Instruction Scheduling for Instruction Level
Parallel Processors

PAOLO FARABOSCHI| MEMBER, IEEE JOSEPH A. FISHERSENIOR MEMBER, IEEE AND
CLIFF YOUNG, MEMBER, IEEE

Invited Paper

Nearly all personal computer and workstation processors, and |. INTRODUCTION

virtually all high-performance embedded processor cores, now . . - . .
embody instruction level parallel (ILP) processing in the form of ~ 1his paper is about compiling for instruction level par-

superscalar or very long instruction word (VLIW) architectures. allel (ILP) architectures, particularly very long instruction
ILP processors put much more of a burden on compilers; without word (VLIW) and superscalar architectures. More narrowly,
"heroig” compiling techniques, most such processors fall far short jt concerns the code generation phase of compiler back ends,
of their performance goals. Those techniques are largely found applied to acyclic sections of code. We emphasize the code

in the high-level optimization phase and in the code generation fi h b h iti iler f
phase; they are also collectively called instruction scheduling. generalion phase because, when writing a compiler for an

This paper reviews the state of the art in code generation for ILP architecture, code generation differs most from an ordi-

ILP parallel processors. nary compiler. In particular, we focus on code generation for
Modern ILP code generation methods move code across basicacyclic sections of code.

block boundaries. These methods grew out of techniques for gen- The rest of this paper is organized as follows.

erating horizontal microcode, so we introduce the problem by de-
scribing its history. Most modemn approaches can be categorized ¢ Section Il discusses the history of the problem, which

by the shape of the scheduling “region.” Some of these regions appeared in disparate domains before it was recognized
are loops, and for those techniques known broadly as “Software as a central problem. This history introduces several
Pipelining” are used. Software Pipelining techniques are only con- concepts that are covered in much greater depth in the

sn_dered here when there are issues relevant to the region-based tech- following sections.
niques presented.

The selection of a type of region to use in this process is one The compiling techniques we discuss are referred te-as
of the most controversial questions in code generation; the paper gion scheduling techniqugshere “region” refers to subsec-
surveys the best known alternatives. The paper then considers twajons of a program that are compiled at the same time. ILP
questions: First, given a type of region, how does one pick spe- compjlation techniques differ primarily in the scope of the

cific regions of that type in the intermediate code. In conjunction region considered. This drives the oraanization of our baper
with region selection, we consider region enlargement techniques 9) 9 paper.

such as unrolling and branch target expansion. The second ques- * Section Il enumerates and describes the major region
tion, how does one construct a schedule once regions have been types that have been suggested.
selected, occupies the next section of the paper. Finally, schedule . gection IV discuss how to form actual regions from a
construction using recent, innovative resource modeling based on source program, once one has fixed the decision to use
finite-state automata is then reexamined. The paper includes an ex- . .

a given region type.

tensive bibliography. . ; . .
])) .) » Section V considers the construction and emission
Keywords—€ompilers, instruction level parallelism, instruction of the “schedule,” that is, the object program that
scheduling, VLIW. ' o .
results from the compilation process. It also discusses
a key efficiency issue: determining the available CPU
resources while scheduling.

Manuscript received February 1, 2001; revised July 24, 2001.
P. Faraboschi and J. A. Fisher are with Hewlett-Packard Laborato- |l. HISTORY OF CODE GENERATION FORILP PROCESSORS

ries, Cambridge, MA 02142 USA (e-mail: paolo_faraboschi@hp.com;

josh_fisher@hp.com). A. The Three Domains That Drove Research in This Field
C. Young is with Bell Laboratories, Murray Hill, NJ 07974 USA (e-mail: . .

cyoung@plang.bell-labs.com). ~ During the two decades from 1965 to 1985, three sim-
Publisher Item Identifier S 0018-9219(01)09686-4. ilar problems emerged in three different domains. In each

0018-9219/01$10.00 © 2001 IEEE

1638 PROCEEDINGS OF THE IEEE, VOL. 89, NO. 11, NOVEMBER 2001

case, an innovative CPU design allowed operations whosecode rearrangements are viewed as ways to compensate for
execution could overlap in time, within a single instruction dynamic changes (in latency, for example), or as mechanisms
stream. Hand coders could often rearrange code to use the@o permit good performance on legacy code when the super-
CPU efficiently—that is, to make the program overlap more scalar microarchitecture changes. Far-reaching adjustments
operations and thus complete as quickly as the resources ofn code order must be made before the code runs.

the machine allowed. However, attempts to automate these In most of this paper, we adopt the perspective of filling
code rearrangements (using a compiler or some other codeVLIW-style instructions which contain issue slots for
processing tool) fell well short of what a human could do. individual operations This clarifies descriptions, since
The early automated techniques missed many opportunitiesVLIW instruction streams typically map directly to the

to overlap operations: at some point in the program execu-record of execution, allowing us to avoid considering the
tion, there would be operations whose inputs were “ready,” variety of rearrangements that superscalar hardware might
there would be sufficient resources to execute the operationsadd. In particular, both VLIW and superscalar designs
but due to the order in which the code was presented to thehave issue “slots” that must be filled, regardless of the
CPU, the clock ticked and the operations did not issue. Suchrearrangements performed by hardware. Filling these slots
failures occurred much less frequently in code reordered by requires essentially the same considerations for both kinds
hand, and this gap instigated a research topic. of architectures.

The three different domains with similar problems were as
follows. B. The Problem and the Opportunity: “Filling the Slots”

1) The compaction of microcode, or the conversion of In each of the environments above, there was the same
“vertical microcode” into “horizontal microcodg” problem—how to move operations past each other in order
[1]. This was made more widely applicable by the to fill slots. That operations must be rearranged is obvious:
prospect of “writable control stores” for microcoded when an operation cannot be issued in a given cycle, there
CPUs, which were expected to lead to the production might be operations below it in the instruction stream that
of far more horizontal microcode. Extensive printed could be. In the case of a VLIW, this means that it might be
research on this topic first appeared in the mid-1970s. useful for the compiler to reorder operations, so that an issue
2) Compiling for attached signal processing CPUs, or slotis not wasted. A glance at any program will convince one
“array processors” [2]. The most famous of these were that stopping at a “blocked operation” will throw away much
the Floating Point Systems AP-120b (introduced in of the processor’s potential.
1975) and FPS-164 (introduced in 1980), though there At first, the problem of filling slots was seen as relatively
were many others. straightforward, with natural techniques to address the
3) Code production for the nascent supercomputers’ problem. Although the problem is NP-complete (it is the
scalar units. These issues first appeared with the infamous “job shop scheduling” problem [5]), simple heuris-
delivery of the CDC-6600 in 1963 [3]. However, the tics work in practice. Techniques such kst scheduling
problem was treated anecdotally and wall-hoc (defined later) were shown to be effective [6]. We cover these
techniques, rather than as a research topic in its owntechniques in Section V, but the idea of these techniques is
right. very straightforward. First, build a data precedence graph (or
Each of these types of CPUs can be regarded as the for-DAG), which represents which operations depend directly
mative stage of a popular type of modern microprocessor. on other operations. Then try to account for how critical
The first led to VLIW architectures, the second prefigured an operation is when forming the schedule. Operations are
today’s DSP cores [4], and the third led to superscalars. Re-considered critical if they have many descendants in the
searchers and engineers in these three domains often worke®AG, and/or if they start a long chain of operations which
on this problem without knowing of the existence of the other must be executed in turn. When operations are critical, try
domains. to schedule them sooner than less-critical operations.
Today, rearranging code in these three domains is seen as This class of techniques is referred to as “Local Com-
one problem. Historically this was less clear. Unlike VLIWs paction.” The earliest known work on the subject appeared
and DSPs, superscalar hardware sometimes rearranges code 1971 [7], but the first papers that recognized this problem
at runtime. This led early superscalar architects to maintain as a field of study, and put some perspective on it, appeared
that compilers need not schedule code, since the hardwareén 1974—-1975 [8]. Research done at the time did not involve
would do the job instead. Few researchers believe this today,realistic implementation in actual products, and some harder
rather most feel that the bulk of the rearrangement to be doneproblems were largely ignored. For example, there was
must be done in advance in each case. Today, superscaldlittle consideration of phase ordering with register alloca-
tion—though the problem was discussed by Landsitos.
*Microcode can be thought of as a RISC-like level of code, used to [1], Other largely ignored realities included operations with
hard-wire a program into the CPU that emulates a more complex instruction . .
set. As language levels, the main difference between vertical microcode mU|t'p|e'CyC|e Iatency and complex underlylng hardware

and RISC is that microcode is typically more idiosyncratic than RISC. structures. Landskoet al. [1] is also a valuable general
Vertical microcode relates to the hardware at a somewhat lower level than survey of local compaction techniques.

RISC operations, and usually only one program will be written in it, so the . . - .

price of obscurity is not so high. The horizontal microcode of the 1970s 1) !_ocal Compacthn Did Not Sufflcgl_ocal CpmpaCt|0n
resembles today’s VLIW level. techniques were applied to a very limited region of code: a

FARABOSCHIlet al: INSTRUCTION SCHEDULING FOR INSTRUCTION LEVEL PARALLEL PROCESSORS 1639

“basic block,” namely straight-line code with no branches attached processor domain, considered a scheme involving
out except at the bottom, and no branches in except at the topMonte Carlo techniques, which had been quite successful
Intuitively, it did not make sense to schedule across branches,n particle physics. The basic idea was that after local com-
because one would not want to move an operation before apaction, huge quantities of random legal code motions would
branch when there was a chance that control might transferbe tried in search of improvements. Sometimes even bad
to the wrong leg of the branch. code motions would be tried, so that hills could be climbed.
But as these techniques were proposed and investigatedAt the time, many felt that compute time was a basic flaw
researchers noticed that too many “slots” remained—too in this idea. The only report we know of on this work ac-
many in the sense that hand rearrangements still seemed t&nowledged “It has not been determined yet how much com-
use more of what the hardware was capable of. This shortfall puter time will be required to achieve effective code opti-
occurred because operations from other basic blocks couldmization by the Metropolis Monte Carlo procedures. If the
fill the slots in ways that considered the branch problem and Monte Carlo approach works .”
accounted for it. For example, one might shorten a schedule Schedule-and-improve methods never became popular;
by moving an operation down past a branch, making a copy nearly all ILP code generation techniques proposed and
of the operation in both basic blocks that were targets of the implemented during the past 20 years have instead involved
branch. Sometimes this could eliminate a cycle in the earlier some form of Region Scheduling.
block, while not adding cycles to one or both of the target 2) Using Region Scheduling Techniques to Produce Better
blocks. Many similar motions of this sort become evident Schedules:A fundamental flaw in the schedule-and-im-
after even a few minutes of working with a section of code. prove techniques, as seen by some researchers at the time,
While these opportunities might seem small, experiments was that too many arbitrary decisions were made when basic
[9] had indicated that most of the opportunity for shortening blocks were scheduled. Arbitrary local choices might be all
schedules lay beyond branch boundaries. Although few wrong when operations from other blocks were considered.
people in the field were aware of these experiments (they The easiest-to-see example of this is that operations within a
were done in an architecture context, not a software tool block will be scheduled near the beginning of the schedule
context), there was the broad realization in the researchif possible, but far more critical sequences from later blocks
community that the boundary caused by branches were themay be the real processing bottleneck. Not starting the later
largest limiting factor. sequences earlier may be an undesirable choice, but by the
This realization motivated many new techniques. The improve phase, there are no longer slots left in which to start
first group of “global compaction” (beyond basic block) the more critical sequences. Attempting to undo the earlier
techniques could be described as “schedule-and-improve”schedules to make new slots near the top of the blocks can
techniques. These first techniques grew mostly out of result in impractical computational complexity. Nor does it
the microcode domain, where producing microcode in make sense to reserve slots at the top of every block.
horizontal format was very difficult, error-prone and time The alternative to schedule-and-improve that has domi-
consuming. Schedule-and-improve techniques appeared imated global scheduling since it was introduced in 1979 is

the mid-1970s. called Region Scheduling. The basic idea, first elaborated

The schedule-and-improve techniques worked roughly asin the region scheduling technigleace Schedulingg], is
follows. to select code originating in a large region, typically many

1) The program is divided into basic blocks, each of basic blocks, before scheduling. Then schedule operations

which is scheduled (|oca| Compaction)_ from the region as if it were one blg basic block.

2) The scheduled program is then iteratively improved by ~ More carefully, a region scheduling compiler typically fol-

moving individual operations from block to block. lows this sequence in its “scheduler.”

These techniques gave researchers the intuitive feeling 1) Given the representation of the code being compiled in
that they were mirroring what people were doing when they the compiler’s intermediate form, pick a region from
did microcode compaction by hand. The best known of the as-yet-unscheduled code. The region is simply a
the early global compaction techniques was caMdRIF set of operations originating in more than one basic
[10]. MORIF built templates for each operation, where block. Typically, but not necessarily, a region is a set
the two-dimensionality of the template allowed a limited of contiguous basic blocks. Sometimes a code trans-
representation of the resources used by the operation. After formation is done prior to region selection, with the
local compaction, a search was done to find candidate moves goal of enhancing the region selected, for example by
between blocks, based on the criticality of the operations. making it larger. Fig. 1 shows an example of a typical
Then a catalog of potential legal moves, similar to those code region.
shown in Fig. 7, was considered for the most critical oper- 2) Next, place the selected operations on a data-prece-
ations. There was an additional facility for backtracking to dence graph. Sometimes the edges or the operations
avoid deadlocks that could occur when code motions left an are decorated with additional information that is only
operation no legal slot to occupy. important to region scheduling. In addition, some spe-

One fascinating schedule-and-improve technique took the cial edges may be added to the graph that prohibit il-
fill-the-slots philosophy to the extreme. Nobel Laureate Ken legal or undesirable code motions. These edges pre-
Wilson [11] and his students, working with FPS CPUs in the vent code motions that would be illegal because they

1640 PROCEEDINGS OF THE IEEE, VOL. 89, NO. 11, NOVEMBER 2001

erations from several loop iterations are gathered in a single
new loop. The new loop intermingles operations from dif-
ferent iterations to fill slots. At the entrances and exits of the
new loop, new code, analogous to the compensation code of
region scheduling, is placed which allows original loop iter-
ations that are not completed in a single iteration of the new
loop to be completed.

Interestingly, there has been an idea at the intersection of
region scheduling and software pipelining. First suggested
by Fisheret al. [15], and developed fully by Aiken and
Nicolau [16], conceptually this technique unrolls loops
an indefinite number of times, and then schedules (using
some region scheduling technique) until a pattern becomes
apparent. Then a software pipeline is set up, using that
pattern as the model of the new loop. This technique has
been called “Perfect Pipelining” [17].

Fig. 1. Example of a typical “region” (in this case, a
multiple-entry, multiple-exit region).

would imply a violation in flow control that cannotbe ~ D- Predication

compensated for when the schedule is produced. Such |LP is much harder to achieve in the presence of complex

special edges are not required for local compaction, control flow. A variety of hardware and software techniques,

since there is no flow control to consider within a basic which fall under the term “predication,” transform control

block. dependence into data dependence. We mention predication
3) Next, schedule the operations. from time to time throughout the paper, because its presence

4) Finally, either along the way, or in a post-phase, do any s required to discuss topics of importance here. Other papers
necessary fixups. Usually these fixups take the form of j, this Special Issue cover this topic.

extra operations that mitigate what would have been
an illegal transformat.ions caused by the positi.ons of E. Terminology
the scheduled operations. For example, sometimes an o .))
operation is moved in such a way that it should have Begause of the many origins of |qstructlon scheduling
been executed along some path through the code, but idechniques, multiple terms exist to define the same concept.
not. In that case, a copy of the operation is placed in the Examples are legion: instructions, operations, syllables,
path from which it is missing. These added operations 9roups, and bundles all refer to the units and groups of
are often callecompensation code scheduling, issuing, and executing code. We will use a set of
5) Go back to step 1) until no unscheduled code remains. Preferred terms consistently throughout this paper, and we
This is the core algorithm of region scheduling, as Will endeavor to point out synonyms wherever posstble.
specified in Trace Scheduling. There are many other region
scheduling algorithms that have appeared in the past 20l1ll. REGION TYPES AND SHAPES
years which vary from the Trace Scheduling algorithm at any
step, but most follow essentially this framework. Typically,
the algorithms vary in the region they select [step 1)] and in
the complexity of the schedule construction pass [step 3)].
Section Il describes the regions used by the most popular
region scheduling algorithms.

Most of the alternative methods of region scheduling differ
in the shape of the regions they form. Indeed, the algorithms
are usually named after the region shape. This section intro-
duces the most commonly implemented regions.

A. Basic Blocks

Basic blocks are a “degenerate” form of regions. Region
Although region scheduling usually involves regions of scheduling algorithms have to work even when their region
loop-free code, most algorithms handle loops in some way. selection procedures specify a basic block (for example,
For example, many compilers unroll important loops to in- when there is an unscheduled basic block with no unsched-
crease region size, but, in that case, the region that is actuallyuled contiguous blocks). We mention them here because,
scheduled is still loop-free. despite the generally-held belief that region scheduling is
Software Pipelinings a set of techniques [12]-[14] that necessary for good performance, its engineering is seen
deal systematically with scheduling loops. The oldest Soft- as so daunting that many compilers implement only basic
ware Pipelining techniques we know were developed for the block (local) scheduling, leaving a region scheduling imple-
CDC-6600 Fortran compiler, at least as early as 1970 (andmentation to the indefinite future.
probably earlier). We would not be surprised to hear thatthey | _ _
People commonly refer to the phenomenon of inventing new terms to

were also applled by the IBM compllers for the hlgh'-p.erfor- describe existing concepts as one of the manifestations of the Nt (-
mance CPUs of the same era. Under software pipelining, op-vented Her® syndrome, from which the authors are certainly not immune.

C. Software Pipelining

FARABOSCHIlet al: INSTRUCTION SCHEDULING FOR INSTRUCTION LEVEL PARALLEL PROCESSORS 1641

B. Traces adds the compensation code mandated by an entrance to

A trace is a linear path through the code. Trace sched- the regionbeforethe region is scheduled. As such, it trades
uling and its variants are probably the most commonly im- SPace for compiler complexity and must be used selectively.

plemented forms of region scheduling. A Trace consists of The effect of this on the quality of the resultant schedules
the operations from a ligBo, By, ..., B, of basic blocks is not well characterized in the research. It is worth noting

with the following properties. that the originators of Superblock scheduling also proposed
1) Each basic block is a predecessor of the next on thelistreglon-enlargmg techniques that are mean_t 1o minimize
(i.e., for eachk = 0 n — 1 B, falls throuah or the extra code involved. These same techniques could be
b.ra.r;ches B _) T POk 9 profitably applied to Trace formation and other region
k+1)-

2) For anyi andk, there is no patB; — By, — B selection and enlarging methods,
’ i k i
except for those that go through, (i.e., the code is All of the region scheduling techniques rely on region en-

. . larging techniques to increase the amount of ILP the compiler
cycle free, except that the entire region can be part of :
. can exploit. But to a much greater extent, Superblock sched-
some encompassing loop).

The outlined area of Fig. 1 shows a typical trace. Note, uling relies on tail duplication as an essential feature.
as the figure shows, this definition does not prohibit forward
branches within the region, or flow that leaves the region and
comes back into the region at a later point. Indeed, the lack of A Treegion [21] is a region containing a tree of basic
these restrictions has been controversial in the research comPlocks within the control flow of the program. Thatis, a Tree-
munity because it makes Trace Scheduling compilers consid-9ion consists of the operations from a [i§, By, ..., By
erably more complex than many researchers feel necessary?f basic blocks with the following properties.

Adding those restrictions, sometimes with code duplication 1) Each basic bloclB;, except forBy, has exactly one

D. Treegions

to mitigate their impact, is the principle behind several of the predecessor. That predeces$ris on the list, where

later region scheduling regions discussed below. i < j. This implies that any path through the Treegion
Traces, and Trace Scheduling, were introduced by Fisher will yield a Superblock, that is, a Trace with no side

[6], and were described more carefully by Fisher [18], and entrances.

especially Ellis [19]. 2) For anyi andk, there is no patB; — By — B;

except for those that go throuddy (i.e., the code is

C. Superblocks cycle free, except that the entire region can be part of

Superblocks [20] are Traces, with the added restriction some encompassing loop).

that there may not be any branches into the region except to As with superblocks, tail duplication and other enlarging
the first block. Thus, a Superblock consists of the operations techniques are used to remove side entrance restrictions. Re-

from a listBg, By, ..., B,, of basic blocks with the same gions in which there is only a single flow of control within the
properties as a trace. region are sometimes called “linear regions.” In that sense,
1) Each basic block is a predecessor of the next on the list Traces and Superblocks are linear regions, while Treegions
(i.e., foreachi = 0, ..., n — 1, By, falls through or are “nonlinear regions.”

branches td3y.1).

2) For any:i andk, there is no pattB; — By — B; E. Other Region Shapes

except for those that go throuddy (i.e., the code is There are several other regions that have been suggested,

cycle free, except that the entire region can be part of and some that have been implemented. We do not cover them

some encompassing loop). in detail for various reasons: some because they have only
And the additional property: been suggested and leave many of the required implementa-

3) There may be no branches into a block in the region, tion details to the reader; others (in particular, Hyperblocks)
except taBy. These outlawed branches are referred to because they are covered elsewhere, and others because they
in the Superblock literature &sde entrances are scheduling frameworks which have similar goals, but are

The restriction against side entrances eliminates the verydifficult to describe as scheduling algorithms.

difficult engineering surrounding compensation code in One such method is Trace-2 [22]. Trace-2 is a nonlinear
Trace Scheduling. Superblock formation involves a region region with a single entrance, like Treegions, but without the
enlarging technique callethil duplication, which allows restriction on side entrances. The implementation was so dif-
Superblocks to avoid ending the moment a side entrance isficult that the author gave up in disgust, and knows of no one
encountered. Superblocks are built by first selecting a Trace.who has implemented it. The description of Trace-2 leaves
Then, when a side entrance is encountered, a copy is madenany details to the implementer. It is worth noting that the
of the rest of the trace. The side entrance then branches tauthor concluded that a good implementation would require
this copy, and the new code finally branches to the end of a very thorough use of Program Dependence Graphs [23].
the region, thus eliminating the side entrance. This process Hyperblocks[53] are single-entry, multiple-exit regions
continues as more blocks are added to the region and morewith internal control flow. These are variants of Superblocks
side entrances are encountered. Tail duplication, in essencewith the technique of predication (which requires very ex-

1642 PROCEEDINGS OF THE IEEE, VOL. 89, NO. 11, NOVEMBER 2001

tensive hardware support) used to fold multiple control paths execute together? How does region shape interact with the

into a single Superblock. first two questions?

Percolation Scheduling24] is an algorithm for which The traditional answer to the first two questions is to use
many rules of code motion are applied to regions that profiles to measure or heuristics to estimate how frequently
resemble Traces. each part of the program is executed. Both heuristic and

Before proceeding, we note that this paper concentratesprofile-based approaches assign execution frequencies to
on region selection in acyclic schedulers. In a cyclic sched- parts of the program such as nodes or edges in the CFG.
uler, region shape is often quite limited, either to a single, In using heuristics and profiles, care must be taken both
innermost |00p or to an inner |00p that has very simp|e con- in the methodology with which the statistics are CO”eCted,
trol flow. These structural requirements mean that a cyclic @hd in managing the statistics as the program is modified
scheduler can be applied in only a few places, albeit pos-PY different parts of the compiler. There has been a variety
sibly the hot loops of many programs. Profiles will of course of .|n.novat|ons in the kinds of profiles collected 'and in the
show when the cyclic scheduler will actually be beneficial ©fficiency of techniques used to collect them in the past
(and conversely, cyclically scheduling a loop with a low trip d€cade. o _
count can be disastrous). See the other papers in this spe- Once one has a usable set of statistics, the question re-

cial issue on cyclic scheduling and the IA-64 architecture for Mains how to use them to form useful regions. Region for-
more details about cyclic scheduling. mation often means more than justlectinggood regions

from the existing CFG,; it also includeuplicatingportions
of the CFG to improve the quality of the region. Duplication
IV. REGION FORMATION increases the size of the final program, so many different al-

The previous section introduced a number of region shapesgorithms and heuristics have been applied that make a va-
used in instruction scheduling. Once one has decided on ariety of tradeoffs. Region formation must also produce valid
region shape, two questions present themselves: how doe$egions that the schedule constructor can use; this may entail
one divide a program into regions of a particular shape, and additional bookkeeping or program transformations.
having chosen those regions, how does one build schedules The set of options for region formation can be applied in
for them? We call the former probleragion formationand a variety of orders; these phase orders produce an additional
the latter problenschedule constructigrthey are the topics ~ Set of engineering constraints and tradeoffs.
of this section and the next section, respectively. In a sense, This section treats the issues roughly in what might
the division of instruction scheduling into these two areas in- be termed, “compiler-engineering order.” First, we give
dicates the difficulty of the problem or the weakness of the an overview of heuristic and profile-based techniques for
known solutions. One would like to “just schedule” an en- €stimating execution frequencies. Once one has statistics in
tire program, but the technology and algorithms do not allow Which one believes, one can try to form regions; the second
such a direct approach. Instead, schedule construction solveSubsection addresses this topic. We elaborate on enlargement
the scheduling problem for those limited cases that we do un-and duplication techniques in the third subsection, then we
derstand, where the region has a particular shape. Region forclose with a discussion of phase-ordering issues that relate
mation then must divide the general control flow of the pro- to region formation.
gram into manageable, well-defined pieces for the schedule
constructor to consume. A. Statistics for Scheduling

The combined effects of region formation and schedule || region formation techniques depend on weights as-

construction are critical to performance. Well-selected re- signed to each part of the program. These weights indicate
gions will cover the CFG of the program in a way that the relative execution frequency of that part. To simplify dis-
keeps the program executing along the expected paths ingyssion, we will concentrate on region formation algorithms
the scheduled code. Poorly selected regions penalize perthat work within a single procedure, and therefore we need
formance because the schedule constructor will add instruc-\,\,eightS that apply to parts of the procedure’s GFGhis
tions from infrequently executed parts of the program {0 section starts by describing the kinds of profile data used for
the critical execution path. Perhaps stating the obvious, thescheduling, continues by summarizing the methods for col-
goal of region formation is to select regions that will allow |gcting the profiles, goes on to describe heuristics techniques

well. For this reason, it is important to keep in mind what pookkeeping subtleties in using profiles.

the schedule constructor will do. The schedule constructor 1) Kinds of Profiles: Prior to 1994, all scheduling-related

examines only one region at a time, so the goal of region profiling work concentrated opointsin the CFG: either
construction is to find frequently executed basic blottjkﬁ nodes or edges in the graph. A node or edge profile would
execute togetheand group them into the same region. If then tell how many times a particular basic block was ex-

in separate regions, then very little benefit will be extracted
by instruction scheduling. Designers of region formation 30ne definition of “region scheduling” allows scheduling regions to span

. . . . rocedure calls. For example, see Hatkl. [25]. In the interest of brevity,
passes face three main questions: Which program chunk e will not focus on such techniques in this section; the issues remain the

are frequently executed? How can we tell that two chunks same in an interprocedural context.

FARABOSCHIlet al: INSTRUCTION SCHEDULING FOR INSTRUCTION LEVEL PARALLEL PROCESSORS 1643

block to one of its immediate neighbors, respectively. Inthe 3) Synthetic Profiles (Heuristics in Lieu of Pro-
past few years, researchers have also started collgmaitig files): Historically, there were arguments about whether
profiles measuring the number of times a path, or sequenceprofiles were legal to use, practical to collect, part of proper
of contiguous blocks in the CFG, was executed. Path profiles benchmarking methodology, and so forth. Heuristic branch
have been built in a variety of forms: forward paths, “gen- prediction assigns weights to each part of the program based
eral” but bounded-length, and whole-program. Each kind of solely on the structure of the source program; running the
profile has a graph-theoretic definition; comparing the merits program is not required. The danger of heuristics is that
and costs of each kind has occupied many researchers. Thgou do not get to see how the program behaves with real
major differences have to do with trading off the resolution data. You may not be able to tell what is common code
or context associated with each data point with the efficiency and what is exceptional code, and your heuristics may then
of collecting the profile. Each level of additional information spend valuable optimization time and program space on the
allows distinguishing different aspects of program behavior. uncommon case. But the win is that you might not have
Advocates of each level have produced optimizations thatto collect statistics on actual running programs, which can
benefit from this information (e.g., various path optimiza- seem a daunting operational task.
tions). We know of three major approaches to heuristic profile
One terminological note: the instruction scheduling com- synthesis: loop-nest depth, weighted heuristics, and neural-
munity refers to the profiles used to drive instruction sched- network techniques. Loop-nest depth uses standard compiler
uling asstatic branch predictionThe techniques are iden- techniques to find the loops in the program and assign a loop

tical. nesting depth. Loop branches are assumed to loop with some
2) Profile Collection: Profiles can be collected in a fixed probability (typically 90%), and synthetic weights are
number of different ways. The oldest techniquernistru- calculated appropriately [51]. The weighted heuristic tech-

mentation where extra code is inserted into the program nique was pioneered by Ball and Larus [36] and refined by
text to count the frequency of a particular event. Instru- Wu and Larus [37]. Ball and Larus’ original idea was to have
mentation can be performed either by the compiler, or by a set of heuristics, each of which may or may not apply to a
a post-compilation tool such as Atom [27]. More recently, given branch in the program. For example, the loop heuristic
hardware manufacturers have added special registers thapredicts that loop branches will stay in the loop, while the
record statistics on a variety of processor-related events;return heuristic predicted that returns were not branched to.
these registers have been used to perform profiling in tools The heuristics were then empirically ranked for relevance
such as VTUNE [28]. Hardware techniques can have very by a training set of programs. Wu and Larus refined this by
low overheads, but they do not usually report exhaustive empirically assigning a branch probability to each heuristic
statistics like instrumentation does. Some researchers havehat applied, then using the Dempster—Shaffer formula to
built statistically sampling profilers, where an interrupt blend these probabilities. Lastly, Caldgial.trained a neural
occasionally examines the machine state. Statistical profilesnetwork based on a corpus of C programs to heuristically
are noisier than exhaustive profiles, but they also can predict branches [38]. None of these heuristic techniques
be collected with extremely low runtime overhead. The gives better results than actual profiling, and no path-based
Morph project implemented a software-only low-overhead heuristic techniques have been published. But the techniques
instrumentation system [29], while the DCPI/CCPI project remain interesting as a way of potentially avoiding building
[30] implemented a hybrid system that used both statistical and installing a profiling pass.
sampling and hardware registers. In an overhead-aware Since profiling has been deployed in dynamic optimiza-
approach that is different from statistical sampling, the tion, compilation, and translation systems the arguments
Dynamo project from HP [31] implements a lazy version of against profiling have been weakening. Training data sets
profiling, where instrumentation is removed after execution are now part of standard benchmark suites [39]. Further, in
exceeds a threshold value. the emerging embedded space, devices are built for a single
Because instrumentation usually measures exhaustively,purpose, and both the common code and sample data sets
there has been work on efficiently profiling as well. Ball and fall readily to hand. For purposes of discussion, we will
Larus observed that edge profiling could sample a subset ofrefer to both the heuristic and profile-based approaches as
edges in the CFG but still reconstruct all edge weights [32]. producing profiles; one can consider the heuristic techniques
Their technique samples enough edges to break all cycles into produce synthetic profiles.
the undirected version of the CFG. In later work on forward 4) Profile Bookkeeping and Methodologyf the pro-
path profiling, Ball and Larus describe how to enumerate all filing pass and the instruction scheduling pass are not
of the forward paths in a procedure, then determine the pathadjacent in the compiler's design, then there are book-
number by modifying a single profiling register as control keeping issues to manage whenever an intervening pass
decisions are made [33]. And the sequence of forward pathstransforms the program. Further, profiles only measure the
can be compressed to describe an entire program trace; Laruparts of the program that were visible before the profiling
calls this a whole-program path [34]. Young describes an effi- pass: changes to the CFG made after instrumentation was in-
cient collection algorithm for general, bounded-length paths serted will not be visible to the profiling code. Furthermore,
in his thesis [35]; his approach involves lazily exploring the region formation itself can transform the program in ways
finite-state automaton of all paths in a procedure. that change the applicability of profile information. For

1644 PROCEEDINGS OF THE IEEE, VOL. 89, NO. 11, NOVEMBER 2001

these reasons, most textbooks [40], [41] advocate profiling legal for a trace to have many side entrances and exits. The
as close to the point where profile information is used as mutual most likely heuristic works as its name implies. A
possible. But regardless, bookkeeping issues still must betrace has a first block and a last block; the mutual most

faced. likely heuristic can be used to extend either end of the trace.
Most bookkeeping involves applying what we c#lle Consider the last block4, of the trace. Use edge statistics
axiom of profile uniformity to find its most likely successor blocl3. Next, consider

B’s predecessors. Il is B’s most likely predecessor, then
A and B are “mutually most likely,” and the heuristic adds
B to the trace, making it the new end of the trace. The trace
can be grown either forward or backward in the CFG. Trace
growing stops whenever no mutually most likely block can
be found to extend the trace, a back edge is encountered, or
the mutually most likely block is already part of a different
trace. The process iterates by finding the highest-frequency
. unselected block in the program and using that as a seed
Yor the trace. The process ends when all blocks have been
assigned to traces. Some traces may consist of only their
seed block.

The implementers of the Multiflow compiler [51] list a
number of alternative heuristics to mutual most likely with

When one copies a chunk of a program, one should
equally divide the profile frequency of the original
chunk among the copies.

In the case of point profiles, there is probably nothing
else to be done. The independent nature of the profile mea-
surements means that no other information remains to dis-
ambiguate the copies. However, recent work on path pro-
filing suggests that profile uniformity is a poor assumption

a program [42]-[44], or more succinctly, programs follow
paths [45]. Path profiles are not immune to such problems
(e.g., one might duplicate an entire path, in which case the
profile would not be able to disambiguate between the two

copies), but pgcause they capture more dypamic context, the3(Nhich they experimented. None seemed more intuitively sat-
are more resilient to program transformations. _isfying than mutual most likely, and none of them worked
Some resgarchers have done. work on reusing proﬁlesbetter than mutual most likely in practice [52].
of older versions of a program with the current version of gnerplock formation involves traditional trace growing,
the program; this involves hierarchically matching program o|jowed by an additional step calledil duplication Talil
components [46]. Another work documents the accounting gyplication removes side entrances from all traces by making
performed to use a profile from the optimized program g pjicates of those blocks reachable by side entrances, then
code, ideally removing the need to build a separate, profiling reconnecting the side entrances to the duplicates. Once the
version of a program [47]. side entrance edges have been removed from the trace, the
While not strictly a bookkeeping issue, we note here that trace is left with a single entrance block at its start, making it
cross-validation is crucial to properly studying profile-based a valid superblock. Tail duplication increases code size, pos-
optimizations. Itis bad methodology to train (profile) and test sibly drastically, so implementers of superblock schedulers
(evaluate) on the same input, since a real-world application take care to schedule only the hot procedures in a program.
will probably face a variety of inputs. Training and testing on Tail duplication can also be viewed as an alternative to com-
the same input is calleesubstitutiorin the learning theory ~ pensation code that trades code expansion for simplicity in
community; it provides a useful upper bound but not a prac- engineering the schedule constructor. See the next section
tical performance value. Part of the early debate about usingfor further discussion of compensation code and suppression
profiles concerned variability across training data sets; Fisherthereof.
and Freudenberger’s study observed that while bad training One unsatisfying aspect of trace formation using point pro-
sets could always be found, the majority of training sets were files is the cumulative effect of conditional probability. In
“reasonable” under cross-validation [48]. point profiles, the probability of each branch is measured in-
Many of the heuristic approaches described above also usedependently. Whenever the trace crosses a split or join in the
atraining corpus to derive branch biases or to train the neuralCFG, the probability of traversing the entire trace changes.
network. Such training corpuses are similar to training data With point profiles, we must assume that this probability is
sets; results using them without cross-validation should be independent for each branch, so the probability of remaining
considered carefully. on the trace falls away rapidly. For example, a trace that
crosses ten splits, each with a 90% probability of staying on
the trace, appears to have only a 35% probability of running
from start to end. Researchers have addressed this problemin
From this point on, we assume that we have access to exthree ways: building differently shaped regions, using pred-
ecution frequency information. As discussed above, all of jcation hardware to remove branches, and getting better sta-
the heuristic techniques strive to produce profile-like data tistics.
without running the program, so the engineering of this and Forming nonpath-shaped regions appears to simplify
subsequent passes is unaffected by how profiles are collectedhe region selection process, since the region selector can
or synthesized. choose both sides of a difficult split or join. However,
The most popular algorithm for region selectiortriace nonpath-shaped regions require more complicated schedule
growingusing themutual most likely heuristicAs described construction passes or more complicated hardware or both.
before, a trace is a path through the program CFG; it is Complexity is not avoided; it is just handled elsewhere.

B. Region Selection

FARABOSCHIlet al: INSTRUCTION SCHEDULING FOR INSTRUCTION LEVEL PARALLEL PROCESSORS 1645

Nonlinear region approaches include Percolation Scheduling The oldest and simplest region enlargement technique is
[24], DAG-based scheduling [49], and Treegions [50]. loop unrolling To unroll a loop, make multiple copies of the

Predicated execution allows a different approach to original loop body, rerouting loop back edges from one copy
difficult (forward) branches: go both ways. Predication to the header of the next copy. For the last copy, reroute the
necessarily complicates the hardware, the instruction-setloop back edges to the header of the first copy. One is said to
architecture (ISA), and the compiler. Hyperblock formation, “unroll » times” when one makes extra copies of the loop
the most recently documented approach to predication, still body. Loop unrolling typically takes place before region se-
uses the mutual-most-likely trace formation mechanism as alection, so that portions of the larger, unrolled loop body are
basis; it then adds additional blocks to the region based on aavailable to the region selector. In this way, the scheduler can
heuristic that considers block size and execution frequencyoverlap operations belonging to different iterations in the un-
[51]. Predication is a very powerful tool for removing unpre- rolled loop body. Loop unrolling has no awareness of region
dictable branches and exploiting otherwise-unused machineshape, so it duplicates entire loop bodies without regard to
resources, but it can also negatively affect performance. Thethe control flow within the loop. Engineers of trace sched-
time to execute a predicated block includes the cycles for ulers do not consider this a problem, as the hot trace through
all scheduled operations, so shorter paths may take longeithe unrolled code will still be found and the side blocks do
under predication. Predication is most effective when paths not overly burden the schedule constructor. Loop unrolling
are balanced or when the longest path is the most frequentlyis often rather effective because a small amount of unrolling
executed. is sufficient to fill the resources of the target machine. Loop

Young and Smith explored getting better statistics in a se- unrolling is used in most compilers.
ries of papers. Their initial work used global, bounded-length The engineers of superblock schedulers take a different
path profiles to improve static branch prediction [54]. Their approach, forming superblocks before they perform en-
techniquestatic correlated branch predictio(SCBP), col- larging transformations. They describe three techniques,
lected statistics about how the path by which a branch wassuperblock loop unrolling, superblock loop peelinand
reached affected its direction. By analyzing this information superblock target expansiorSuperblock loop unrolling
globally, they produced a transformed CFG with extra copies resembles basic loop unrolling. After superblock formation
of blocks, but in which the extra copies were statically more (but before schedule construction), the most likely exit from
predictable. Unfortunately, while SCBP was intended to help some superblocks may jump to the beginning of the same
back-end optimizations such as scheduling, its transforma-superblock. Such superblocks are caltegberblock loops
tion of the CFG led to complex graphs in which the branches unrolling them involves making additional copies of the
were individually predictable but in which linear execution basic blocks in the superblock and connecting them simi-
traces were hard to find. In later work that directly addressed larly to the connection in loop unrolling. Superblock loop
instruction scheduling, Young and Smith used path profiles peeling is similar, but is applied in cases where the profile
to drive the region formation stages of a superblock schedulersuggests a small number of iterations for the superblock
[35]. The later work, on path-based instruction scheduling, loop. In such cases, the expected number of iterations are
used a very simple technigue to select superblocks. Treat thecopied, but the last copy is connected to the exit block
current trace as a path, and consider its execution frequencyfrom the loop, and a special extra copy is made to handle
Then consider the execution frequency that results from ex- extra iterations not forecast by the profile. Superblock target
tending the trace to any of the possible successor blocks. Be-expansion is similar to the mutual-most-likely heuristic for
cause the general path profiles include this frequency infor- growing traces downward: if superbloek ends in a likely
mation, there is no need to invoke profile uniformity. Corre- branch to superblocB, then the contents of superblogk
lations are preserved through the region formation process. are appended to superblogkto make it bigger.

Young and Smith’s path-based approach to superblock se-
lection also lends itself to superblock enlargement. The same
algorithm does both formation and enlargement: grow down-

Region selection alone does not usually expose enoughward only, and choose the most likely successor block. A
ILP for the schedule constructor to keep a typical wide-issue number of thresholds stopped growing traces: low likelihood
machine occupied. To further increase ILP, systemsreise in the successor block, low overall likelihood of reaching the
gion enlargementechniques. These techniques increase the end of the trace, and sufficient number of instructions in the
size of the program but also can improve the performance trace. General path profiles provide exact execution frequen-
of the scheduled code; using them involves a space-timecies for paths within the bound of the profiling history depth.
tradeoff. Many of these techniques exploit the fact that Young and Smith found modest performance improvements
programs iterate; by making extra copies of highly iterated from using path profiles in addition to the engineering sim-
code, more ILP can be found. Such loop-based techniquesplifications already described.
draw criticism from advocates of other approaches such as
cyclic schgduling and loop-level parallel processin.g, becagseD_ Phase Ordering Considerations
the benefits of the loop-based enlargement techniques might
be found using other techniques. We are aware of no study Just within the region formation pass(es), there are phase
that has quantified this tradeoff. ordering considerations. The designers of the Multiflow

C. Enlargement Techniques

1646 PROCEEDINGS OF THE IEEE, VOL. 89, NO. 11, NOVEMBER 2001

compiler chose to place enlargement (loop unrolling) before
trace selection. The superblock-based techniques chose
and formed superblocks before enlarging them. Neither
is clearly preferable, but they are determined by the engi-
neering constraints of the chosen approach.

Other optimizations also have phase ordering interactions
with region formation. Other ILP-enhancing optimizations,
such as dependence height reduction [55] should be run be-
fore region formation. Hyperblock-related techniques have
an entire suite of transformations including if-conversion and

 Explicitly parallel versus superscalaiachines that

include instruction-level parallelism may choose to ex-
pose it in the ISA (VLIW), or to hide it with sequential
instruction semantics and let the hardware rediscover it
at runtime (superscalar). In the former case, the com-
piler must monitor machine resources to avoid gener-
ating illegal code. In the latter case, the compiler may
estimate resource usage for performance reasons, but
need not monitor them for legality. However, the com-
piler may still need to follow certain encoding rules to

reverse if-conversion that we do not discuss here. ensure that the underlying implementation is able to
find the parallelism that the compiler has discovered.
For example, all Alpha implementations can issue mul-
tiple instructions per cycle, but all of the instructions
The previous section described techniques for selecting must come from the same cache line for them to be able
and enlarging the individual compilation regions. This sec- to issue in parallel.
tion discusses assigning operations in the selected region to Recently introduced EPIC architectures blend the explic-
units on the target machine and time slots in the schedule.itly parallel and superscalar approaches. Such ISAs closely
A schedules thus the set of annotations that indicate unit resemble VLIWSs, but they also allow limited sequential exe-
assignment and cycle time of the operations in a region. A cution within a parallel execution unit (called an issue group)
schedule constructarr scheduletis the phase that produces to accommodate the resource limits of different implemen-
such a schedule. Like region formation, schedule construc-tations. This blended approach allows binary compatibility
tion techniques vary depending on the shape of the regionover a set of implementations, but still allows much of the
being scheduled: different kinds of regions require different ILP extraction to be done by software.
transformations. This section begins by describing how schedulers ana-
The goal of any scheduling algorithm is to minimize an ob- lyze programs. Armed with the analysis techniques, we then
jective cost function while maintaining the semantics of the describe a number of approaches to compaction, or actual
program and obeying the resource limitations of the target schedule construction, in Section V-B. Maintaining program
hardware. In most cases, the objective function iseke semantics (or correctness) is treated next. Then we discuss
timated completion timef the region, although it is also clustering, a microarchitectural technique of increasing ne-
possible to find domains that demand more complex objec- cessity that further complicates code generation. We continue
tive functions. For example, a scheduler for an embeddedwith two broader perspectives, the first on the interactions
target may adaode sizeor energy efficiencyo the objec- of phases in code generation, and the second on other opti-
tive cost function. This section of the paper concerns itself mization (in the true, not compilation-only sense) approaches
with schedule construction while maintaining the semantics to scheduling. Lastly, we discuss managing resources during
of the program. The last part of this section, Section V-F, de- scheduling.
scribes two competing approaches to resource management
under scheduling. A. Analyzing Programs for Schedule Construction
Depending on the ISA and microarchitecture of the target))
machine, different schedules may maintain or violate the se- Dependences (sometimes also caltipendencigsare
mantics of the original program. Different machines can have sequential constraints that derive from the semantics of the
different amounts of hardware support or checking to support Program under compilation. Dependences prohibit some re-
ILP. Some of the alternatives include the following. o_rderings of the program. Program dependences come in two
« Visible versus hidden latencieBasic operations vary kinds: dat.a and control dependences. Thg Qata flow of the
widely in complexity; some execute in multiple cycles Program imposesata dependenceand similarly the con-
and produce their results some cycles after their issue 0! flow of the program imposesontrol dependences
time (e.g., divides typically require multiple cycles). ~ Data dependences come in three typesd-after-write
When the ISA exposes visible nonunit latencies to the dependencesyrite-after-readdependences, andtite-after-
compiler (most VLIW machines fall into this category), write dependences. The first kind, read-after-write depen-
an erroneous latency assumption in the scheduler maydences (also calle’AW, flowor true), occurs when one oper-
change the semantics of the program. Alternatively, the ation uses the result of another; reordering would break this
microarchitecture can independently check latency as- flow of data in the program. Write-after-read dependences
sumptions (through some form of scoreboarding tech- (also calledWARor anti dependences) occur when one op-
nique, commonly used in superscalars) and correct vi- eration overwrites a value after it has been used by another
olations through stalls or dynamic rescheduling. In this operation; reordering would overwrite the correct value be-
case, the compiler can assume average or worst-casdore it is used. Third, write-after-write dependences (also
latencies without additional work to maintain program called WAWor outputdependences) occur when two oper-
correctness. ations write to the same location; reordering the operations

V. SCHEDULE CONSTRUCTION

FARABOSCHIlet al: INSTRUCTION SCHEDULING FOR INSTRUCTION LEVEL PARALLEL PROCESSORS 1647

| 10ad t1 = o[ap] |
\

| cmpgtt2z =t1,0

-

o [brez, L1 |
if (x > 0)

t="*bp + 1; load t3 = Ofbp]
else

t=x-1: add t4 = t1, 1
*Zp =t l\\\\\

| goto L2 I\‘\\

|L1 Isubt4=t1,1 |

[L2 | store O[zp] = t4 |

Fig. 2. Example of data dependences. Solid arcs are flow dependences, dashed arcs are output

dependences.
will cause the wrong value to be the final value. The latter load t1 = O[ap]
two kinds of dependences, WAR and WAW, are also called cmpgt t2 =t1,0
falsedependences because they can be removed by renaming br t2
(adding extra temporary variables to the program). Fig. 2 | %, .
shows an example of data dependences expressed as arcs be | t="bp+1;
. else
tween operations. o Ctex-; |:> load t3 = 0[bp]
Control dependences represent constraints imposed by the | "=t add 4=t 1 :
control flow of the program. For example, if an instruction

can only be reached by passing through a particular condi-
tional branch, then that instruction is control-dependent on
the branch. For basic blocks, control dependences only af-
fect the scheduling of the single entrance and single exit of
the region. For more complex region types (with multiple
entrances or exits), control dependences may also constrain
scheduling, preventing certain operations from executing be-includes information that allows the scheduler to evaluate
fore an entrancgdin) or after an exit ¢plit). Once the pro- the relative order and importance of the operations. After
gram reaches the scheduler, the compiler usually representduilding a DAG, we can label operations with some inter-
the control dependences as arcs connecting control-depenesting properties. Two obvious ones atepth (the length
dent pieces. For example, Fig. 3 shows the control depen-of the longest path from any root of the DAG) ahdight
dences among basic blocks in a simple program. (the length of the longest path to any leaf of the DAG).

As described above, both data and control dependences ar®perations for whictdepthequalsmax_height-heightare
constraints between pieces of the program that make some reen the critical path of the region. For noncritical operations,
orderings illegal. These constraints induce a partial ordering the range depth (max_height-heigh)] are the time slots
on the pieces (whether the pieces are instructions or basidn the schedule where the operation can be placed without
blocks), and any partial ordering can be represented as a diincreasing the schedule length.
rected acyclic graph (DAG). Such graphs of dependences are The intermediate representation adopted by the upstream
used frequently in scheduling analysis passes; variants (dephases of the compiler may choose various methods to rep-
pending on how the graphs are built) are known simply as the resent dependences, such as virtual register names, arcs of an
DAG, as thedata dependence gragPDG), or as theoro- SSA (static single assignment) web, memory references, and
gram dependence gragRDG). All such variants are graphs so on. The case of memory references is particularly inter-
where nodes represent operations and arcs are the data-desting: unlike other types, the schedule must often make con-
pendence constraints among them; building the variants typ-servative assumptions for memory referenédisis analysis
ically requires quadratic time complexity in the number of is the set of techniques that help the scheddigambiguate
operations. among memory references.

The DAG represents the constraints that the scheduler Most scheduling decisions obey the constraints found in
must obey to maintain program semantics. But it also the DAG. However, some of the most powerful scheduling

store O[zp] = t4

Fig. 3. Example of control dependences among basic-blocks.

1648 PROCEEDINGS OF THE IEEE, VOL. 89, NO. 11, NOVEMBER 2001

T foad 11 = ifap)

Full T | empgt p2.p3 = 11,0

Predicalion 1 02 | toad 13 = O{bp)

X = "Af g2 | add 14 =q1_1

lix = D) | =
t="bp + 1 :pa sub 14 =11, 1

alga T store O[zp] = td

[=x-1: :::]
'Z[I=| -

laad 11 = dfap]

ompgt p2 = £1.0

koad.s 13 = 0[bp]
Partial add 14 = 11, 1
Fredication I

sub 18 =11, 1

| salect 16 = 214,15
glore O[zp] = 16

Fig. 4. Example of fully and partially predicated code. In the full-predication case;ripgt
operation produces the true (p2) and false (p3) predicate at the same time. A predicate T means
“always executed.” In the partial-predication case, we uselectoperation to implement the

“a = b?c¢ : d” function. Note that partial predication usually requires speculation to be effective
(theload operation becomes a speculativad.soperation).

techniques aim to relax or remove dependences. Two funda-
mental techniques are employed by schedulers (or in the pre-

load t1 = Ofap]
cmpgt t2 =t1,0

ceding phases) to transform or remove control dependences. load,s 13 = O[bp]
« Predication(also calledf-conversionandconditional on)
executiol, converts multiple regions of a control flow t="bp+1;
graph into a single region composed pifedicated elste=x-1; I::)
(conditiona) code. In other words, predication trans- =t [agda=t1,1 | [subra=t11 |
forms control dependences into data dependences. In

the case ofull predication instructions take additional

operands that determine at run-time whether they

should be executed or ignored (treated as nops). These

additional operands are callguledicate operandsr))) o
Fig. 5. Example of speculative code motion (compare it with

guards In the case Ot_’?”'al predication speC|aI_ op- Fig. 3). The load operation becomes speculative (marked load.s),
erations (such asonditional moveor selecj achieve once we move it above a branch.

similar results. Fig. 4 shows the same code used in

Fig. 3, after predication. The case of full predication Fig. 5 shows an example of speculative code motion.
is particularly relevant to region compaction, since As another example, ttace schedulemay be able

it can affect how the scheduler chooses units and to move operations either above splits or below joins,
allocates registers. Partial predication, for example knowing that a successivbookkeepingphase will
using selects is a more natural fit to the scheduling generate compensation code to re-establish the correct
phase and we will not treat it separately. program semantics.

Speculative code motigor code hoistingand some- After regions have been formed, classical optimizations

timescode sinkiny moves operations above control- (e.g., constant propagation and partial redundancy elimina-
dominating branches. Note that this transformation tion) can often serve to remove operations and their corre-
does not always preserve the original program seman-sponding data dependences. Also, there is a cladsmén-

tics, and in particular, it may change the exception dence-height reducing optimizatiof&s].

behavior of the program. A compiler may only intro-

duce speculative operations when certain conditions B. Compaction Techniques

are satisfied, depending on the degree of ISA support This subsection briefly reviews some of the most widely
for the execution of speculative memory operations used scheduling techniques for ILP targets. Research and
and in general on the exception model imposed by production compilers in the past 20 years adopted many
the runtime system. Note that, unlike predication, different approaches, making exhaustive description impos-
speculation actuallyremoves control dependences, sible. Instead, we enumerate techniques that are components
thus potentially reducing the critical path of execution. of almost all approaches to compaction.

FARABOSCHIlet al: INSTRUCTION SCHEDULING FOR INSTRUCTION LEVEL PARALLEL PROCESSORS 1649

Scheduling Regime Search Style

/\ /\ Region Shape

Cycle Operatior Greedy Backtrack / \
Acyclic Cyclic

Flow Analysis /\
/ \ Basic Block Trace DAG

Linear Graph

Fig. 6. A set of decision trees characterizing compaction techniques.

We classify compaction techniques according to different top-down linear scan of the region. Note that a graph
features, such as: cycle versus operation scheduling, linear is not necessary to enforce data dependences, but
versus graph-based analysis, acyclic versus cyclic regions, a simple time-annotated table of produced values

and greedy versus backtracking search. Fig. 6 shows a set suffices.
of decision trees characterizing compaction techniques. This ¢ As-Late-As-Possibl€ALAP) scheduling, where we

paper largely focuses ogreedyscheduling techniques for place operations in the latest possible cycle that re-
scalar (acyclic) regions, but this section touches briefly on source and data constraints allow through a single
the set of alternatives. bottom-up linear scan of the region.

1) Cycle Versus Operation Schedulings discussed For example, Critical-Path (CP) scheduling uses an ASAP

above, the goal of the scheduler is to allocate operationspass followed by an ALAP pass to identify operations in the
to cycle slots while minimizing an objective function. critical path of the computation (those that have the same
The two parts of this allocation, operations and time slots, cycle assignment in both schedules). Remaining noncritical
suggest two approaches to overall scheduler strateugst- operations are allocated in a third linear pass.
ation-basecdandcycle-basedcheduling. 3) Graph-Based Techniques (List Schedulinghe

« Operation schedulingepeatedly selects an operationin Major limitation of linear techniques is their inability to
the region and allocates it in the earliest cycle that de- Make decisions based on global properties of the operations
pendences and target resources allow. Operation schedln the considered regions. Such global properties are incor-
uling techniques vary based on the selection method, Porated in the DAG described above. Most of the scheduling

which can be guided by a number of heuristics or pri- algorithms that operate on DAGs fall into the categoriisif
ority schemes. scheduling List scheduling techniques work by repeatedly

« Cycle schedulingsometimes unfortunately calléd- assigning a cycle to an operation without backtracking
struction schedulingrepeatedly fills a cycle (usually ~ (greedy algorithms), and efficient implementations have
corresponding to an issue group) with operations se- /V log(2V) computational complexity (in addition to the
lected from the region, proceeding to the next cycle DAG creation, which hasv? complexity).

only after exhausting the operations available in the List scheduling repeatedly selects an operation from a
current cycle. data-ready queu¢DRQ) of operations ready to be sched-

uled. An operation issadywhen all of its DAG predecessors
have been scheduled. Once scheduled, the operation is re-
moved from the DRQ and its successors that have become
ready are inserted. This iterates until all operations in the
region are scheduled. The performance of list scheduling is
highly dependent on the order used to select the scheduling
candidates from the DRQ, and—in case of cycle-based
' scheduling—on the scheduler’s greediness.

lexity. f . d of i Toch We can tackle the first problem (DRQ order) by assigning
compiexity, for a region composed at operations. 1€ch-— 5 priority function to each operation in the DAG. Ideally,

niquels thtat ﬂse data-(;lepend?_ncle gra_lphs _have ag?(eﬂ%)th_ the heightof the operation is what should drive the priority
compiexity. However, for practical region SIz€s and machine ¢, . ot any point during scheduling, operations with the

;peeds, differences are often ngt S|gn|f|cant gnough to JL.JS'greatest height are the most critical. However, depending on
tify the performance |oss Of an inferior technlqug. For this other scheduling considerations, compilers have also used
reason,_graph-basgd technlques have almost universally the depth a combination of the two, or a depth-first topo-
placed linear tgchnlques ”_1 modern cgmpllers. logical sorting of operation within a connected component
Most of the linear techniques use either or both. of a region. In general, all these choices are based on heuris-
» As-Soon-As-PossiblASAP) scheduling, where we tics, and have to strike a balance among schedule quality,
place operations in the earliest possible cycle that implementation complexity and compile-time performance.
resource and data constraints allow through a single Chekuriet al. [60] survey priority functions.

Operation scheduling is theoretically more powerful than
cycle-based scheduling, but it is much more complicated to
engineer, especially for complex regions that extend beyond
basic blocks. We are not aware of any production compilers
that use operation scheduling.

2) Linear Techniques:The simplest schedulers use linear
techniques [1]. When compile time is of utmost importance
linear methods have the major advantage of haviig)

1650 PROCEEDINGS OF THE IEEE, VOL. 89, NO. 11, NOVEMBER 2001

The second problem (greed control) is more complex, observed loops). In addition, its compile-time performance
since cycle-based schedulers often tend to be too greedyis good, and it is often much more efficient than any other
Greediness may hurt performance in two ways. cyclic or acyclic scheduler based on loop unrolling.

1) Operations that we schedule too early and that occupy On the down5|_de, modulo scheduling is most effective on
resources for multiple cycles may prevent more critical well—st.ructu.red S|_ngle loops. Nested loops can be handled by
recursively invoking the modulo scheduler, but outer loops

operations that become ready later to be scheduled due tthen include th | d epil de ofthei
to resource constraints. must then include the prologue and epilogue code of the inner

2) Operations that we schedule too early may unneces—IOOp' Lﬁ ops V;”th exits Icar_1t becharldlleiil, bu'g attrt]hel expel: S; of
sarily increase register pressure and force spills that & MUcCh greater compiexity. ©-ontrol Tlow in the 1oop body

could be avoided if we had decided to delay their (e.g., a single if-then—else) can be handled only with great
schedule difficulty; most approaches rely on some form of predication

to if-convert the loop body.

Unfortunately, most workarounds for this problem rely on
heuristics that rarely apply outside of the domain where they
were introduced.

4) Loop Scheduling:Many programs spend most of their
time in loops. Therefore, a good loop scheduling strategy
is a fundamental component of an optimizing compiler.
The simplest approach to loop schedulitapp unrolling
was mentioned in Section IV-C on region enlargement.
Loop unrolling does not actually allow acyclic schedulers
to handle loops; rather, it enlarges the acyclic part of a
loop to allow the acyclic scheduler room to work. More

sophisticated techniques directly address scheduling loops * Scheduling techniques that primarily deal with basic
and their back edges. blocks and move operations around them generate

compensation code as part of the code motion itself.

« Superblock techniques generate compensation code as
part of the tail duplication process, as we described in
the previous sections.

« Trace scheduling (as well as other techniques that allow
multiple-entry regions) involves a more complex book-
keeping process, since the compiler is allowed to move
operations above join points, as well as move branches

C. Compensation Code

Under the term “compensation code,” we cover the set
of techniques that are necessary to restore the correct flow
of data and control because of a global scheduling phase
or a global code motion across basic blocks. Depending on
the shape of the region that the compiler adopts, the com-
plexity of the task of generating compensation code varies
from trivial to extremely complex.

Software pipelinings the class of global cyclic scheduling
algorithms, which exploit inter-iteration ILP while handling
the back-edge barrier. Within software pipelining algorithms,
modulo schedulings a framework that produceskarnelof
code that sustainably overlaps multiple iterations of a loop.
The kernel is built so that neither data dependence nor re-
source usage conflicts arise. Correctly entering and exiting
the kernel code is handled by special code sequences called Tty ')
prologuesandepiloguesrespectively; they prepare the state (split po'lnts) above operations that were below themin
of the machine to execute the kernel and correctly finish exe- the original program sequence.
cuting the kernel and recording its results. Prologue and epi- A complete discussion of all the intricacies of compensa-
logue code is analogous to compensation code generated bfion code is well beyond the scope of this paper. However,
acyclic schedulers: itis necessary to maintain correctness bugompilers base many of the compensation techniques on a
causes code expansion. Hardware techniques can reduce ofariation of a few simple concepts that we illustrate in the
remove the need for prologues and epilogues. following. When the C(_)mpiler sche_dules a region, an_d is al-

Modulo scheduling efficiently explores the space of lowed to move operations freely with respect to entries and

possible kernel schedules to find the shortest legal one.€XitS: We can identify four basic scenarios (Fig. 7).
The length of the kernel, which is the constant interval 1) No CompensatiqgnFig. 7(a): This happens when the

between the start of successive kernel iterations, is called code motions do not change the relative order of
the initiation interval (ll). The resources required by the operations with respect to joins and splits. This also
operations in a loop and the inter-iteration data dependences covers the case when we move operations above a
in a loop place lower bounds on the II; these are called split point, in which case they becomspeculativeas

the resource-constrained minimum [(ResMIl) and the we discussed in the previous sections. The generation
recurrence-constrained minimum (RecMll), respectively. of compensation code for speculative code motions
To enforce llI-derived resource constraints, the modulo depends on the recovery model for exceptions. In the
scheduler usesraservation tabldor the machine resources case ofnonrecovery speculatiofalso calledsilent
that checks for conflicts not just in the current cycle, but also speculation or dismissible speculatign no com-

in all schedule cycles that differ by Il from the current cycle. pensation code is necessary. In the casescbvery
The scheduler begins searching schedules at the higher speculationthe compiler has to emit a recovery block
MIl, and heuristics guide whether to continue searching, to to guarantee the timely delivery of exceptions for
backtrack, or to abandon the current Il for the next higher correctly speculated operations.

one. In practice, iterative modulo scheduling generates 2) Join Compensatigriig. 7(b): This happens when an
near-optimal schedules (optimality in about 96% of the operationB moves above a join point. In this case,

FARABOSCHIlet al: INSTRUCTION SCHEDULING FOR INSTRUCTION LEVEL PARALLEL PROCESSORS 1651

o e X X
i 4 z
B B | @
A A
c c
3 3
IS WO | Y Y
(a) No Compensation (b) Join Compensation
X X 7
4 i /
2 B (8"
A A ><..
: :
v \4 " \
Y - 3
(c) Split Compensation (d) Join-Split

Compensation

Fig. 7. The four basic scenarios for compensation code. In each panel, the picture on the left
represents the original control flow graph, with the selected region to be compacted. The picture
on the right represents the compacted schedule (withoved abové), and the compensation

code added to the resulting flow graph to restore correctness.

we need to drop a copy of operatidh (called B') B’ in (b) restores th& — B’ — C — Y path; the copy\’

in the join path. A successive phase of the region se- in (c) restores th&& — B — A’ — W path, and so on. If
lector picks operatio3’ as part of a new region and certain conditions apply, it is possible to optimize (that s, in-
schedules it accordingly. Note that, if operatiBris hibit) the generations of compensation copies. For example,
only partially movedabove the join poinf\ (this can in (c) we do not need to copy’ to the split path ifA has no
happen for multi-cycle operations in explicitly sched- side effects and the values produced4wgre not live at the
uled machines), then we only need to partially copy exit pointW.

B to the join path. Also, in this case (callgzrtial

schedulg the partial copy must be constrained to be D. Clustering

scheduled exactly before the join point.

3) Split CompensatignFig. 7(c): This happens when a
split operationB (i.e., a branch) moves above a pre-
vious operatior\. In this case, the compiler produces
a copy of A (called A’) in the split path. The same
scheduling considerations from the join case apply to
the split caseA’ is successively picked as part of an-
other region, unless it is a partial copy, in which case
is constrained to happen right after the split.

4) Join-Split CompensatignFig. 7(d): Cases that are
more complicated appear when we allow splits to
move above joins (presented in the figure), or splits
above splits. For example, if we move a splibbove

ILP architectures have high register demands. Each par-
allel execution unit typically consumes two operands and
produces a third, requiring a large, multiported register file
to support even narrow-issue machineékistering[56] pro-
vides a natural solution to these problems. A clustered archi-
tecture divides a multiple-issue machine into separate pieces
(obviously callectlusterg, each consisting of a register bank
and one or more functional units. Functional units can ef-
ficiently access the local registers in their associated bank.
Depending on the architecture, remote registers may be di-
rectly addressable or they may only be reachable using in-
tercluster move instructions. Regardless of how remote ac-
he. TR . i - cess is specified, it is typically slower than local access and

a preceding joinA, in addition to having to cop is often subject to resource limitations. Fig. 8(b) shows a
to A’, we also need to create a copy of the braBch 4 jsgue ILP datapath with an 8-read, 4-write central register.
to target the split destination, to guarantee the correct gjg g(a) shows the related clustered 4-issue ILP datapath,
execution of the. — B — W path. with two clusters of two function units and one register bank

In general, the rule to keep in mind when thinking about each. Fig. 8(a) also shows the communication link between
compensation code is to make sure that we preserve all pathshe clusters.
from the original sequence in the transformed control flow Clustering complicates compilation. As long as the
after scheduling. Obviously, the order of operations may be clusters are architecturally visible, the compiler must place
different, but we nonetheless need to execute all the opera-operations to minimize intercluster moves and unbalanced
tions from the original control flow. For example, the copy use of the clusters. This is a new compiler responsibility, as

1652 PROCEEDINGS OF THE IEEE, VOL. 89, NO. 11, NOVEMBER 2001

Hegister File 2

Fig. 8. Clustered VLIW architectures.

the decision abouvhereto execute an operation was tradi- for all the feasible units for a node are available, BUG
tionally either empty (e.g., for a scalar machine) or handled selects the unit producing the smallest output delay
transparently by the hardware (e.g., for a completely con- for each node.

nected superscalar machine). The difficulty of the compiler 2) In the second phase, BUG assigns initial and final lo-
problem depends on the way that the ISA specifies commu- cations to the variables that are live in and out of the
nication among clusters. When the hardware transparently DAG. This phase is quite delicate, since it affects the
supports fetching remote operands (possibly with a dynamic adjoining regions of code, and particular care must be
penalty), the compiler’s task is to minimize the number of taken to avoid redundant duplication of locations for
dynamic stalls. In this case, compiler choices can degrade critical values (such as induction variables in loops)
performance, but correct code will always be generated. without sacrificing the parallelism opportunities.

When connectivity is architecturally exposed (either by BUG makes a few simplifying assumptions in its operating
explicit intercluster moves or by limited ways to specify mode. First, functional units are the only limiting resources
remote registers), the compiler must issue copy operationsijn the machine; conflicts over register-bank ports or buses are
to move data to appropriate locations. In this case, compiler jgnored. Second, resource costs and delays for scheduling ex-
choices affect correctness on top of performance. plicit copy instructions are ignored. Third, register pressure
Although some recent approaches (such uhéied as- s jgnored. Under register pressure, the topology of the DAG
sign-and-scheduléechnique) advocate a unified clustering can change significantly due to the presence of spill/restore

and scheduling step, most compilers implement clus- gperations. This is one of the major limitations of the algo-
tering before scheduling. The clustering phase preassignsiihm.

operations to clusters, then the scheduling phase assigns op-
erations to functional units within clusters. As examples, we
outline two preassignment techniqu>tom-Up-Greedy
(BUG) andPartial Component Clustering (PCC)

BUG was originally designed for the Bulldog compiler
[19] at Yale in the mid-1980s. BUG has two phases.

1) BUG first traverses the DAG from the exit nodes
(leaves) to the entry nodes (roots), estimating the
likely set of functional units to be assigned to a node
based on the location of previously assigned operands
and destinations. When it reaches the roots, BUG 1) Partial Component Growth where the compiler

Scheduling a DAG of 1000 operations for a machine with
four symmetrical clusters implies!%° clustering combi-
nations. As an alternative to BUG, consider reducing the
dimensionality of the problem and applying some form of
componentization. To do this, construech&cro-nodesfor
partially connected components of the original DAG. These
components can then be treated as indivisible units and as-
signed to a single cluster. PCC adopts this philosophy. It
works in three phases.

works its way back to the leaves, selecting the final assembles groups of operations from the DAG into
assignment for the nodes along the way. To reach a “components” (macro-nodes), based on connectivity
final assignment, BUG estimates the cycle in which criterion.

a functional unit can compute the operation based on 2) Initial Assignmentwhere we perform a greedy BUG-
resource constraints, the location of the operands and style pass to produce a reasonable cluster assignment
the machine connectivity. Once the cycle estimates for the components.

FARABOSCHIlet al: INSTRUCTION SCHEDULING FOR INSTRUCTION LEVEL PARALLEL PROCESSORS 1653

3) Iterative Improvementwhere pairs of cluster assign-
ments for components are swapped repeatedly until we
meet a termination criteria.

Various experiments suggest this rule of thumb: breaking
the CPU into two clusters costs around 15%—20% lost cy-
cles; breaking into four clusters costs around 25%-30%.
Whether these results approach the theoretical limits is open
research. Direct computation of optimal clustering remains
infeasible.

E. Phase Ordering of Register Allocation and Scheduling

Register allocation and scheduling have conflicting goals.
A register allocator tries to minimize spill and restore op-
erations, creating sequential constraints (for register reuse)p
between operations that the scheduler could otherwise plac
in parallel. A scheduler tries to fill all the parallel units in the
target machine and may extend variable lifetimes by specu-
lative code motion. Both of these changes increase register

verge, and additional measures are necessary to en-
sure that scheduling terminates. The DAG changes dy-
namically with the addition of spill and restore oper-
ations. These changes affect operation heights, opera-
tion depths, and the critical path of the region, possibly
invalidating previously made choices. Finally, the inte-
grated scheduler-allocator must handle values that pass
through but are not used in the region. A mechanism
called “delayed binding” (to defer the choice of a lo-
cation of a value until needed) addresses this problem,
but further complicates the scheduler.

Finally, it is worth mentioningcooperative approaches
where the scheduler monitors the register resources of the
target and estimates register pressure in its heuristics. A
ost-pass register allocator adds spill and restore code when
eeded. This approach is particularly promising, since the
scheduler remains simple but the system can still avoid
pathological register pressure cases.

pressure. Register allocation and scheduling must coexist inF, Another View of Compaction Problems

the compiler, but how to order them is not appar@ptiori
[57]-[59]. These are some of the alternatives.

* Instruction Scheduling followed by Register Alloca-
tion values exploiting ILP over register utilization.

It assumes enough registers are usually available to
match the schedule. This method encounters problems
when the scheduler increases register pressure beyond
the available registers. This can happen on wide-issue
machines in regions with considerable amounts of
ILP (e.g., scientific code or multimedia applications).
Note that the register allocator must insert spill and
restore code in the already scheduled code, which can
be difficult task on statically scheduled targets. This
technique is common in product compilers for modern
RISC processors.

» Scheduling followed by Register Allocation followed by
Post-SchedulingThis variation of the previous tech- .
nique adds gost-schedulingpass after register allo-
cation. The post-scheduler rearranges the code after
spill code has been placed and register assignments are
final. To guarantee convergence, the post-scheduling
phase cannot increase the number of required registers.
This approach makes a good engineering/performance e
tradeoff and is common in industrial compilers.

* Register Allocation followed by Instruction Scheduling
prioritizes register use over exploiting ILP. This tech-
nique works well for target machines with few available
registers (such as x86 architectures). However, thereg-
ister allocator introduces additional dependences every
time it reuses a register. This leads to very inefficient
schedules.

» Combined Register Allocation and Instruction Sched-
uling attempts to build a single pass that trades off spill .
costs against lost ILP. Although potentially very pow-
erful, this approach involves the most engineering com-
plexity. Since register resources may never be freed, a
straightforward list-scheduling algorithm may not con-

1654

Scheduling problems are not unique to compilers. In fact,
the entire field of Operational Research (OR) is dedicated
to solving scheduling problems. From an OR viewpoint, re-
gion compaction is very similar to majgb-shop scheduling
(JSP) problems from the manufacturing realm. In JSP, a fi-
nite set of machines process a finite set of jobs. Each job in-
cludes a fixed order of operations, each of which occupies a
specific machine for a specified duration. Each machine can
process at most one job at a time and, once a job initiates on
a given machine, it must complete uninterrupted. The objec-
tive of the JSP is to find an assignment of operations to time
slots on the machines that minimizes the maximum comple-
tion time of the jobs.

Deterministic representation and techniques that apply to
JSP problems include the following.

Mixed integer linear programming (MIP). MIP repre-
sents the problem as a linear program with a set of
linear constraints and a single linear objective function,
but with the additional restriction that some of the deci-
sion variables are integers. The simplex method is one
of the best-known algorithms for MIP problems.
Branch-and-Bound techniques dynamically explore a
tree representing the solution space of all feasible se-
gquences. Bounding techniques prune the search space.
Tight bounds are critical to the convergence of the al-
gorithm to a good solution.

Iterative improvement methods, starting from an initial
legal solution, optimize a cost function by exploring
neighboring solutions. These are analogous to such
technigues used to solve max-flow/min-cut problems
in other domains.

Approximation methods, bottleneck-based heuristics,
constraint satisfaction Al techniques, neural net-
works, adaptive searches, hybrid approaches, iterative
improvement, are other techniques that have been
proposed.

PROCEEDINGS OF THE IEEE, VOL. 89, NO. 11, NOVEMBER 2001

« Non-deterministic iterative methods include tech- withacolumn foreach cycle of a schedule and arow for each
niques like: resource in the machine. When an instruction is scheduled,

o Simulated Annealing (SA), a random oriented the system records the resources that it uses in the appro-
search technique introduced as an analogy from priate table entries. Reservation tables allow easy scheduling

the physics of the annealing process of a hot metal of instructions; unscheduling can be supported by keeping

until it reaches its minimum energy state. a pointer from each resource to the instruction that uses it

o Genetic Algorithms (GA), based on an abstract [61]. Reservation tables can easily be extended to include
model of natural evolution, where the quality of counted resources, where an instruction uses one resource
individuals improves to the highest level com- from a hardware-managed pool of identical resources. They
patible with the environment (constraints of the are less good at managing instructions that can be handled

problem). by multiple functional units (e.g., an integer add might be
o Tabu-Search (TS), based on intelligent problem processed by either the ALU or the AGU). And in their sim-
solving. plest implementation, they require space proportional to the

Why have compiler writers not extensively used these length of the schedule times the number of resources in the
techniques? In generaL OR techniques seek 0pt|ma| or nearmaChine. Determining whether an instruction can be sched-
optimal solutions and are designed to solve small numbersuléd requires examining all of the resources used by the “tem-
of large-scale problems. On the other hand, a compiler canPlate” of the instruction, which could be a large constant
often compromise optimality for the sake of compile speed, factor.
and it needs to solve a very large number of comparatively ~2) Finite-State AutomataFinite-state automata have in-
small problems. We omit more details of OR techniques; tuitive appeal. “Can | schedule this?" is similar to “does this
they are readily available in the related literature. state machine accept?” One can view the set of resource-
valid schedules as a language over the alphabet of opera-
tions. It turns out that these languages are simple enough to
model using finite-state automata (FSA), one of the simplest

During schedule construction, the constructor must be of computational abstractions. Early models [62] built FSAs
aware of a number of constraints on the schedule. The pre-directly from the reservation vectors. Proebsting and Fraser
vious parts of this section described management of the datg63] reduced the size of the FSAs by changing the underlying
dependence graph during scheduling and different possiblemodel. Instead of using reservation vectors as states, they ab-
orders and techniques for scheduling the DAG. Resourcestracted to vectors that modeled whether an instruction in the
management is the other major concern during scheduling.current cycle would conflict with a second instruction in a
While dependences and operational latencies may allowlater cycle.
an instruction to be scheduled in a particular cycle, the Finite-state automata do not support backtracking, un-
target machine may not have enough of the appropriatescheduling, or cyclic scheduling well. But they could answer
functional units, issue slots, or other pieces of hardware to queries about forward, cycle scheduling (less so operational
launch or execute the instruction in the desired place. Thesescheduling) very quickly.
constraints on scheduling are callexsource hazardsand 3) Recent Improvements to FSAst their 1995 paper,

a separate module of the schedule constructor typically Bala and Rubin [64] present a number of innovations to
models all of them. This module maintains its own state in FSA-based resource management; factor automata, merge
response to scheduling actions, and answers queries abowutomata, and reverse automata. Each of them draws on
whether a given instruction can be scheduled in a particular well-known techniques in automata theory.

place given the already-scheduled instructions. Factor automata reduce the number of FSA states (and

Early approaches accounted for resources in the under-therefore the size to store them) by observing that the dif-
lying machine using reservation tables. A second approachferent functional areas of modern machines tend to operate
used finite-state automata to model resource constraints,independently. For example, the MIPS R3000 model has
allowing an instruction to be scheduled in a slot if a transi- separate integer and floating-point sides; they share issue
tion existed in the resource automaton. The past decade hasnd load/store hardware but not much else. These indepen-
seen innovation in both approaches. Applying automaton dent pieces can then be modeled by separate (factored) au-
theory to the FSA models, researchers have factored re-tomata. The cross-product of the factors produces an au-
source automata into simpler components, they have usedomaton that is equivalent to the original, but the state of
reverse automata to support reverse scheduling, and theyoth factors can be represented more compactly than the
have used nondeterminism to model functional units with state of the larger (product) automaton. The factors interact
overlapping capabilities. Responding to these innovations only in issue resources; otherwise they run independently.
in automata-based resource modeling, reservation-vectorBala and Rubin report that factoring reduced an automaton
proponents have built reduced reservation vector schemedor the Alpha 21 064 of 13 524 states to two automata of 237
that approach the abilities and efficiencies of the new FSA and 232 states.
techniques. Resource modeling across control flow merges (joins or

1) Resource VectorsThe basic resource vector approach splits) has long been a thorny engineering problem. One must
involves simple accounting. Aeservation tablas a matrix model the state that results from either path. Resource vector

G. Resource Management During Scheduling

FARABOSCHIlet al: INSTRUCTION SCHEDULING FOR INSTRUCTION LEVEL PARALLEL PROCESSORS 1655

approaches can logicaltyr the vectors of the parent blocks, VI. L OOKING FORWARD

but not until Bala and Rubin proposed join tabl_es did t_he_: ILP scheduling techniques have matured over the past 20
FSA approaches have a complementary technique. A join Lo C :
years. The original intuition that inspired trace scheduling

table maps from the cross-product of states to a single state; . . .)
. L . and its region-scheduling descendants has blossomed into
allowing two pipeline FSA states to be mapped to a single

state that represents both sets of resources being used. a large field from which many pragtical technologieg have
Adding instructions to an already-scheduled block of code emerged. In the past, cpmpller wn_ters adapted their work
has also posed engineering problems in the past. The for-to match what _the architects and |mplementers_ produced.
ward automaton allows its users to verify that a sequence Oprday, the requirements of all three groups contribute to de-
instructions holds no structural hazards, but it only allows S'9NS- _ o _ _
new instructions to be appended to the sequence. Insertion re- A Production compiler is like a bridge: it takes years to
quires a linear rescan to verify that the new instruction did not Puild, is used for many more years, and it requires constant
conflict with any later instructions. Reverse automata (which epairs and improvements during its working lifetime. But
is the FSA reversal of the forward automaton into a nondeter- Pridge building and compiler construction are worlds apart
ministic automaton over the power set of original automaton N Maturity and reliability. Bridge building is a well-studied
states) provide a partial answer to this problem, by allowing €ngineering discipline; despite the advances of the past
the system to model the resource constraints of those futurefwo decades, compiler construction remains a black art. A
instructions. A scheduler that maintains both forward and re- number of challenges remain for the research and devel-
verse automaton states can verify that there are no structuraPpment communities; we illustrate them by extending our

hazards for a single inserted instruction. However, inserting bridge simile into a bridge conceit.

additional instructions still requires linearly rescanning to re-
compute the forward and reverse automaton states affected
by the first inserted instruction.

What about nondeterminism? Bala and Rubin’s later tech-
nical report use nondeterminism to model flexible pipeline
resources that can execute a variety of instruction classes.
Suppose a machine has two functional units, FU1 and FU2,
and three instruction classés B, andC. FU1 can execute
instructions of typeg\ andB; FU2 can execute instructions
of type B andC. In a deterministic automaton or a reserva-
tion vector model, scheduling a tyfeinstruction requires
it to be assigned to either FU1 or FU2. This excludes the fu-
ture possibility of issuing an instruction of typeor C, re-
spectively. With nondeterminism, the FSA can model simply
issuing the typd3 instruction without committing it to FU1
or FU2. Then a later typd or type C instruction can still
be scheduled, in effect lazily choosing the unit on which the
type B instruction executes.

4) Minimal Resource Vectorstn response to Bala and
Rubin’s innovations, Eichenberger and Davidson [61] ex-
plored ways to build better resource vector models. Their
key observation is that many explicitly-modeled resources
are in fact schedule-equivalent. For example in the canon-
ical in-order RISC five-stage pipeline, any instruction that
uses the decode phase one cycle will certainly use the ex-
ecute phase in the next. These stages do not require sepa-
rate vector entries; they will always be allocated together.
Eichenberger and Davidson present techniques to synthe-
size a minimal set of resources that are equivalent to but less
numerous than the actual machine resources. Such reduced
reservation vector models are much better users of space
and time than the original vectors, although Eichenberger
and Davidson do not directly compare their implementa-
tion to that of Bala and Rubin. The minimal resource vector
approach supports flexible pipeline resources less elegantly
than the nondeterministic FSA approach: alternate instruc-
tion locations are searched exhaustively in Eichenberger and
Davidson’s work.

1656

« Methodology: The past decade of architecture and
optimizing compiler research benefited from a new
emphasis on gquantitative methods, in particular an
emphasis on performance measured by (and only
by) execution time. This “quantitative approach” was
better than previous qualitative evaluations, but it is
no more the whole picture than the load capacity of a
bridge is the only salient aspect of bridge design. It is
difficult to isolate the value of new compilation ideas,
as they affect many pieces of a compiler in different,
systemic ways. It is hard to compare techniques, as
they may be embodied in very different systems. And
it can be hard to publish either sort of result without
reducing one’s results to SpecMarks. Rather than
inveighing against quantitative methods (a Luddite
position), the research community should find and
use more sophisticated methods that allow compo-
nent-wise, isolated analysis and comparison. Bridge
designers speak of tensile strength, torsional rigidity,
and strength/weight; what are the equivalent metrics
for optimizations and intermediate representations?

« Infrastructure: Designers of bridges have a large set

of previous designs, each with documented histories,
benefits, and drawbacks, from which to choose. Com-
piler researchers have relatively few, and compiler de-
velopers have even fewer because of intellectual prop-
erty restrictions. This imposes many costs on the com-
munity: high entry cost for both researchers and devel-
opers, lack of comparability among designs (see pre-
vious point), inability to combine results from different
projects, and a lack of standardized tools. The National
Compiler Infrastructure Project [65] hoped to provide
some of these benefits; the Gnu C Compiler, gcc, serves
as the de-facto platform for many experiments. Both
have their drawbacks.

» Goals: New computing realities rarely have a proper

influence on compiler design. Itis as if we designed all

PROCEEDINGS OF THE IEEE, VOL. 89, NO. 11, NOVEMBER 2001

bridges solely to maximize load, whereas some bridge
designers care about cost, maintainability, stability in
crosswinds, esthetics, etc. The next generation of com-
puting devices has begun to appeatr, in the “embedded”
space. Designers of such devices care about code
size, power dissipation, heat, and unit cost. Compilers
should follow suit, although few compilation systems
allow such factors to be traded off.

In addition to the high-level challenges above, we list some

more specific challenges to compilers and schedulers.

« Dynamic techniques:Post-compilation techniques,
which operate at link time, load time, or run time, have
become quite sophisticated. There is vast potential
in combining such techniques with compile-time
methods, but very little work has been done in this
intersection.

» Debugging:Few people recognize that debugging op-
timized code (or DOC) is a compiler problem. Worse,
debugging is a pariah like system administration: the
problem that everyone must face but which is seen as
too unglamorous for research. DOC can only be suc-
cessful if it is part of the compiler, but the scheduling

(2]

(3]

(4]

(5]
(6]

(7
(8]

El

[10]

techniques described above are never presented in that [12]

light. DOC is necessary at two levels: both to verify
the correct operation of optimizations, and to verify the
correct operation of object code.

 True optimizationKen Wilson (see Section II-B1) may
have had the right idea 20 years too early. Compiling
is now done on computers with enormous power; tech-
nigues that were unacceptably slow a few years ago are
now practical. None of the algorithms described above
scale to exploit computing power; they just run faster
on newer computers. Putting it another way, developers
tolerate only a fixed amount of compile time. As ma-
chines go faster, they can search more space in the
same amount of time. Has the time finally arrived to re-
consider compilation, solving phases exhaustively and
optimally rather than heuristically? Researchers have
scratched the surface of this problem, in limited areas
such as register allocation [66] and code layout [67].
We have yet to see a systematic treatment of all aspects
of compilation, or an approach to true optimization.

We fervently hope that the next time someone writes a
survey article such as this, that some of the topics we list
above will have been solved or incorporated into standard
practice.

ACKNOWLEDGMENT

The authors thank “Reviewer A” for their insightful com-
ments, particularly those concerning the treatment of loops
in this paper.

REFERENCES

[1] D. Landskov, S. Davidson, B. D. Shriver, and P. W. Mallett, “Local
microcode compaction techniqueCM Comput. Surwol. 12, pp.
261-294, Sept. 1980.

FARABOSCHIlet al: INSTRUCTION SCHEDULING FOR INSTRUCTION LEVEL PARALLEL PROCESSORS

(23]

Charlesworth, “An approach to scientific array processing: The ar-
chitectural design of the AP-120b/FPS-164 famifgEE Comput.

vol. 14, no. 3, pp. 18-27, 1981.

J. E. Thornton, Ed.Design of a Computer: The Control Data 6600
Scott, Foresman and Company, Library of Congress Catalog No.
74-96 462, 1970.

P. Faraboschi, G. Desoli, and J. A. Fisher, “VLIW architectures for
DSP and multimedia applications—The latest word in digital and
media processing fEEE Signal Processing MagMar. 1998.

E. G. Coffman, Jr., Ed.Computer and Job-Shop Scheduling
Theory New York: Wiley, 1976.

J. A. Fisher, “The optimization of horizontal microcode within and
beyond basic blocks: An application of processor scheduling with
resources,” Ph.D. dissertation, Technical Report COO-3077-161,
Courant Mathematics and Computing Laboratory, New York Univ.,
New York, Oct. 1979.

F. Astopas and K. I. Plukas, “Method of minimizing micropro-
grams,”Automat. Contr.vol. 5, no. 4, pp. 10-16, 1971.

C. V. Ramamoorthy, K. M. Chandy, and M. J. Gonzalez, Jr., “Op-
timal scheduling strategies in a multiprocessor syst¢éBEE Trans.
Comput, vol. C-21, pp. 137-146, Feb. 1972.

E. M. Riseman and C. C. Foster, “The inhibition of potential paral-
lelism by conditional jumps,TEEE Trans. Computvol. C-21, pp.
1405-1411, Dec. 1972.

M. Tokoro, E. Tamura, and T. Takizuka, “Optimization of micro-
programs,”|IEEE Trans. Comput.vol. C-30, pp. 491-504, July
1981.

D. Jacobs, J. Prins, P. Siegel, and K. Wilson, “Monte Carlo tech-
niques in code optimization,” iRroc. 15th Annu. Workshop Micro-
programming Oct. 1982, pp. 143-148.

B. R. Rau and C. D. Glaeser, “Some scheduling techniques and
an easily schedulable horizontal architecture for high performance
scientific computing,” inl4th Annu. Microprogramming Workshop
(MICRO-14) 1981, pp. 183-198.

M. Lam, “Sofware pipelining: An effective scheduling tech-
nique for VLIW machines,” inProc. SIGPLAN'88 Conf. Prog.
Language Design and ImplementatioAtlanta, GA, 1988, pp.
318-328.

14] B. R. Rau, “Iterative modulo scheduling: An algorithm for software

(18]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

pipelining loops,” inProc. 27th Annu. Int. Symp. Microarchitecture
Nov. 1994, pp. 63—-74.

J. A. Fisher, D. Landskov, and B. D. Shriver, “Microcode com-
paction: Looking backward and looking forward, fmoc. National
Computer Conf.AFIPS, 1981, pp. 95-102.

A. Aiken and A. Nicolau, “Optimal loop parallelization,” iBIG-
PLAN’88 Conf. Programming Language Design and Implementa-
tion, pp. 308-317.

——, “Perfect pipelining: A new loop parallelization technique,”
in Proc. 2nd Eur Symp. Programminger. Lecture Notes in
Computer Science: Springer-Verlag, Mar. 1988, vol. 300, pp.
221-235.

J. Fisher, “Trace scheduling: A technique for global microcode
compaction,”|IEEE Trans. Comput.vol. 30, pp. 478-490, July
1981.

J. R. Ellis, “Bulldog: A compiler for VLIW architectures,” Dept.
Computer Science, Yale Univ., Tech. Rep. YALEU/DCS/RR-364,
Feb. 1985.

P. P. Chang, N. J. Warter, S. A. Mahlke, W. Y. Chen, and W. W.
Hwu, “Three superblock scheduling models for superscalar and
superpipelined processors,” Center for Reliable and High-Per-
formance Computing, Univ. lllinois at Urbana-Champaign, Rep.
CRHC-91-25, Oct. 1991.

W. A. Havanki, “Treegion scheduling for VLIW processors,” M.S.
thesis, Dept. Electrical and Computer Engineering, North Carolina
State Univ., Raleigh, NC, 1997.

J. A. Fisher, “Global code generation for instruction-level par-
allelism: Trace scheduling-2,”, HP Laboratories Tech. Rep.
HPL-932-43, 1993.

J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program de-
pendence graph and its uses in optimizati®&xCM Trans. Program.
Lang. Syst.vol. 9, pp. 319-349, July 1987.

R. Potasman, J. Lis, A. Nicolau, and D. Gajski, “Percolation-based
scheduling,” inProc. ACM/IEEE Design Automation Con1.990,

pp. 444-449.

R. E. Hank, W. W. Hwu, and B. R. Rau, “Region-based compilation:
An introduction and motivation,” ifProc. 28th Annu. Int. Symp. Mi-
croarchitecture Dec. 1995, pp. 158-168.

1657

(26]

(27]

(28]

(29]

(30]

(31]

(32]
(33]
[34]
(35]
(36]

(37]

(38]

(39]

[40]
[41]

[42]

(43]

[44]

[45]

[46]

[47]

(48]

[49]

1658

W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter,
R. A. Bringmann, R. O. Ouellette, R. E. Hank, T. Kiyohara, G. E.
Haab, J. G. Holm, and D. M. Lavery, “The superblock: An effective
technique for VLIW and superscalar compilatiod,'Supercomput.

vol. 7, pp. 229-248, Mar. 1993.

A. Srivastava and A. Eustace, “ATOM: A system for building cus-
tomized program analysis tools,” Rroc. 1994 Conf. Programming
Language Design and Implementation (PLDQune 1994, pp.
196-205.

Intel. VTune: Visual Tuning Environment (1997). [Online]. Avail-
able: http://developer.intel.com/design/perftool/vtune/index.htm.

X. Zhang, Z. Wang, N. Gloy, J. B. Chen, and M. D. Smith, “System
support for automatic profiling and optimization,” iroc. 16th
ACM Symp. Operating Systems Principles, USENI. 1997, See
also [Online]. Available: http://www.eecs.harvard.edu/morph, to be
published.

J. M. Anderson, L. Berc, J. Dean, S. Ghemawat, M. Henzinger, S.-T.
A. Leung, D. Sites, M. Vandevoorde, C. Waldspurger, and W. E.
Weihl, “Continuous profiling: Where have all the cycles gone?,”
Digital Equipment Corporation Systems Research Center, Palo Alto,
CA, Tech. Note 1997-016, July 1997.

V. Bala, E. Duesterwald, and S. Banerjia, “Dynamo: A transparent
dynamic optimization system,” iRroc. ACM SIGPLAN 2000 Conf.
Programming Language Design and Implementatiwancouver,
BC, Canada, 2000.

T. Balland J. R. Larus, “Optimally profiling and tracing programs,”
in Conf. Record 19th ACM Symp. Principles of Programming Lan-
guagesJan. 1992, pp. 59-70.

——, “Efficient path profiling,” in Proc. Micro 96 Dec. 1996, pp.
46-57.

J. Larus, “Whole Program Paths,” RLDI 99, May 1999.

A. Young, “Path-based compilation,” Ph.D. dissertation, Harvard
Univ., Cambridge, MA, Oct. 1997.

T. Ball and J. Larus, “Branch prediction for free,”froc. SIGPLAN

'93 Conf. Programming Language Design and Implementatlane
1993, pp. 300-313.

Y. Wu and J. R. Larus, “Static branch frequency and program pro-
file analysis,” in27th Int. Symp. Microarchitecture San Jose, CA:
IEEE, Nov. 1994, pp. 1-11.

B. Calder, D. Grunwald, M. Jones, D. Lindsay, J. Martin, M. Mozer,
and B. Zorn, “Evidence-based static branch prediction using ma-
chine learning,”ACM Trans. Program. Lang. Systol. 19, no. 1,
1997.

SPEC. SPEC CPU95, Version 1.0. (1995, Aug.). Standard Perfor-
mance Evaluation Corporation. [Online]. Available: http://www.
specbench/org.

S. S. MuchnikAdvanced Compiler Design & ImplementationSan
Mateo, CA: Morgan Kaufmann, 1997.

R. Morgan,Building an Optimizing Compiler Boston, MA: Dig-

ital Press, 1998.

T.Y.Yehand Y. N. Patt, “Two-level adaptive training branch predic-
tion,” in Proc. 24th Annu. Int. Symp. Microarchitectuidov. 1991,

pp. 51-61.

S. Pan, K. So, and J. Rahmeh, “Improving the accuracy of dynamic
branch prediction using branch correlation,” ASPLOS-Y Oct.
1992, pp. 76-84.

C. Young, N. Gloy, and M. D. Smith, “A comparative analysis of
schemes for correlated branch prediction,Piroc. 22nd Annu. Int.
Symp. Computer Architectyr8anta Margherita Ligure, Italy, June
22-24, 1995, pp. 276-286.

T. Ball and J. Larus, “Programs follow paths,”, Tech. Rep.
MSR-TR-99-01, Jan. 1999.

Z.Wang, K. Pierce, and S. McFarling, “BMAT—A binary matching
tool,” in Proc. Feedback Directed Optimization 2999.

G. Albert, “A transparent method for correlating profiles with
source programs,” irProc. Feedback Directed Optimization 2
1999.

J. Fisher and S. Freudenberger, “Predicting conditional branches
from previous runs of a program,” iRroc. 5th Int. Conf. Architec-
tural Support for Programming Languages and Operating Systems
Oct. 1992, pp. 85-95.

R. P. Colwell, R. P. Nix, J. J. O’'Donnell, D. B. Papworth, and
P. K. Rodman, “A VLIW architecture for a trace scheduling
compiler,” in Proc. 2nd Int. Conf. Architectural Support for
Programming Languages and Operating SysteAms. 1987, pp.
180-192.

(50]

(51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

(59]

(60]

(61]

(62]

(63]

(64]
[65]

[66]

[67]

P. G. Lowney, S. M. Freudenberger, T. J. Karzes, W. D. Lichten-
stein, R. P. Nix, J. O’Donnell, and J. C. Ruttenberg, “The multi-
flow trace scheduling compiler). Supercomputvol. 7, pp. 51-142,
Mar. 1993.

S. M. Moon and K. Ebcioglu, “An efficient resource-constrained
global scheduling technique for superscalar and VLIW Processors,”
in Proc. MICRO-25 IEEE Press, Dec. 1992, pp. 55-71.

W. A. Havanki, S. Banerjia, and T. M. Conte, “Treegion scheduling
for wide issue processors,” Broc. 4th Int. Symp. High-Performance
Computer ArchitectureFeb. 1998, pp. 266-276.

S. A. Mahlkeet al,, “Effective compiler support for predicated exe-
cution using the hyperblock,” iRroc. 25th Int. Symp. Microarchi-
tecture (MICRO 25)1992, pp. 45-54.

C. Young and M. Smith, “Improving the accuracy of static branch
prediction using branch correlation,” ASPLOS-V,/Oct. 1994, pp.
232-241.

M. Schlansker and V. Kathail, “Critical path reduction for scalar
programs,” inProc. 28th Annu. Int. Symp. Microarchitecturnn
Arbor, MI, Nov. 29-Dec. 1, 1995, pp. 57-69.

C. Chekuri, R. Johnson, R. Motwani, B. K. Natarajan, B. R. Rau, and
M. Schlansker, “Profile-driven instruction level parallel scheduling
with applications to super blocks,” iRroc. 29th Annu. Int. Symp.
Microarchitecture (MICRO-29)Paris, France, Dec. 2—4, 1996.

P. Faraboschi, G. Desoli, and J. A. Fisher, “Clustered instruction-
level parallel processors,” Hewlett-Packard, Tech. Rep. HPL-98 204,
1998.

S. M. Freudenberger and J. C. Ruttenberg, “Phase ordering of
register allocation and instruction scheduling,” @ode Gener-
ation—Concepts, Tools, Techniques: Proc. Int. Workshop Code
Generation May 1992.

R. Motwani, K. V. Palem, V. Sarkar, and S. Reyen, “Combining reg-
ister allocation and instruction scheduling technical report,” Courant
Institute, Tech. Rep. 698, July 1995.

Norris and L. L. Pollock, “Register allocation sensitive region
scheduling,” inPACT '95: Int. Conf. Parallel Architectures and
Compilation Technique&imassol, Cyprus, June 1995.

A. E. Eichenberger and E. S. Davidson, “A reduced multipipeline
machine description that preserves scheduling constraint82 i

96.

E. S. Davidson, A. T. Thomas, L. E. Shar, and J. H. Patel, “Effec-
tive control for pipelined processors,”iroc. COMPCONT75EEE,
Mar. 1975, pp. 181-184.

T. A. Proebsting and C. W. Fraser, “Detecting pipeline structural haz-
ards quickly,” in21st Annu. ACM SIGPLAN-SIGACT Symp. Princi-
ples of Programming Language¥an. 1994, pp. 280-286.

V. Bala and N. Rubin, “Efficient instruction scheduling using finite
state automata,” iProc. MICRO-28

The National Compiler Infrastructure Project home page [Online].
Available: http://www.cs.virginia.edu/nci/.

D. W. Goodwin and K. D. Wilken, “Optimal and near-optimal global
register allocation using 0-1 integer programminggftw.—Pract.
Exp, vol. 26, pp. 929-965, Aug. 1996.

C. Young, D. S. Johnson, D. R. Karger, and M. D. Smith, “Near-op-
timal intraprocedural branch alignment,”®moc. ACM SIGPLAN 97
Conf. Prog. Lang. Design and ImplementatiorNew York: ACM,
June 1997.

Paolo Faraboschi (Member, |EEE) received
the Ph.D. degree in electrical engineering and
computer science from the University of Genova,
Italy, in 1994.

He is a Principal Research Scientist at Hewlett-
Packard Laboratories, Cambridge, MA. His inter-
ests include VLIW architectures and compilers,
instruction level parallelism, and embedded com-
puting.

PROCEEDINGS OF THE IEEE, VOL. 89, NO. 11, NOVEMBER 2001

Joseph A. Fisher (Senior Member, |IEEE)
received the Ph.D. degree from New York
University in 1979.

He is a Hewlett-Packard Fellow and directs
the Hewlett-Packard Laboratories research lab,
Cambridge, MA. He is best known for his con-
tributions to VLIW Architectures and compiling
for Instruction-Level Parallel architectures and
has worked in high-performance embedded
processing since 1994. Prior to joining HP, he

Cliff Young (Member, IEEE) received the Ph.D.
degree in computer science from Harvard Univer-
sity, Cambridge, MA, in 1997.

He works in the Computing Sciences Re-
search Laboratory at the Computing Concepts
Department, Bell Laboratories, Murray Hill,
NJ. Most of his graduate work involved playing
tricks to make computers go faster: improving
performance through compiler optimizations
driven by exotic statistics and applying archi-

was on the Computer Science faculty of Yale tectural techniques such as branch prediction. Since joining Bell Labs,

University and cofounded Multiflow Computer, which manufactured his research interests have broadened to include multicomputers (i.e.,
high-performance VLIW processors. big servers), information theory (i.e., even more exotic statistics), and
Dr. Fisher won an NSF Presidential Young Investigator Award in 1984, distributed systems (in particular, handheld, wireless-connected devices).

and was Eli Whitney Connecticut Entrepreneur of the Year in 1987.

FARABOSCHIlet al: INSTRUCTION SCHEDULING FOR INSTRUCTION LEVEL PARALLEL PROCESSORS

1659

