating-point exceptions and handling).

Figure B-3 at the end of this appendix lists the entire bit encoding for the
constant fields of the floating-point instruction set; the bit encoding for
each instruction is included with that individual instruction.

Appendix B

B-2 MIPS R4000 Microprocessor User's Manual

B.1 Instruction Formats
There are three basic instruction format types:

• I-Type, or Immediate instructions, which include load and
store operations

• M-Type, or Move instructions
• R-Type, or Register instructions, which include the two-

and three-register floating-point operations.

The instruction description subsections that follow show how these three
basic instruction formats are used by:

• Load and store instructions
• Move instructions
• Floating-Point computational instructions
• Floating-Point branch instructions

Floating-point instructions are mapped onto the MIPS coprocessor
instructions, defining coprocessor unit number one (CP1) as the floating-
point unit.

Each operation is valid only for certain formats. Implementations may
support some of these formats and operations through emulation, but
they only need to support combinations that are valid (marked V in Table
B-1). Combinations marked R in Table B-1 are not currently specified by
this architecture, and cause an unimplemented operation trap. They will
be available for future extensions to the architecture.

MIPS R4000 Microprocessor User's Manual B-3

FPU Instruction Set Details

Table B-1 Valid FPU Instruction Formats

Operation
Source Format

Single Double Word Longword
ADD V V R R
SUB V V R R
MUL V V R R
DIV V V R R
SQRT V V R R
ABS V V R R
MOV V V
NEG V V R R
TRUNC.L V V
ROUND.L V V
CEIL.L V V
FLOOR.L V V
TRUNC.W V V
ROUND.W V V
CEIL.W V V
FLOOR.W V V
CVT.S V V V
CVT.D V V V
CVT.W V V
CVT.L V V
C V V R R

Appendix B

B-4 MIPS R4000 Microprocessor User's Manual

The coprocessor branch on condition true/false instructions can be used
to logically negate any predicate. Thus, the 32 possible conditions require
only 16 distinct comparisons, as shown in Table B-2 below.

Table B-2 Logical Negation of Predicates by Condition True/False

Condition Relations Invalid
Operation

Exception If
Unordered

Mnemonic
Code Greater

Than
Less
Than Equal Unordered

True False

F T 0 F F F F No
UN OR 1 F F F T No
EQ NEQ 2 F F T F No
UEQ OGL 3 F F T T No
OLT UGE 4 F T F F No
ULT OGE 5 F T F T No
OLE UGT 6 F T T F No
ULE OGT 7 F T T T No
SF ST 8 F F F F Yes
NGLE GLE 9 F F F T Yes
SEQ SNE 10 F F T F Yes
NGL GL 11 F F T T Yes
LT NLT 12 F T F F Yes
NGE GE 13 F T F T Yes
LE NLE 14 F T T F Yes
NGT GT 15 F T T T Yes

MIPS R4000 Microprocessor User's Manual B-5

FPU Instruction Set Details

Floating-Point Loads, Stores, and Moves
All movement of data between the floating-point coprocessor and
memory is accomplished by coprocessor load and store operations, which
reference the floating-point coprocessor General Purpose registers. These
operations are unformatted; no format conversions are performed and,
therefore, no floating-point exceptions can occur due to these operations.

Data may also be directly moved between the floating-point coprocessor
and the processor by move to coprocessor and move from coprocessor
instructions. Like the floating-point load and store operations, move to/
from operations perform no format conversions and never cause floating-
point exceptions.

An additional pair of coprocessor registers are available, called Floating-
Point Control registers for which the only data movement operations
supported are moves to and from processor General Purpose registers.

Floating-Point Operations
The floating-point unit operation set includes:

• floating-point add
• floating-point subtract
• floating-point multiply
• floating-point divide
• floating-point square root
• convert between fixed-point and floating-point formats
• convert between floating-point formats
• floating-point compare

These operations satisfy the requirements of IEEE Standard 754
requirements for accuracy. Specifically, these operations obtain a result
which is identical to an infinite-precision result rounded to the specified
format, using the current rounding mode.

Instructions must specify the format of their operands. Except for
conversion functions, mixed-format operations are not provided.

Appendix B

B-6 MIPS R4000 Microprocessor User's Manual

B.2 Instruction Notation Conventions
In this appendix, all variable subfields in an instruction format (such as fs,
ft, immediate, and so on) are shown in lower-case. The instruction name
(such as ADD, SUB, and so on) is shown in upper-case.

For the sake of clarity, we sometimes use an alias for a variable subfield in
the formats of specific instructions. For example, we use rs = base in the
format for load and store instructions. Such an alias is always lower case,
since it refers to a variable subfield.

In some instructions, the instruction subfields op and function can have
constant 6-bit values. When reference is made to these instructions,
upper-case mnemonics are used. For instance, in the floating-point ADD
instruction we use op = COP1 and function = ADD. In other cases, a single
field has both fixed and variable subfields, so the name contains both
upper and lower case characters. Bit encodings for mnemonics are shown
in Figure B-3 at the end of this appendix, and are also included with each
individual instruction.

In the instruction description examples that follow, the Operation section
describes the operation performed by each instruction using a high-level
language notation.

Instruction Notation Examples
The following examples illustrate the application of some of the
instruction notation conventions:

Example #1:

GPR[rt] ←

Sixteen zero bits are concatenated with an immediate
value (typically 16 bits), and the 32-bit string (with the lower
16 bits set to zero) is assigned to General Purpose Register rt.

Example #2:

Bit 15 (the sign bit) of an immediate value is extended for
16 bit positions, and the result is concatenated with bits 15
through 0 of the immediate value to form a 32-bit sign
extended value.

immediate || 016

(immediate15)16 || immediate15...0

MIPS R4000 Microprocessor User's Manual B-7

FPU Instruction Set Details

B.3 Load and Store Instructions
In the R4000 implementation, the instruction immediately following a
load may use the contents of the register being loaded. In such cases, the
hardware interlocks, requiring additional real cycles, so scheduling load
delay slots is still desirable, although not required for functional code.

The behavior of the load store instructions is dependent on the width of
the FGRs.

• When the FR bit in the Status register equals zero, the Floating-
Point General registers (FGRs) are 32-bits wide.

• When the FR bit in the Status register equals one, the Floating-
Point General registers (FGRs) are 64-bits wide.

In the load and store operation descriptions, the functions listed in
Table B-3 are used to summarize the handling of virtual addresses and
physical memory.

Table B-3 Load and Store Common Functions

Function Meaning

AddressTranslation
Uses the TLB to find the physical address given the virtual
address. The function fails and an exception is taken if the
required translation is not present in the TLB.

LoadMemory

Uses the cache and main memory to find the contents of
the word containing the specified physical address. The
low-order two bits of the address and the Access Type field
indicates which of each of the four bytes within the data
word need to be returned. If the cache is enabled for this
access, the entire word is returned and loaded into the
cache.

StoreMemory

Uses the cache, write buffer, and main memory to store the
word or part of word specified as data in the word
containing the specified physical address. The low-order
two bits of the address and the Access Type field indicates
which of each of the four bytes within the data word
should be stored.

Appendix B

B-8 MIPS R4000 Microprocessor User's Manual

Figure B-1 shows the I-Type instruction format used by load and store
operations.

Figure B-1 Load and Store Instruction Format

All coprocessor loads and stores reference aligned data items. Thus, for
word loads and stores, the access type field is always WORD, and the low-
order two bits of the address must always be zero.

For doubleword loads and stores, the access type field is always
DOUBLEWORD, and the low-order three bits of the address must always
be zero.

Regardless of byte-numbering order (endianness), the address specifies
that byte which has the smallest byte-address in the addressed field. For
a big-endian machine, this is the leftmost byte; for a little-endian machine,
this is the rightmost byte.

op is a 6-bit operation code
base is the 5-bit base register specifier

ft is a 5-bit source (for stores) or destination (for loads) FPA register
specifier

offset is the 16-bit signed immediate offset

31 25 21 20 16 0

 I-Type (Immediate)

15

offset

26

ftbaseop

6 5 5 16

MIPS R4000 Microprocessor User's Manual B-9

FPU Instruction Set Details

B.4 Computational Instructions
Computational instructions include all of the arithmetic floating-point
operations performed by the FPU.

Figure B-2 shows the R-Type instruction format used for computational
operations.

Figure B-2 Computational Instruction Format

The function field indicates the floating-point operation to be performed.

Each floating-point instruction can be applied to a number of operand
formats. The operand format for an instruction is specified by the 5-bit
format field; decoding for this field is shown in Table B-4.

Table B-4 Format Field Decoding

Table B-5 lists all floating-point instructions.

Code Mnemonic Size Format
16 S single Binary floating-point
17 D double Binary floating-point
18 Reserved
19 Reserved
20 W single 32-bit binary fixed-point
21 L longword 64-bit binary fixed-point
22–31 Reserved

COP1 is a 6-bit operation code
fmt is a 5-bit format specifier
fs is a 5-bit source1 register
ft is a 5-bit source2 register
fd is a 5-bit destination register
function is a 6-bit function field

31 0

 R-Type (Register)

6 5 5 5 5 6

COP1 fmt ft fs fd function

11 1021 20 16 1526 25 6 5

Appendix B

B-10 MIPS R4000 Microprocessor User's Manual

Table B-5 Floating-Point Instructions and Operations

Code
(5: 0) Mnemonic Operation

0 ADD Add
1 SUB Subtract
2 MUL Multiply
3 DIV Divide
4 SQRT Square root
5 ABS Absolute value
6 MOV Move
7 NEG Negate

8 ROUND.L Convert to 64-bit (long) fixed-point, rounded to nearest/
even

9 TRUNC.L Convert to 64-bit (long) fixed-point, rounded toward zero
10 CEIL.L Convert to 64-bit (long) fixed-point, rounded to +∞
11 FLOOR.L Convert to 64-bit (long) fixed-point, rounded to -∞
12 ROUND.W Convert to single fixed-point, rounded to nearest/even
13 TRUNC.W Convert to single fixed-point, rounded toward zero
14 CEIL.W Convert to single fixed-point, rounded to + ∞

15 FLOOR.W Convert to single fixed-point, rounded to – ∞
16–31 – Reserved

32 CVT.S Convert to single floating-point
33 CVT.D Convert to double floating-point
34 – Reserved
35 – Reserved
36 CVT.W Convert to 32-bit binary fixed-point
37 CVT.L Convert to 64-bit (long) binary fixed-point

38–47 – Reserved
48–63 C Floating-point compare

MIPS R4000 Microprocessor User's Manual B-11

FPU Instruction Set Details

In the following pages, the notation FGR refers to the 32 General Purpose
registers FGR0 through FGR31 of the FPU, and FPR refers to the floating-
point registers of the FPU.

• When the FR bit in the Status register (SR(26)) equals zero, only
the even floating-point registers are valid and the 32 General
Purpose registers of the FPU are 32-bits wide.

• When the FR bit in the Status register (SR(26)) equals one, both
odd and even floating-point registers may be used and the 32
General Purpose registers of the FPU are 64-bits wide.

The following routines are used in the description of the floating-point
operations to retrieve the value of an FPR or to change the value of an FGR:

value← ValueFPR(fpr,fmt)

if SR26 = 1 then /* 64-bit wide FGRs */
case fmt of

S, W:
value← FGR[fpr]31...0
return

D, L:
value← FGR[fpr]
return

endcase
elseif fpr0 = 0 then /* valid specifier, 32-bit wide FGRs */

case fmt of
S, W:

value← FGR[fpr]
return

D, L:
value← FGR[fpr+1] || FGR[fpr]
return

endcase
else /* undefined result for odd 32-bit reg #s */

value← undefined
endif

Appendix B

B-12 MIPS R4000 Microprocessor User's Manual

StoreFPR(fpr, fmt, value)

if SR26 = 1 then /* 64-bit wide FGRs */
case fmt of

S, W:
FGR[fpr]← undefined32 || value
return

D, L:
FGR[fpr]← value
return

endcase
elseif fpr0 = 0 then /* valid specifier, 32-bit wide FGRs */

case fmt of
S, W:

FGR[fpr+1]← undefined
FGR[fpr]← value
return

D, L:
FGR[fpr+1]← value63...32
FGR[fpr]← value31...0
return

endcase
else /* undefined result for odd 32-bit reg #s */

undefined_result
endif

MIPS R4000 Microprocessor User's Manual B-13

FPU Instruction Set Details

Format:
ABS.fmt fd, fs

Description:
The contents of the FPU register specified by fs are interpreted in the
specified format and the arithmetic absolute value is taken. The result is
placed in the floating-point register specified by fd.

The absolute value operation is arithmetic; a NaN operand signals invalid
operation.

This instruction is valid only for single- and double-precision floating-
point formats. The operation is not defined if bit 0 of any register
specification is set and the FR bit in the Status register equals zero, since
the register numbers specify an even-odd pair of adjacent coprocessor
general registers. When the FR bit in the Status register equals one, both
even and odd register numbers are valid.

Operation:

Exceptions:
Coprocessor unusable exception
Coprocessor exception trap

Coprocessor Exceptions:
Unimplemented operation exception
Invalid operation exception

ABS.fmt Floating-Point

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd ABS

11 1021 20 16 1526 25 6 5

0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1

ABS.fmtAbsolute Value

T: StoreFPR(fd, fmt, AbsoluteValue(ValueFPR(fs, fmt)))

Appendix B

B-14 MIPS R4000 Microprocessor User's Manual

Format:
ADD.fmt fd, fs, ft

Description:
The contents of the FPU registers specified by fs and ft are interpreted in
the specified format and arithmetically added. The result is rounded as if
calculated to infinite precision and then rounded to the specified format
(fmt), according to the current rounding mode. The result is placed in the
floating-point register (FPR) specified by fd.

This instruction is valid only for single- and double-precision floating-
point formats. The operation is not defined if bit 0 of any register
specification is set and the FR bit in the Status register equals zero, since
the register numbers specify an even-odd pair of adjacent coprocessor
general registers. When the FR bit in the Status register equals one, both
even and odd register numbers are valid.

Operation:

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Unimplemented operation exception
Invalid operation exception
Inexact exception
Overflow exception
Underflow exception

ADD.fmtFloating-Point Add

31 0

6 5 5 5 5 6

COP1 fmt ft fs fd ADD

11 1021 20 16 1526 25 6 5

0 1 0 0 0 1 0 0 0 0 0 0

ADD.fmt

T: StoreFPR (fd, fmt, ValueFPR(fs, fmt) + ValueFPR(ft, fmt))

MIPS R4000 Microprocessor User's Manual B-15

FPU Instruction Set Details

Format:
BC1F offset

Description:
A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. If the result of the last floating-point compare is false
(zero), the program branches to the target address, with a delay of one
instruction.

There must be at least one instruction between C.cond.fmt and BC1F.

Operation:

Exceptions:
Coprocessor unusable exception

BC1F Branch On FPA False

16 1531 2526

COP1

6

0

16

offset

(Coprocessor 1)

5

BC BCF

5

21 20

0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0

BC1F

32 T–1: condition ← not COC[1]
T: target ← (offset15)14 || offset || 02

T+1: if condition then
PC ← PC + target

endif

64 T–1: condition ← not COC[1]
T: target ← (offset15)46 || offset || 02

T+1: if condition then
PC ← PC + target

endif

Appendix B

B-16 MIPS R4000 Microprocessor User's Manual

Format:
BC1FL offset

Description:
A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. If the result of the last floating-point compare is false
(zero), the program branches to the target address, with a delay of one
instruction. If the conditional branch is not taken, the instruction in the
branch delay slot is nullified.

There must be at least one instruction between C.cond.fmt and BC1FL.

Operation:

 Exceptions:
Coprocessor unusable exception

BC1FLBranch On FPU False Likely

16 1531 2526

COP1

6

0

16

offset

(Coprocessor 1)

5

BC BCFL

5

21 20

0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 0

BC1FL

64 T–1: condition ← not COC[1]
T: target ← (offset15)46 || offset || 02

T+1: if condition then
PC ← PC + target

else
NullifyCurrentInstruction

endif

32 T–1: condition ← not COC[1]
T: target ← (offset15)14 || offset || 02

T+1: if condition then
PC ← PC + target

else
NullifyCurrentInstruction

endif

MIPS R4000 Microprocessor User's Manual B-17

FPU Instruction Set Details

Format:
BC1T offset

Description:
A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. If the result of the last floating-point compare is true (one),
the program branches to the target address, with a delay of one
instruction.

There must be at least one instruction between C.cond.fmt and BC1T.

Operation:

Exceptions:
Coprocessor unusable exception

BC1T Branch On FPU True

5

16 15

BC

31 2526

COP1

6

0

16

offset

(Coprocessor 1)

BCT

5

21 20

0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 1

BC1T

32 T–1: condition ← COC[1]
T: target ← (offset15)14 || offset || 02

T+1: if condition then
PC ← PC + target

endif

64 T–1: condition ← COC[1]
T: target ← (offset15)46 || offset || 02

T+1: if condition then
PC ← PC + target

endif

Appendix B

B-18 MIPS R4000 Microprocessor User's Manual

Format:
BC1TL offset

Description:
A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. If the result of the last floating-point compare is true (one),
the program branches to the target address, with a delay of one
instruction. If the conditional branch is not taken, the instruction in the
branch delay slot is nullified.

There must be at least one instruction between C.cond.fmt and BC1TL.

Operation:

 Exceptions:
Coprocessor unusable exception

BC1TLBranch On FPU True Likely

5

16 15

BC

31 2526

COP1

6

0

16

offset

(Coprocessor 1)

BCTL

5

21 20

0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 1

BC1TL

32 T–1: condition ← COC[1]
T: target ← (offset15)14 || offset || 02

T+1: if condition then
PC ← PC + target

else
NullifyCurrentInstruction

endif
64 T–1: condition ← COC[1]

T: target ← (offset15)46 || offset || 02

T+1: if condition then
PC ← PC + target

else
NullifyCurrentInstruction

endif

MIPS R4000 Microprocessor User's Manual B-19

FPU Instruction Set Details

Format:
C.cond.fmt fs, ft

Description:
The contents of the floating-point registers specified by fs and ft are
interpreted in the specified format, fmt, and arithmetically compared.

A result is determined based on the comparison and the conditions
specified in the cond field. If one of the values is a Not a Number (NaN),
and the high-order bit of the cond field is set, an invalid operation
exception is taken. After a one-instruction delay, the condition is available
for testing with branch on floating-point coprocessor condition
instructions. There must be at least one instruction between the compare
and the branch.

Comparisons are exact and can neither overflow nor underflow. Four
mutually-exclusive relations are possible results: less than, equal, greater
than, and unordered. The last case arises when one or both of the
operands are NaN; every NaN compares unordered with everything,
including itself.

Comparisons ignore the sign of zero, so +0 = –0.

This instruction is valid only for single- and double-precision floating-
point formats. The operation is not defined if bit 0 of any register
specification is set and the FR bit in the Status register equals zero, since
the register numbers specify an even-odd pair of adjacent coprocessor
general registers. When the FR bit in the Status register equals one, both
even and odd register numbers are valid.

*See “FPU Instruction Opcode Bit Encoding” at the end of Appendix B.

C.cond.fmt Floating-Point

31 0

6 5 5 5 5 4

COP1 fmt ft fs 0 cond*

11 1021 20 16 1526 25

2

FC*

6 5 4 3

0 1 0 0 0 1 0 0 0 0 0

Compare C.cond.fmt

Appendix B

B-20 MIPS R4000 Microprocessor User's Manual

Operation:

 Exceptions:
Coprocessor unusable
Floating-Point exception

Coprocessor Exceptions:
Unimplemented operation exception
Invalid operation exception

Compare C.cond.fmtFloating-Point

(continued)
C.cond.fmt

T: if NaN(ValueFPR(fs, fmt)) or NaN(ValueFPR(ft, fmt)) then
less ← false
equal ← false
unordered ← true
if cond3 then

signal InvalidOperationException
endif

else
less ← ValueFPR(fs, fmt) < ValueFPR(ft, fmt)
equal ← ValueFPR(fs, fmt) = ValueFPR(ft, fmt)
unordered ← false

endif
condition ← (cond2 and less) or (cond1 and equal) or

 (cond0 and unordered)
FCR[31]23 ← condition
COC[1] ← condition

MIPS R4000 Microprocessor User's Manual B-21

FPU Instruction Set Details

Format:
CEIL.L.fmt fd, fs

Description:
The contents of the floating-point register specified by fs are interpreted in
the specified source format, fmt, and arithmetically converted to the long
fixed-point format. The result is placed in the floating-point register
specified by fd.

Regardless of the setting of the current rounding mode, the conversion is
rounded as if the current rounding mode is round to +∞ (2).

This instruction is valid only for conversion from single- or double-
precision floating-point formats. When the FR bit in the Status register
equals one, both even and odd register numbers are valid.

When the source operand is an Infinity, NaN, or the correctly rounded
integer result is outside of –263 to 263– 1, the Invalid operation exception is
raised. If the Invalid operation is not enabled then no exception is taken
and 263–1 is returned.

CEIL.L.fmt Floating-Point

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd CEIL.L

11 1021 20 16 1526 25

Fixed-Point Format

6 5

0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0

Ceiling to Long CEIL.L.fmt

Appendix B

B-22 MIPS R4000 Microprocessor User's Manual

Operation:

 Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception

(continued)

CEIL.L.fmt Floating-Point

Fixed-Point Format
Ceiling to Long CEIL.L.fmt

T: StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

MIPS R4000 Microprocessor User's Manual B-23

FPU Instruction Set Details

Format:
CEIL.W.fmt fd, fs

Description:
The contents of the floating-point register specified by fs are interpreted in
the specified source format, fmt, and arithmetically converted to the single
fixed-point format. The result is placed in the floating-point register
specified by fd.

Regardless of the setting of the current rounding mode, the conversion is
rounded as if the current rounding mode is round to +∞ (2).

This instruction is valid only for conversion from a single- or double-
precision floating-point formats. The operation is not defined if bit 0 of
any register specification is set and the FR bit in the Status register equals
zero, since the register numbers specify an even-odd pair of adjacent
coprocessor general registers. When the FR bit in the Status register equals
one, both even and odd register numbers are valid.

When the source operand is an Infinity or NaN, or the correctly rounded
integer result is outside of –231 to 231– 1, the Invalid operation exception is
raised. If the Invalid operation is not enabled then no exception is taken
and 231–1 is returned.

CEIL.W.fmt Floating-Point

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd CEIL.W

11 1021 20 16 1526 25

Fixed-Point Format

6 5

0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0

Ceiling to Single CEIL.W.fmt

Appendix B

B-24 MIPS R4000 Microprocessor User's Manual

Operation:

 Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception

(continued)

CEIL.W.fmt Floating-Point

Fixed-Point Format
Ceiling to Single CEIL.W.fmt

T: StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

MIPS R4000 Microprocessor User's Manual B-25

FPU Instruction Set Details

Format:
CFC1 rt, fs

Description:
The contents of the FPU control register fs are loaded into general register
rt.

This operation is only defined when fs equals 0 or 31.

The contents of general register rt are undefined for the instruction
immediately following CFC1.

Operation:

 Exceptions:
Coprocessor unusable exception

(Coprocessor 1)CFC1

11

Move Control Word From FPU

31 2526 2021 1516

COP1 CF rt

6 5 5

fs 0

5

11 10 0

0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

CFC1

32 T: temp ← FCR[fs]
T+1: GPR[rt] ← temp

64 T: temp ← FCR[fs]
T+1: GPR[rt] ← (temp31)32 || temp

Appendix B

B-26 MIPS R4000 Microprocessor User's Manual

Format:
CTC1 rt, fs

Description:
The contents of general register rt are loaded into FPU control register fs.
This operation is only defined when fs equals 0 or 31.

Writing to Control Register 31, the floating-point Control/Status register,
causes an interrupt or exception if any cause bit and its corresponding
enable bit are both set. The register will be written before the exception
occurs. The contents of floating-point control register fs are undefined for
the instruction immediately following CTC1.

Operation:

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Unimplemented operation exception
Invalid operation exception
Division by zero exception
Inexact exception
Overflow exception
Underflow exception

CTC1

11

Move Control Word To FPU

31 2526 2021 1516

COP1 CT rt

6 5 5

fs 0

5

11 10 0

(Coprocessor 1)

0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

CTC1

32 T: temp ← GPR[rt]
T+1: FCR[fs] ← temp

COC[1] ← FCR[31]23

64 T: temp ← GPR[rt]31...0
T+1: FCR[fs] ← temp

COC[1] ← FCR[31]23

MIPS R4000 Microprocessor User's Manual B-27

FPU Instruction Set Details

Format:
CVT.D.fmt fd, fs

Description:
The contents of the floating-point register specified by fs is interpreted in
the specified source format, fmt, and arithmetically converted to the
double binary floating-point format. The result is placed in the floating-
point register specified by fd.

This instruction is valid only for conversions from single floating-point
format, 32-bit or 64-bit fixed-point format.

If the single floating-point or single fixed-point format is specified, the
operation is exact. The operation is not defined if bit 0 of any register
specification is set and the FR bit in the Status register equals zero, since
the register numbers specify an even-odd pair of adjacent coprocessor
general registers. When the FR bit in the Status register equals one, both
even and odd register numbers are valid.

Operation:

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception
Underflow exception

CVT.D.fmt Floating-Point

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd CVT.D

11 1021 20 16 1526 25

Floating-Point Format

6 5

0 1 0 0 0 1 1 0 0 0 0 10 0 0 0 0

Convert to Double CVT.D.fmt

T: StoreFPR (fd, D, ConvertFmt(ValueFPR(fs, fmt), fmt, D))

Appendix B

B-28 MIPS R4000 Microprocessor User's Manual

Format:
CVT.L.fmt fd, fs

Description:
The contents of the floating-point register specified by fs are interpreted in
the specified source format, fmt, and arithmetically converted to the long
fixed-point format. The result is placed in the floating-point register
specified by fd. This instruction is valid only for conversions from single-
or double-precision floating-point formats. The operation is not defined if
bit 0 of any register specification is set and the FR bit in the Status register
equals zero.

When the source operand is an Infinity, NaN, or the correctly rounded
integer result is outside of –263 to 263–1, the Invalid operation exception is
raised. If the Invalid operation is not enabled then no exception is taken
and 263–1 is returned.

Operation:

 Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception

CVT.L.fmt Floating-Point

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd CVT.L

11 1021 20 16 1526 25

Fixed-Point Format

6 5

0 1 0 0 0 1 1 0 0 1 0 10 0 0 0 0

Convert to Long CVT.L.fmt

T: StoreFPR (fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

MIPS R4000 Microprocessor User's Manual B-29

FPU Instruction Set Details

Format:
CVT.S.fmt fd, fs

Description:
The contents of the floating-point register specified by fs are interpreted in
the specified source format, fmt, and arithmetically converted to the single
binary floating-point format. The result is placed in the floating-point
register specified by fd. Rounding occurs according to the currently
specified rounding mode.

This instruction is valid only for conversions from double floating-point
format, or from 32-bit or 64-bit fixed-point format. The operation is not
defined if bit 0 of any register specification is set and the FR bit in the Status
register equals zero, since the register numbers specify an even-odd pair
of adjacent coprocessor general registers. When the FR bit in the Status
register equals one, both even and odd register numbers are valid.

Operation:

 Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception
Underflow exception

CVT.S.fmtFloating-Point

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd CVT.S

11 1021 20 16 1526 25

Floating-Point Format

6 5

0 1 0 0 0 1 1 0 0 0 0 00 0 0 0 0

Convert to SingleCVT.S.fmt

T: StoreFPR(fd, S, ConvertFmt(ValueFPR(fs, fmt), fmt, S))

Appendix B

B-30 MIPS R4000 Microprocessor User's Manual

Format:
CVT.W.fmt fd, fs

Description:
The contents of the floating-point register specified by fs are interpreted in
the specified source format, fmt, and arithmetically converted to the single
fixed-point format. The result is placed in the floating-point register
specified by fd. This instruction is valid only for conversion from a single-
or double-precision floating-point formats. The operation is not defined if
bit 0 of any register specification is set and the FR bit in the Status register
equals zero, since the register numbers specify an even-odd pair of
adjacent coprocessor general registers. When the FR bit in the Status
register equals one, both even and odd register numbers are valid.

When the source operand is an Infinity or NaN, or the correctly rounded
integer result is outside of –231 to 231–1, an Invalid operation exception is
raised. If Invalid operation is not enabled, then no exception is taken and
231 –1 is returned.

Operation:

 Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception

CVT.W.fmt Floating-Point

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd CVT.W

11 1021 20 16 1526 25

Fixed-Point Format

6 5

0 1 0 0 0 1 1 0 0 1 0 00 0 0 0 0

Convert to CVT.W.fmt

T: StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

MIPS R4000 Microprocessor User's Manual B-31

FPU Instruction Set Details

Format:
DIV.fmt fd, fs, ft

Description:
The contents of the floating-point registers specified by fs and ft are
interpreted in the specified format and the value in the fs field is divided by
the value in the ft field. The result is rounded as if calculated to infinite
precision and then rounded to the specified format, according to the
current rounding mode. The result is placed in the floating-point register
specified by fd.

This instruction is valid for only single or double precision floating-point
formats.

The operation is not defined if bit 0 of any register specification is set and
the FR bit in the Status register equals zero, since the register numbers
specify an even-odd pair of adjacent coprocessor general registers. When
the FR bit in the Status register equals one, both even and odd register
numbers are valid.

Operation:

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Unimplemented operation exception Invalid operation exception
Division-by-zero exception Inexact exception
Overflow exception Underflow exception

DIV.fmtFloating-Point Divide

31 0

6 5 5 5 5 6

COP1 fmt ft fs fd DIV

11 1021 20 16 1526 25 6 5

0 1 0 0 0 1 0 0 0 0 1 1

DIV.fmt

T: StoreFPR (fd, fmt, ValueFPR(fs, fmt)/ValueFPR(ft, fmt))

Appendix B

B-32 MIPS R4000 Microprocessor User's Manual

Format:
DMFC1 rt, fs

Description:
The contents of register fs from the floating-point coprocessor is stored
into processor register rt.

The contents of general register rt are undefined for the instruction
immediately following DMFC1.

The FR bit in the Status register specifies whether all 32 registers of the
R4000 are addressable. When FR equals zero, this instruction is not
defined when the least significant bit of fs is non-zero. When FR is set, fs
may specify either odd or even registers.

Operation:

Exceptions:
Coprocessor unusable exception

Coprocessor Exceptions:
Unimplemented operation exception

DMFC1 Doubleword Move From

fs

11 10

5

31 2526 2021 1516 0

COP1 DMF rt 0

6 5 5 11

Floating-Point Coprocessor

0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 00

DMFC1

 64 T: if SR26 = 1 then /* 64-bit wide FGRs */
data ← FGR[fs]

elseif fs0 = 0 then /* valid specifier, 32-bit wide FGRs */
data ← FGR[fs+1] || FGR[fs]

else /* undefined for odd 32-bit reg #s */
data← undefined64

endif

T+1: GPR[rt] ← data

MIPS R4000 Microprocessor User's Manual B-33

FPU Instruction Set Details

Format:
DMTC1 rt, fs

Description:
The contents of general register rt are loaded into coprocessor register fs of
the CP1.

The contents of floating-point register fs are undefined for the instruction
immediately following DMTC1.

The FR bit in the Status register specifies whether all 32 registers of the
R4000 are addressable. When FR equals zero, this instruction is not
defined when the least significant bit of fs is non-zero. When FR equals
one, fs may specify either odd or even registers.

Operation:

Exceptions:
Coprocessor unusable exception

Coprocessor Exceptions:
Unimplemented operation exception

DMTC1 Doubleword Move To

fs

11 10

5

31 2526 2021 1516 0

COP1 DMT rt 0

6 5 5 11

Floating-Point Coprocessor

0 1 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 00

DMTC1

 64 T: data ← GPR[rt]

T+1: if SR26 = 1 then /* 64-bit wide FGRs */
FGR[fs] ← data

elseif fs0 = 0 then /*valid specifier, 32-bit wide valid FGRs */
FGR[fs+1] ← data63...32
FGR[fs] ← data31...0

else /* undefined result for odd 32-bit reg #s */
undefined_result

endif

Appendix B

B-34 MIPS R4000 Microprocessor User's Manual

Format:
FLOOR.L.fmt fd, fs

Description:
The contents of the floating-point register specified by fs are interpreted in
the specified source format, fmt, and arithmetically converted to the long
fixed-point format. The result is placed in the floating-point register
specified by fd.

Regardless of the setting of the current rounding mode, the conversion is
rounded as if the current rounding mode is round to -∞ (3).

This instruction is valid only for conversion from single- or double-
precision floating-point formats.

When the source operand is an Infinity, NaN, or the correctly rounded
integer result is outside of –263 to 263– 1, the Invalid operation exception is
raised. If the Invalid operation is not enabled then no exception is taken
and 263–1 is returned.

FLOOR.L.fmt Floating-Point

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd FLOOR.L

11 1021 20 16 1526 25

Fixed-Point Format

6 5

0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1

Floor to Long FLOOR.L.fmt

MIPS R4000 Microprocessor User's Manual B-35

FPU Instruction Set Details

Operation:

 Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception

FLOOR.L.fmt Floating-Point

Fixed-Point Format
Floor to Long FLOOR.L.fmt
(continued)

T: StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

Appendix B

B-36 MIPS R4000 Microprocessor User's Manual

Format:
FLOOR.W.fmt fd, fs

Description:
The contents of the floating-point register specified by fs are interpreted in
the specified source format, fmt, and arithmetically converted to the single
fixed-point format. The result is placed in the floating-point register
specified by fd.

Regardless of the setting of the current rounding mode, the conversion is
rounded as if the current rounding mode is round to –∞ (RM = 3).

This instruction is valid only for conversion from a single- or double-
precision floating-point formats. The operation is not defined if bit 0 of
any register specification is set and the FR bit in the Status register equals
zero, since the register numbers specify an even-odd pair of adjacent
coprocessor general registers. When the FR bit in the Status register equals
one, both even and odd register numbers are valid.

When the source operand is an Infinity or NaN, or the correctly rounded
integer result is outside of –231 to 231–1, an Invalid operation exception is
raised. If Invalid operation is not enabled, then no exception is taken and
231–1 is returned.

FLOOR.W.fmt Floating-Point

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd FLOOR.W

11 1021 20 16 1526 25

Fixed-Point Format

6 5

0 1 0 0 0 1 0 0 1 1 1 10 0 0 0 0

Floor to Single FLOOR.W.fmt

MIPS R4000 Microprocessor User's Manual B-37

FPU Instruction Set Details

Operation:

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception

FLOOR.W.fmt Floating-Point

Fixed-Point Format
Floor to Single FLOOR.W.fmt

(continued)

T: StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Appendix B

B-38 MIPS R4000 Microprocessor User's Manual

Format:
LDC1 ft, offset(base)

Description:
The 16-bit offset is sign-extended and added to the contents of general
register base to form an unsigned effective address.

In 32-bit mode, the contents of the doubleword at the memory location
specified by the effective address is loaded into registers ft and ft+1 of the
floating-point coprocessor. This instruction is not valid, and is undefined,
when the least significant bit of ft is non-zero.

In 64-bit mode, the contents of the doubleword at the memory location
specified by the effective address are loaded into the 64-bit register ft of the
floating point coprocessor.

The FR bit of the Status register (SR26) specifies whether all 32 registers of
the R4000 are addressable. If FR equals zero, this instruction is not defined
when the least significant bit of ft is non-zero. If FR equals one, ft may
specify either odd or even registers.

If any of the three least-significant bits of the effective address are non-
zero, an address error exception takes place.

LDC1 Load Doubleword to FPU

31 2526 2021 1516 0

LDC1 base ft offset

6 5 5 16

(Coprocessor 1)

1 1 0 1 0 1

LDC1

MIPS R4000 Microprocessor User's Manual B-39

FPU Instruction Set Details

Operation:

Exceptions:
Coprocessor unusable
TLB refill exception
TLB invalid exception
Bus error exception
Address error exception

LDC1 Load Doubleword to FPU
(Coprocessor 1) LDC1

(continued)

32 T: vAddr ← ((offset15)16 || offset15...0) + GPR[base]
64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]

32, 64 (pAddr, uncached) ← AddressTranslation (vAddr, DATA)
data ← LoadMemory(uncached, DOUBLEWORD, pAddr, vAddr, DATA)
if SR26 = 1 then /* 64-bit wide FGRs */

FGR[ft] ← data
elseif ft0 = 0 then /* valid specifier, 32-bit wide FGRs */

FGR[ft+1] ← data63...32
FGR[ft] ← data31...0

else /* undefined result if odd */
undefined_result

endif

Appendix B

B-40 MIPS R4000 Microprocessor User's Manual

Format:
LWC1 ft, offset(base)

Description:
The 16-bit offset is sign-extended and added to the contents of general
register base to form an unsigned effective address. The contents of the
word at the memory location specified by the effective address is loaded
into register ft of the floating-point coprocessor.

The FR bit of the Status register specifies whether all 64-bit Floating-Point
registers are addressable. If FR equals zero, LWC1 loads either the high or
low half of the 16 even Floating-Point registers. If FR equals one, LWC1
loads the low 32-bits of both even and odd Floating-Point registers.

If either of the two least-significant bits of the effective address is non-zero,
an address error exception occurs.

LWC1Load Word to FPU

31 2526 2021 1516 0

LWC1 base ft offset

6 5 5 16

(Coprocessor 1)

1 1 0 0 0 1

LWC1

MIPS R4000 Microprocessor User's Manual B-41

FPU Instruction Set Details

Operation:

Exceptions:
Coprocessor unusable
TLB refill exception
TLB invalid exception
Bus error exception
Address error exception

LWC1Load Word to FPU
(Coprocessor 1)LWC1

(continued)

32 T: vAddr ← ((offset15)16 || offset15...0) + GPR[base]
64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]

32, 64 (pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1...3 || (pAddr2...0 xor (ReverseEndian || 02))
mem ← LoadMemory(uncached, WORD, pAddr, vAddr, DATA)
byte ← vAddr2...0 xor (BigEndianCPU || 02)
/* “mem” is aligned 64-bits from memory. Pick out correct bytes. */
if SR26 = 1 then /* 64-bit wide FGRs */

FGR[ft] ← undefined32 || mem31+8*byte...8*byte
else /* 32-bit wide FGRs */

FGR[ft] ← mem31+8*byte...8*byte
endif

Appendix B

B-42 MIPS R4000 Microprocessor User's Manual

Format:
MFC1 rt, fs

Description:
The contents of register fs from the floating-point coprocessor are stored
into processor register rt.

The contents of register rt are undefined for the instruction immediately
following MFC1.

The FR bit of the Status register specifies whether all 32 registers of the
R4000 are addressable. If FR equals zero, MFC1 stores either the high or
low half of the 16 even Floating-Point registers. If FR equals one, MFC1
stores the low 32-bits of both even and odd Floating-Point registers.

Operation:

Exceptions:
Coprocessor unusable exception

MFC1

11

Move From FPU

31 2526 2021 1516

COP1 MF rt

6 5 5

fs 0

5

11 10 0

(Coprocessor 1)

0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MFC1

32 T: data ← FGR[fs]31...0
T+1: GPR[rt] ← data

64 T: data ← FGR[fs]31...0

T+1: GPR[rt] ← (data31)32 || data

MIPS R4000 Microprocessor User's Manual B-43

FPU Instruction Set Details

Format:
MOV.fmt fd, fs

Description:
The contents of the FPU register specified by fs are interpreted in the
specified format and are copied into the FPU register specified by fd.

The move operation is non-arithmetic; no IEEE 754 exceptions occur as a
result of the instruction.

This instruction is valid only for single- or double-precision floating-point
formats.

The operation is not defined if bit 0 of any register specification is set and
the FR bit in the Status register equals zero, since the register numbers
specify an even-odd pair of adjacent coprocessor general registers. When
the FR bit in the Status register equals one, both even and odd register
numbers are valid.

Operation:

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Unimplemented operation exception

MOV.fmtFloating-Point Move

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd MOV

11 1021 20 16 1526 25 6 5

0 1 0 0 0 1 0 0 0 1 1 00 0 0 0 0

MOV.fmt

T: StoreFPR(fd, fmt, ValueFPR(fs, fmt))

Appendix B

B-44 MIPS R4000 Microprocessor User's Manual

Format:
MTC1 rt, fs

Description:
The contents of register rt are loaded into the FPU general register at
location fs.

The contents of floating-point register fs is undefined for the instruction
immediately following MTC1.

The FR bit of the Status register specifies whether all 32 registers of the
R4000 are addressable. If FR equals zero, MTC1 loads either the high or
low half of the 16 even Floating-Point registers. If FR equals one, MTC1
loads the low 32-bits of both even and odd Floating-Point registers.

Operation:

Exceptions:
Coprocessor unusable exception

MTC1

11

Move To FPU

31 2526 2021 1516

COP1 MT rt

6 5 5

fs 0

5

11 10 0

(Coprocessor 1)

0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 00 0 1 0 0

MTC1

32,64 T: data ← GPR[rt]31...0
T+1: if SR26 = 1 then /* 64-bit wide FGRs */

FGR[fs] ← undefined32 || data
else /* 32-bit wide FGRs */

FGR[fs] ← data
endif

MIPS R4000 Microprocessor User's Manual B-45

FPU Instruction Set Details

Format:
MUL.fmt fd, fs, ft

Description:
The contents of the floating-point registers specified by fs and ft are
interpreted in the specified format and arithmetically multiplied. The
result is rounded as if calculated to infinite precision and then rounded to
the specified format, according to the current rounding mode. The result
is placed in the floating-point register specified by fd.

This instruction is valid only for single- or double-precision floating-point
formats.

The operation is not defined if bit 0 of any register specification is set and
the FR bit in the Status register equals zero, since the register numbers
specify an even-odd pair of adjacent coprocessor general registers. When
the FR bit in the Status register equals one, both even and odd register
numbers are valid.

Operation:

Exceptions:
Coprocessor unusable exception
 Floating-Point exception

Coprocessor Exceptions:
Unimplemented operation exception
Invalid operation exception
Inexact exception
Overflow exception
Underflow exception

MUL.fmtFloating-Point Multiply

31 0

6 5 5 5 5 6

COP1 fmt ft fs fd MUL

11 1021 20 16 1526 25 6 5

0 1 0 0 0 1 0 0 0 0 1 0

MUL.fmt

T: StoreFPR (fd, fmt, ValueFPR(fs, fmt) * ValueFPR(ft, fmt))

Appendix B

B-46 MIPS R4000 Microprocessor User's Manual

Format:
NEG.fmt fd, fs

Description:
The contents of the FPU register specified by fs are interpreted in the
specified format and the arithmetic negation is taken (polarity of the sign-
bit is changed). The result is placed in the FPU register specified by fd.

The negate operation is arithmetic; an NaN operand signals invalid
operation.

This instruction is valid only for single- or double-precision floating-point
formats. The operation is not defined if bit 0 of any register specification
is set and the FR bit in the Status register equals zero, since the register
numbers specify an even-odd pair of adjacent coprocessor general
registers. When the FR bit in the Status register equals one, both even and
odd register numbers are valid.

Operation:

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Unimplemented operation exception
Invalid operation exception

NEG.fmt Floating-Point Negate

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd NEG

11 1021 20 16 1526 25 6 5

0 1 0 0 0 1 0 0 0 1 1 10 0 0 0 0

NEG.fmt

T: StoreFPR(fd, fmt, Negate(ValueFPR(fs, fmt)))

MIPS R4000 Microprocessor User's Manual B-47

FPU Instruction Set Details

Format:
ROUND.L.fmt fd, fs

Description:
The contents of the floating-point register specified by fs are interpreted in
the specified source format, fmt, and arithmetically converted to the long
fixed-point format. The result is placed in the floating-point register
specified by fd.

Regardless of the setting of the current rounding mode, the conversion is
rounded as if the current rounding mode is round to nearest/even (0).

This instruction is valid only for conversion from single- or double-
precision floating-point formats.

When the source operand is an Infinity, NaN, or the correctly rounded
integer result is outside of –263 to 263– 1, the Invalid operation exception is
raised. If the Invalid operation is not enabled then no exception is taken
and 263 –1 is returned.

ROUND.L.fmt Floating-Point

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd ROUND.L

11 1021 20 16 1526 25

Fixed-Point Format

6 5

0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

Round to Long ROUND.L.fmt

Appendix B

B-48 MIPS R4000 Microprocessor User's Manual

Operation:

 Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception

ROUND.L.fmt Floating-Point

Fixed-Point Format
Round to Long ROUND.L.fmt

(continued)

T: StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

MIPS R4000 Microprocessor User's Manual B-49

FPU Instruction Set Details

Format:
ROUND.W.fmt fd, fs

Description:
The contents of the floating-point register specified by fs are interpreted in
the specified source format, fmt, and arithmetically converted to the single
fixed-point format. The result is placed in the floating-point register
specified by fd.

Regardless of the setting of the current rounding mode, the conversion is
rounded as if the current rounding mode is round to the nearest/even
(RM = 0).

This instruction is valid only for conversion from a single- or double-
precision floating-point formats. The operation is not defined if bit 0 of
any register specification is set and the FR bit in the Status register equals
zero, since the register numbers specify an even-odd pair of adjacent
coprocessor general registers. When the FR bit in the Status register equals
one, both even and odd register numbers are valid.

When the source operand is an Infinity or NaN, or the correctly rounded
integer result is outside of –231 to 231 –1, an Invalid operation exception is
raised. If Invalid operation is not enabled, then no exception is taken and
231 –1 is returned.

ROUND.W.fmtFloating-Point

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd ROUND.W

11 1021 20 16 1526 25

Fixed-Point Format

6 5

0 1 0 0 0 1 0 0 1 1 0 00 0 0 0 0

Round to Single
ROUND.W.fmt

Appendix B

B-50 MIPS R4000 Microprocessor User's Manual

Operation:

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception

ROUND.W.fmtFloating-Point

Fixed-Point Format
Round to Single

ROUND.W.fmt
(continued)

T: StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

MIPS R4000 Microprocessor User's Manual B-51

FPU Instruction Set Details

Format:
SDC1 ft, offset(base)

Description:
The 16-bit offset is sign-extended and added to the contents of general
register base to form an unsigned effective address.

In 32-bit mode, the contents of registers ft and ft+1 from the floating-point
coprocessor are stored at the memory location specified by the effective
address. This instruction is not valid, and is undefined, when the least
significant bit of ft is non-zero.

In 64-bit mode, the 64-bit register ft is stored to the contents of the
doubleword at the memory location specified by the effective address.
The FR bit of the Status register (SR26) specifies whether all 32 registers of
the R4000 are addressable. When FR equals zero, this instruction is not
defined if the least significant bit of ft is non-zero. If FR equals one, ft may
specify either odd or even registers.

If any of the three least-significant bits of the effective address are non-
zero, an address error exception takes place.

SDC1Store Doubleword from FPU

31 2526 2021 1516 0

SDC1 base ft offset

6 5 5 16

(Coprocessor 1)

1 1 1 1 0 1

SDC1

Appendix B

B-52 MIPS R4000 Microprocessor User's Manual

Operation:

Exceptions:
Coprocessor unusable
TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception

SDC1Store Doubleword from FPU
(Coprocessor 1)SDC1

(continued)

32 T: vAddr ← (offset15)16 || offset15...0) + GPR[base]
64 T: vAddr ← (offset15)48 || offset15...0) + GPR[base]

32,64 (pAddr, uncached) ← AddressTranslation (vAddr, DATA)
if SR26 = 1 /* 64-bit wide FGRs */

data ← FGR[ft]
elseif ft0 = 0 then /* valid specifier, 32-bit wide FGRs */

data ← FGR[ft+1] || FGR[ft]
else /* undefined for odd 32-bit reg #s */

data← undefined64

endif
StoreMemory(uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

MIPS R4000 Microprocessor User's Manual B-53

FPU Instruction Set Details

Format:
SQRT.fmt fd, fs

Description:
The contents of the floating-point register specified by fs are interpreted in
the specified format and the positive arithmetic square root is taken. The
result is rounded as if calculated to infinite precision and then rounded to
the specified format, according to the current rounding mode. If the value
of fs corresponds to –0, the result will be –0. The result is placed in the
floating-point register specified by fd.

This instruction is valid only for single- or double-precision floating-point
formats.

The operation is not defined if bit 0 of any register specification is set and
the FR bit in the Status register equals zero, since the register numbers
specify an even-odd pair of adjacent coprocessor general registers. When
the FR bit in the Status register equals one, both even and odd register
numbers are valid.

Operation:

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Unimplemented operation exception
Invalid operation exception
Inexact exception

SQRT.fmt Floating-Point

31 0

6 5 5 5 5 6

COP1 fmt fs fd SQRT

11 1021 20 16 1526 25 6 5

0 1 0 0 0 1 0 0 0 1 0 0

Square Root SQRT.fmt

0
0 0 0 0 0

T: StoreFPR(fd, fmt, SquareRoot(ValueFPR(fs, fmt)))

Appendix B

B-54 MIPS R4000 Microprocessor User's Manual

Format:
SUB.fmt fd, fs, ft

Description:
The contents of the floating-point registers specified by fs and ft are
interpreted in the specified format and the value in the ft field is subtracted
from the value in the fs field. The result is rounded as if calculated to
infinite precision and then rounded to the specified format, according to
the current rounding mode. The result is placed in the floating-point
register specified by fd. This instruction is valid only for single- or double-
precision floating-point formats.

The operation is not defined if bit 0 of any register specification is set and
the FR bit in the Status register equals zero, since the register numbers
specify an even-odd pair of adjacent coprocessor general registers. When
the FR bit in the Status register equals one, both even and odd register
numbers are valid.

Operation:

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Unimplemented operation exception
Invalid operation exception
Inexact exception
Overflow exception
Underflow exception

SUB.fmtFloating-Point Subtract

31 0

6 5 5 5 5 6

COP1 fmt ft fs fd SUB

11 1021 20 16 1526 25 6 5

0 1 0 0 0 1 0 0 0 0 0 1

SUB.fmt

T: StoreFPR (fd, fmt, ValueFPR(fs, fmt) – ValueFPR(ft, fmt))

MIPS R4000 Microprocessor User's Manual B-55

FPU Instruction Set Details

Format:
SWC1 ft, offset(base)

Description:
The 16-bit offset is sign-extended and added to the contents of general
register base to form an unsigned effective address. The contents of
register ft from the floating-point coprocessor are stored at the memory
location specified by the effective address.

The FR bit of the Status register specifies whether all 64-bit floating-point
registers are addressable.

If FR equals zero, SWC1 stores either the high or low half of the 16 even
floating-point registers.

If FR equals one, SWC1 stores the low 32-bits of both even and odd
floating-point registers.

If either of the two least-significant bits of the effective address are non-
zero, an address error exception occurs.

SWC1 Store Word from FPU

31 2526 2021 1516 0

SWC1 base ft offset

6 5 5 16

(Coprocessor 1)

1 1 1 0 0 1

SWC1

Appendix B

B-56 MIPS R4000 Microprocessor User's Manual

Operation:

 Exceptions:
Coprocessor unusable
TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception

SWC1 Store Word from FPU
(Coprocessor 1) SWC1

(continued)

32 T: vAddr ← ((offset15)16 || offset15...0) + GPR[base]
64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]

32, 64 (pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1...3 || (pAddr2...0 xor (ReverseEndian || 02))
byte ← vAddr2...0 xor (BigEndianCPU || 02)
/* the bytes of the word are put in the correct byte lanes in
 * “data” for a 64-bit path to memory */
if SR26 = 1 then /* 64-bit wide FGRs */

data ← FGR[ft]63-8*byte...0 || 08*byte

else /* 32-bit wide FGRs */
data ← 032-8*byte || FGR[ft] || 08*byte

endif
StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

MIPS R4000 Microprocessor User's Manual B-57

FPU Instruction Set Details

Format:
TRUNC.L.fmt fd, fs

Description:
The contents of the floating-point register specified by fs are interpreted in
the specified source format, fmt, and arithmetically converted to the long
fixed-point format. The result is placed in the floating-point register
specified by fd.

Regardless of the setting of the current rounding mode, the conversion is
rounded as if the current rounding mode is round toward zero (1).

This instruction is valid only for conversion from single- or double-
precision floating-point formats.

When the source operand is an Infinity, NaN, or the correctly rounded
integer result is outside of –263 to 263–1, the Invalid operation exception is
raised. If the Invalid operation is not enabled then no exception is taken
and 263–1 is returned.

TRUNC.L.fmt Floating-Point

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd TRUNC.L

11 1021 20 16 1526 25

Fixed-Point Format

6 5

0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 01

Truncate to Long TRUNC.L.fmt

Appendix B

B-58 MIPS R4000 Microprocessor User's Manual

Operation:

 Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception

TRUNC.L.fmt Floating-Point

Fixed-Point Format
Truncate to Long TRUNC.L.fmt

(continued)

T: StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

MIPS R4000 Microprocessor User's Manual B-59

FPU Instruction Set Details

Format:
TRUNC.W.fmt fd, fs

Description:
The contents of the FPU register specified by fs are interpreted in the
specified source format fmt and arithmetically converted to the single
fixed-point format. The result is placed in the FPU register specified by fd.

Regardless of the setting of the current rounding mode, the conversion is
rounded as if the current rounding mode is round toward zero (RM = 1).

This instruction is valid only for conversion from a single- or double-
precision floating-point formats. The operation is not defined if bit 0 of
any register specification is set and the FR bit in the Status register equals
zero, since the register numbers specify an even-odd pair of adjacent
coprocessor general registers. When the FR bit in the Status register equals
one, both even and odd register numbers are valid.

When the source operand is an Infinity or NaN, or the correctly rounded
integer result is outside of –231 to 231–1, an Invalid operation exception is
raised. If Invalid operation is not enabled, then no exception is taken and
–231 is returned.

TRUNC.W.fmtFloating-Point

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd TRUNC.W

11 1021 20 16 1526 25

Fixed-Point Format

6 5

0 1 0 0 0 1 0 0 1 1 0 10 0 0 0 0

Truncate to SingleTRUNC.W.fmt

Appendix B

B-60 MIPS R4000 Microprocessor User's Manual

Operation:

 Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception

TRUNC.W.fmtTRUNC.W.fmt Floating-Point

Fixed-Point Format
Truncate to Single

(continued)

T: StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

MIPS R4000 Microprocessor User's Manual B-61

FPU Instruction Set Details

FPU Instruction Opcode Bit Encoding

Figure B-3 Bit Encoding for FPU Instructions

31...29
0
1
2
3
4
5
6
7

28...26
Opcode

br

0 1 2 3 4 5 6 7

0
1

δ
δ δ δ δ

23...21
sub

0 1 2 3 4 5 6 725...24

δ δ δ

δ

LWC1
SWC1

COP1

LDC1
SDC1

DMFη

Lη δ δ

δ δ δ δδ δ δδ

MF
BC

CF MT

S

CT

D2
3

0
1

γ γ

γ γ γ γ

18...16
0 1 2 3 4 5 6 720...19

γ γ γ
BCF BCFLBCT BCTL

2
3

γ γ

γ

Wδ δ

γ γ γ γγ γ γγ
γ γ γ γγ γ γγ

DMTη

Appendix B

B-62 MIPS R4000 Microprocessor User's Manual

Figure B-3 (cont.) Bit Encoding for FPU Instructions

Key:
γ Operation codes marked with a gamma cause a reserved

instruction exception. They are reserved for future versions of the
architecture.

δ Operation codes marked with a delta cause unimplemented
operation exceptions in all current implementations and are
reserved for future versions of the architecture.

η Operation codes marked with an eta are valid only when MIPS III
instructions are enabled. Any attempt to execute these without
MIPS III instructions enabled causes an unimplemented operation
exception.

0 1 2 3 4 5 6 7
2...0

5...3
function

0
1
2
3
4
5
6

ADD SUB

7

δ δ δ δ

CVT.S

C.F

MUL DIV ABS MOV NEGSQRT
ROUND.Lη TRUNC.Lη CEIL.Lη FLOOR.Lη ROUND.W TRUNC.W CEIL.W FLOOR.W

δ δ δ δ

CVT.D CVT.W

C.UN C.EQ C.UEQ C.OLE C.ULE
C.LT C.NGEC.SF C.NGLE C.SEQ C.NGL C.LE C.NGT

C.OLT C.ULT

δ δ δ δδ δ δ δ

δ δ CVT.Lη δ δ

δ δ δδδ δ δ δ

