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Over the past two decades, micro-
processor designers have focused on improv-
ing the performance of a single thread in a
desktop processing environment by increas-
ing frequencies and exploiting instruction
level parallelism (ILP) using techniques such
as multiple instruction issue, out-of-order
issue, and aggressive branch prediction. The
emphasis on single-thread performance has
shown diminishing returns because of the lim-
itations in terms of latency to main memory
and the inherently low ILP of applications.
This has led to an explosion in microproces-
sor design complexity and made power dissi-
pation a major concern.

For these reasons, Sun Microsystems’ Nia-
gara processor takes a radically different
approach to microprocessor design. Instead
of focusing on the performance of single or
dual threads, Sun optimized Niagara for mul-
tithreaded performance in a commercial serv-
er environment. This approach increases

application performance by improving
throughput, the total amount of work done
across multiple threads of execution. This is
especially effective in commercial server appli-
cations such as databases1 and Web services,2

which tend to have workloads with large
amounts of thread level parallelism (TLP).

In this article, we present the Niagara
processor’s architecture. This is an entirely
new implementation of the Sparc V9 archi-
tectural specification, which exploits large
amounts of on-chip parallelism to provide
high throughput. Niagara supports 32 hard-
ware threads by combining ideas from chip
multiprocessors3 and fine-grained multi-
threading.4 Other studies5 have also indicated
the significant performance gains possible
using this approach on multithreaded work-
loads. The parallel execution of many threads
effectively hides memory latency. However,
having 32 threads places a heavy demand on
the memory system to support high band-
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width. To provide this bandwidth, a crossbar
interconnects scheme routes memory refer-
ences to a banked on-chip level-2 cache that
all threads share. Four independent on-chip
memory controllers provide in excess of 20
Gbytes/s of bandwidth to memory.

Exploiting TLP also lets us improve per-
formance significantly without pushing the
envelope on CPU clock frequency. This and
the sharing of CPU pipelines among multi-
ple threads enable an area- and power-
efficient design. Designers expect Niagara to
dissipate about 60 W of power, making it
very attractive for high compute density envi-
ronments. In data centers, for example, power
supply and air conditioning costs have
become very significant. Data center racks
often cannot hold a complete complement of
servers because this would exceed the rack’s
power supply envelope.

We designed Niagara to run the Solaris
operating system, and existing Solaris applica-
tions will run on Niagara systems without
modification. To application software, a Nia-
gara processor will appear as 32 discrete proces-
sors with the OS layer abstracting away the
hardware sharing. Many multithreaded appli-
cations currently running on symmetric mul-
tiprocessor (SMP) systems should realize
performance improvements. This is consistent
with observations from previous multithread-
ed-processor development at Sun6,7 and from
Niagara chips and systems, which are under-
going bring-up testing in the laboratory.

Recently, the movement of many retail and
business processes to the Web has triggered
the increasing use of commercial server appli-
cations (Table 1). These server applications
exhibit large degrees of client request-level par-
allelism, which servers using multiple threads
can exploit. The key performance metric for

a server running these applications is the sus-
tained throughput of client requests.

Furthermore, the deployment of servers
commonly takes place in high compute den-
sity installations such as data centers, where
supplying power and dissipating server-
generated heat are very significant factors in
the center’s cost of operating. Experience at
Google shows a representative power density
requirement of 400 to 700 W/sq. foot for
racked server clusters.2 This far exceeds the typ-
ical power densities of 70 to 150 W/foot2 sup-
ported by commercial data centers. It is
possible to reduce power consumption by sim-
ply running the ILP processors in server clus-
ters at lower clock frequencies, but the
proportional loss in performance makes this
less desirable. This situation motivates the
requirement for commercial servers to improve
performance per watt. These requirements
have not been efficiently met using machines
optimized for single-thread performance.

Commercial server applications tend to have
low ILP because they have large working sets
and poor locality of reference on memory
access; both contribute to high cache-miss
rates. In addition, data-dependent branches
are difficult to predict, so the processor must
discard work done on the wrong path. Load-
load dependencies are also present, and are not
detectable in hardware at issue time, resulting
in discarded work. The combination of low
available ILP and high cache-miss rates caus-
es memory access time to limit performance.
Therefore, the performance advantage of using
a complex ILP processor over a single-issue
processor is not significant, while the ILP
processor incurs the costs of high power and
complexity, as Figure 1 shows.

However, server applications tend to have
large amounts of TLP. Therefore, shared-
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Table 1. Commercial server applications.

Instruction-level Thread-level Working Data 
Benchmark Application category parallelism parallelism set sharing
Web99 Web server Low High Large Low
JBB Java application server Low High Large Medium
TPC-C Transaction processing Low High Large High
SAP-2T Enterprise resource planning Medium High Medium Medium
SAP-3T Enterprise resource planning Low High Large High
TPC-H Decision support system High High Large Medium



memory machines with discrete single-thread-
ed processors and coherent interconnect have
tended to perform well because they exploit
TLP. However, the use of an SMP composed
of multiple processors designed to exploit ILP
is neither power efficient nor cost-efficient. A
more efficient approach is to build a machine
using simple cores aggregated on a single die,
with a shared on-chip cache and high band-
width to large off-chip memory, thereby
aggregating an SMP server on a chip. This has
the added benefit of low-latency communi-
cation between the cores for efficient data
sharing in commercial server applications.

Niagara overview
The Niagara approach to increasing

throughput on commercial server applications
involves a dramatic increase in the number of
threads supported on the processor and a
memory subsystem scaled for higher band-
widths. Niagara supports 32 threads of exe-
cution in hardware. The architecture
organizes four threads into a thread group; the
group shares a processing pipeline, referred to
as the Sparc pipe. Niagara uses eight such
thread groups, resulting in 32 threads on the
CPU. Each SPARC pipe contains level-1
caches for instructions and data. The hard-
ware hides memory and pipeline stalls on a
given thread by scheduling the other threads
in the group onto the SPARC pipe with a zero
cycle switch penalty. Figure 1 schematically
shows how reusing the shared processing
pipeline results in higher throughput.

The 32 threads share a 3-Mbyte level-2
cache. This cache is 4-way banked and
pipelined for bandwidth; it is 12-way set-
associative to minimize conflict misses from
the many threads. Commercial server code
has data sharing, which can lead to high
coherence miss rates. In conventional SMP
systems using discrete processors with coher-
ent system interconnects, coherence misses go
out over low-frequency off-chip buses or links,
and can have high latencies. The Niagara
design with its shared on-chip cache elimi-
nates these misses and replaces them with low-
latency shared-cache communication.

The crossbar interconnect provides the
communication link between Sparc pipes, L2
cache banks, and other shared resources on
the CPU; it provides more than 200 Gbytes/s

of bandwidth. A two-entry queue is available
for each source-destination pair, and it can
queue up to 96 transactions each way in the
crossbar. The crossbar also provides a port for
communication with the I/O subsystem.
Arbitration for destination ports uses a sim-
ple age-based priority scheme that ensures fair
scheduling across all requestors. The crossbar
is also the point of memory ordering for the
machine.

The memory interface is four channels of
dual-data rate 2 (DDR2) DRAM, supporting
a maximum bandwidth in excess of 20
Gbytes/s, and a capacity of up to 128 Gbytes.
Figure 2 shows a block diagram of the Nia-
gara processor.

Sparc pipeline
Here we describe the Sparc pipe implemen-

tation, which supports four threads. Each
thread has a unique set of registers and instruc-
tion and store buffers. The thread group shares
the L1 caches, translation look-aside buffers
(TLBs), execution units, and most pipeline
registers. We implemented a single-issue
pipeline with six stages (fetch, thread select,
decode, execute, memory, and write back).

In the fetch stage, the instruction cache and
instruction TLB (ITLB) are accessed. The fol-
lowing stage completes the cache access  by
selecting the way. The critical path is set by
the 64-entry, fully associative ITLB access. A
thread-select multiplexer determines which of
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the four thread program counters (PC) should
perform the access. The pipeline fetches two
instructions each cycle. A predecode bit in the
cache indicates long-latency instructions.

In the thread-select stage, the thread-select
multiplexer chooses a thread from the avail-
able pool to issue an instruction into the
downstream stages. This stage also maintains
the instruction buffers. Instructions fetched
from the cache in the fetch stage can be insert-
ed into the instruction buffer for that thread
if the downstream stages are not available.
Pipeline registers for the first two stages are
replicated for each thread.

Instructions from the selected thread go
into the decode stage, which performs instruc-
tion decode and register file access. The sup-
ported execution units include an arithmetic
logic unit (ALU), shifter, multiplier, and a
divider. A bypass unit handles instruction
results that must be passed to dependent

instructions before the register file is updat-
ed. ALU and shift instructions have single-
cycle latency and generate results in the
execute stage. Multiply and divide operations
are long latency and cause a thread switch.

The load store unit contains the data TLB
(DTLB), data cache, and store buffers. The
DTLB and data cache access take place in the
memory stage. Like the fetch stage, the criti-
cal path is set by the 64-entry, fully associa-
tive DTLB access. The load-store unit
contains four 8-entry store buffers, one per
thread. Checking the physical tags in the store
buffer can indicate read after write (RAW)
hazards between loads and stores. The store
buffer supports the bypassing of data to a load
to resolve RAW hazards. The store buffer tag
check happens after the TLB access in the
early part of write back stage. Load data is
available for bypass to dependent instructions
late in the write back stage. Single-cycle
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instructions such as ADD will update the reg-
ister file in the write back stage.

The thread-select logic decides which thread
is active in a given cycle in the fetch and thread-
select stages. As Figure 3 shows, the thread-select
signals are common to fetch and thread-select
stages. Therefore, if the thread-select stage
chooses a thread to issue an instruction to the
decode stage, the F stage also selects the same
instruction to access the cache. The thread-select
logic uses information from various pipeline
stages to decide when to select or deselect a
thread. For example, the thread-select stage can
determine instruction type using a predecode
bit in the instruction cache, while some traps
are only detectable in later pipeline stages.
Therefore, instruction type can cause deselec-
tion of a thread in the thread-select stage, while
a late trap detected in the memory stage needs
to flush all younger instructions from the thread
and deselect itself during trap processing.

Pipeline interlocks and scheduling
For single-cycle instructions such as ADD,

Niagara implements full bypassing to younger
instructions from the same thread to resolve
RAW dependencies. As mentioned before, load
instructions have a three-cycle latency before
the results of the load are visible to the next
instruction. Such long-latency instructions can
cause pipeline hazards; resolving them requires
stalling the corresponding thread until the haz-
ard clears. So, in the case of a load, the next
instruction from the same thread waits for two
cycles for the hazards to clear.

In a multithreaded pipeline, threads com-
peting for shared resources also encounter
structural hazards. Resources such as the ALU
that have a one-instruction-per-cycle through-
put present no hazards, but the divider, which
has a throughput of less than one instruction
per cycle, presents a scheduling problem. In
this case, any thread that must execute a DIV
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instruction has to wait until the divider is free.
The thread scheduler guarantees fairness in
accessing the divider by giving priority to the
least recently executed thread. Although the
divider is in use, other threads can use free
resources such as the ALU, load-store unit,
and so on.

Thread selection policy
The thread selection policy is to switch

between available threads every cycle, giving
priority to the least recently used thread.
Threads can become unavailable because of
long-latency instructions such as loads,
branches, and multiply and divide. They also

become unavailable because of pipeline stalls
such as cache misses, traps, and resource con-
flicts. The thread scheduler assumes that loads
are cache hits, and can therefore issue a depen-
dent instruction from the same thread specu-
latively. However, such a speculative thread is
assigned a lower priority for instruction issue
as compared to a thread that can issue a non-
speculative instruction. 

Figure 4 indicates the operation when all
threads are available. In the figure, reading
from left to right indicates the progress of an
instruction through the pipeline. Reading
from top to bottom indicates new instructions
fetched into the pipe from the instruction
cache. The notation St0-sub refers to a Subtract
instruction from thread 0 in the S stage of the
pipe. In the example, the t0-sub is issued down
the pipe. As the other three threads become
available, the thread state machine selects
thread1 and deselects thread0. In the second
cycle, similarly, the pipeline executes the t1-
sub and selects t2-ld (load instruction from
thread 2) for issue in the following cycle. When
t3-add is in the S stage, all threads have been
executed, and for the next cycle the pipeline
selects the least recently used thread, thread0.
When the thread-select stage chooses a thread
for execution, the fetch stage chooses the same
thread for instuction cache access.

Figure 5 indicates the operation when only
two threads are available. Here thread0 and
thread1 are available, while thread2 and
thread3 are not. The t0-ld in the thread-select
stage in the example is a long-latency opera-
tion. Therefore it causes the deselection of
thread0. The t0-ld itself, however, issues down
the pipe. In the second cycle, since thread1 is
available, the thread scheduler switches it in.
At this time, there are no other threads avail-
able and the t1-sub is a single-cycle opera-
tion, so thread1 continues to be selected for
the next cycle. The subsequent instruction is
a t1-ld and causes the deselection of thread1
for the fourth cycle. At this time only thread0
is speculatively available and therefore can be
selected. If the first t0-ld was a hit, data can
bypass to the dependent t0-add in the exe-
cute stage. If the load missed, the pipeline
flushes the subsequent t0-add to the thread-
select stage instruction buffer, and the
instruction reissues when the load returns
from the L2 cache.
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Figure 5. Thread selection: only two threads available. The ADD instruction
from thread0 is speculatively switched into the pipeline before the hit/miss
for the load instruction has been determined.



Integer register file
The integer register file has three read and

two write ports. The read ports correspond to
those of a single-issue machine; the third read
port handles stores and a few other three
source instructions. The two write ports han-
dle single-cycle and long-latency operations.
Long-latency operations from various threads
within the group (load, multiply, and divide)
can generate results simultaneously. These
instructions will arbitrate for the long-laten-
cy port of the register file for write backs. Sparc
V9 architecture specifies the register window
implementation shown in Figure 6. A single
window consists of eight in, local, and out reg-
isters; they are all visible to a thread at a given
time. The out registers of a window are
addressed as the in registers of the next
sequential window, but are the same physical
registers. Each thread has eight register win-
dows. Four such register sets support each of
the four threads, which do not share register
space among themselves. The register file con-
sists of a total of 640 64-bit registers and is a
5.7 Kbyte structure. Supporting the many
multiported registers can be a major challenge
from both area and access time considerations.
We have chosen an innovative implementa-
tion to maintain a compact footprint and a
single-cycle access time.

Procedure calls can request a new window,
in which case the visible window slides up,
with the old outputs becoming the new
inputs. Return from a call causes the window
to slide down. We take advantage of this char-
acteristic to implement a compact register file.
The set of registers visible to a thread is the
working set, and we implement it using fast
register file cells. The complete set of registers
is the architectural set; we implement it using
compact six-transistor SRAM cells. A trans-
fer port links the two register sets. A window
changing event triggers deselection of the
thread and the transfer of data between the
old and new windows. Depending on the
event type, the data transfer takes one or two
cycles. When the transfer is complete, the
thread can be selected again. This data trans-
fer is independent of operations to registers
from other threads, therefore operations on
the register file from other threads can con-
tinue. In addition, the registers of all threads
share the read circuitry because only one

thread can read the register file in a given cycle.

Memory subsystem
The L1 instruction cache is 16 Kbyte, 

4-way set-associative with a block size of 32
bytes. We implement a random replacement
scheme for area savings, without incurring sig-
nificant performance cost. The instruction
cache fetches two instructions each cycle. If
the second instruction is useful, the instruc-
tion cache has a free slot, which the pipeline
can use to handle a line fill without stalling.
The L1 data cache is 8 Kbytes, 4-way set-
associative with a line size of 16 bytes, and
implements a write-through policy. Even
though the L1 caches are small, they signifi-
cantly reduce the average memory access time
per thread with miss rates in the range of 10
percent. Because commercial server applica-
tions tend to have large working sets, the L1
caches must be much larger to achieve signif-
icantly lower miss rates, so this sort of trade-
off is not favorable for area. However, the four
threads in a thread group effectively hide the
latencies from L1 and L2 misses. Therefore,
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the cache sizes are a good trade-off between
miss rates, area, and the ability of other threads
in the group to hide latency.

Niagara uses a simple cache coherence pro-
tocol. The L1 caches are write through, with
allocate on load and no-allocate on stores. L1
lines are either in valid or invalid states. The
L2 cache maintains a directory that shadows
the L1 tags. The L2 cache also interleaves data
across banks at a 64-byte granularity. A load
that missed in an L1 cache (load miss) is deliv-
ered to the source bank of the L2 cache along
with its replacement way from the L1 cache.
There, the load miss address is entered in the
corresponding L1 tag location of the directo-
ry, the L2 cache is accessed to get the missing

line and data is then returned to the L1 cache.
The directory thus maintains a sharers list at
L1-line granularity. A subsequent store from
a different or same L1 cache will look up the
directory and queue up invalidates to the L1
caches that have the line. Stores do not update
the local caches until they have updated the
L2 cache. During this time, the store can pass
data to the same thread but not to other
threads; therefore, a store attains global visi-
bility in the L2 cache. The crossbar establish-
es memory order between transactions from
the same and different L2 banks, and guaran-
tees delivery of transactions to L1 caches in the
same order. The L2 cache follows a copy-back
policy, writing back dirty evicts and dropping
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A multithreaded processor is one that allows more than one thread of
execution to exist on the CPU at the same time. To software, a dual-thread-
ed processor looks like two distinct CPUs, and the operating system takes
advantage of this by scheduling two threads of execution on it. In most
cases, though, the threads share CPU pipeline resources, and hardware
uses various means to manage the allocation of resources to these threads.

The industry uses several terms to describe the variants of multi-
threading implemented in hardware; we show some in Figure A.

In a single-issue, single-thread machine (included here for reference),
hardware does not control thread scheduling on the pipeline. Single-
thread machines support a single context in hardware; therefore a thread
switch by the operating system incurs the overhead of saving and retriev-
ing thread states from memory.

Coarse-grained multithreading, or switch-on-event multithreading, is
when a thread has full use of the CPU resource until a long-latency event
such as miss to DRAM occurs, in which case the CPU switches to anoth-
er thread. Typically, this implementation has a context switch cost asso-
ciated with it, and thread switches occur when event latency exceeds a
specified threshold.

Fine grained multithreading is sometimes called interleaved multi-
threading; in it, thread selection typically happens at a cycle boundary.
The selection policy can be simply to allocate resources to a thread on a
round-robin basis with threads becoming unavailable for longer periods
of time on events like memory misses.

The preceding types time slice the processor resources, so these imple-
mentations are also called time-sliced or vertical multithreaded. An
approach that schedules instructions from different threads on different
functional units at the same time is called simultaneous multithreading
(SMT) or, alternately, horizontal multithreading. SMT typically works on
superscalar processors, which have hardware for scheduling across mul-
tiple pipes.

Another type of implementation is chip multiprocessing, which simply
calls for instantiating single-threaded processor cores on a die, perhaps

sharing a next-level cache and system interfaces. Here, each processor
core executes instructions from a thread independently of the other thread,
and they interact through shared memory. This has been an attractive
option for chip designers because of the availability of cores from earlier
processor generations, which, when shrunk down to present-day process
technologies, are small enough for aggregation onto a single die.

Switch overhead

Thread 0
Thread 1
Unused cycle

(a)

(b)

(c)

(d)

(e)

Figure A. Variants of multithreading implementation hardware:
single-issue, single-thread pipeline (a); single-issue, 2 threads,
coarse-grain threading (b); single-issue, 2 threads, fine-grain
threading (c); dual-issue, 2 threads, simultaneous threading (d);
and single-issue, 2 threads, chip multiprocessing (e).

Hardware multithreading primer



clean evicts. Direct memory access from I/O
devices are ordered through the L2 cache. Four
channels of DDR2 DRAM provide in excess
of 20 Gbytes/s of memory bandwidth.

Niagara systems are presently undergoing test-
ing and bring up. We have run existing

multithreaded application software written for
Solaris without modification on laboratory sys-
tems. The simple pipeline requires no special com-
piler optimizations for instruction scheduling. On
real commercial applications, we have observed
the performance in lab systems to scale almost lin-
early with the number of threads, demonstrating
that there are no bandwidth bottlenecks in the
design. The Niagara processor represents the first
in a line of microprocessors that Sun designed
with many hardware threads to provide high
throughput and high performance per watt on
commercial server applications. The availability
of a thread-rich architecture opens up new
avenues for developers to efficiently increase appli-
cation performance. This architecture is a para-
digm shift in the way that microprocessors have
been designed thus far. MICRO
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