
Instruction Scheduling for Instruction Level
Parallel Processors

PAOLO FARABOSCHI, MEMBER, IEEE, JOSEPH A. FISHER, SENIOR MEMBER, IEEE, AND

CLIFF YOUNG, MEMBER, IEEE

Invited Paper

Nearly all personal computer and workstation processors, and
virtually all high-performance embedded processor cores, now
embody instruction level parallel (ILP) processing in the form of
superscalar or very long instruction word (VLIW) architectures.
ILP processors put much more of a burden on compilers; without
“heroic” compiling techniques, most such processors fall far short
of their performance goals. Those techniques are largely found
in the high-level optimization phase and in the code generation
phase; they are also collectively called instruction scheduling.
This paper reviews the state of the art in code generation for
ILP parallel processors.

Modern ILP code generation methods move code across basic
block boundaries. These methods grew out of techniques for gen-
erating horizontal microcode, so we introduce the problem by de-
scribing its history. Most modern approaches can be categorized
by the shape of the scheduling “region.” Some of these regions
are loops, and for those techniques known broadly as “Software
Pipelining” are used. Software Pipelining techniques are only con-
sidered here when there are issues relevant to the region-based tech-
niques presented.

The selection of a type of region to use in this process is one
of the most controversial questions in code generation; the paper
surveys the best known alternatives. The paper then considers two
questions: First, given a type of region, how does one pick spe-
cific regions of that type in the intermediate code. In conjunction
with region selection, we consider region enlargement techniques
such as unrolling and branch target expansion. The second ques-
tion, how does one construct a schedule once regions have been
selected, occupies the next section of the paper. Finally, schedule
construction using recent, innovative resource modeling based on
finite-state automata is then reexamined. The paper includes an ex-
tensive bibliography.

Keywords—Compilers, instruction level parallelism, instruction
scheduling, VLIW.

Manuscript received February 1, 2001; revised July 24, 2001.
P. Faraboschi and J. A. Fisher are with Hewlett-Packard Laborato-

ries, Cambridge, MA 02142 USA (e-mail: paolo_faraboschi@hp.com;
josh_fisher@hp.com).

C. Young is with Bell Laboratories, Murray Hill, NJ 07974 USA (e-mail:
cyoung@plang.bell-labs.com).

Publisher Item Identifier S 0018-9219(01)09686-4.

I. INTRODUCTION

This paper is about compiling for instruction level par-
allel (ILP) architectures, particularly very long instruction
word (VLIW) and superscalar architectures. More narrowly,
it concerns the code generation phase of compiler back ends,
applied to acyclic sections of code. We emphasize the code
generation phase because, when writing a compiler for an
ILP architecture, code generation differs most from an ordi-
nary compiler. In particular, we focus on code generation for
acyclic sections of code.

The rest of this paper is organized as follows.
• Section II discusses the history of the problem, which

appeared in disparate domains before it was recognized
as a central problem. This history introduces several
concepts that are covered in much greater depth in the
following sections.

The compiling techniques we discuss are referred to asre-
gion scheduling techniques, where “region” refers to subsec-
tions of a program that are compiled at the same time. ILP
compilation techniques differ primarily in the scope of the
region considered. This drives the organization of our paper.

• Section III enumerates and describes the major region
types that have been suggested.

• Section IV discuss how to form actual regions from a
source program, once one has fixed the decision to use
a given region type.

• Section V considers the construction and emission
of the “schedule,” that is, the object program that
results from the compilation process. It also discusses
a key efficiency issue: determining the available CPU
resources while scheduling.

II. HISTORY OFCODE GENERATION FORILP PROCESSORS

A. The Three Domains That Drove Research in This Field

During the two decades from 1965 to 1985, three sim-
ilar problems emerged in three different domains. In each

0018–9219/01$10.00 © 2001 IEEE

1638 PROCEEDINGS OF THE IEEE, VOL. 89, NO. 11, NOVEMBER 2001

case, an innovative CPU design allowed operations whose
execution could overlap in time, within a single instruction
stream. Hand coders could often rearrange code to use the
CPU efficiently—that is, to make the program overlap more
operations and thus complete as quickly as the resources of
the machine allowed. However, attempts to automate these
code rearrangements (using a compiler or some other code-
processing tool) fell well short of what a human could do.
The early automated techniques missed many opportunities
to overlap operations: at some point in the program execu-
tion, there would be operations whose inputs were “ready,”
there would be sufficient resources to execute the operations,
but due to the order in which the code was presented to the
CPU, the clock ticked and the operations did not issue. Such
failures occurred much less frequently in code reordered by
hand, and this gap instigated a research topic.

The three different domains with similar problems were as
follows.

1) The compaction of microcode, or the conversion of
“vertical microcode” into “horizontal microcode”1

[1]. This was made more widely applicable by the
prospect of “writable control stores” for microcoded
CPUs, which were expected to lead to the production
of far more horizontal microcode. Extensive printed
research on this topic first appeared in the mid-1970s.

2) Compiling for attached signal processing CPUs, or
“array processors” [2]. The most famous of these were
the Floating Point Systems AP-120b (introduced in
1975) and FPS-164 (introduced in 1980), though there
were many others.

3) Code production for the nascent supercomputers’
scalar units. These issues first appeared with the
delivery of the CDC-6600 in 1963 [3]. However, the
problem was treated anecdotally and withad-hoc
techniques, rather than as a research topic in its own
right.

Each of these types of CPUs can be regarded as the for-
mative stage of a popular type of modern microprocessor.
The first led to VLIW architectures, the second prefigured
today’s DSP cores [4], and the third led to superscalars. Re-
searchers and engineers in these three domains often worked
on this problem without knowing of the existence of the other
domains.

Today, rearranging code in these three domains is seen as
one problem. Historically this was less clear. Unlike VLIWs
and DSPs, superscalar hardware sometimes rearranges code
at runtime. This led early superscalar architects to maintain
that compilers need not schedule code, since the hardware
would do the job instead. Few researchers believe this today,
rather most feel that the bulk of the rearrangement to be done
must be done in advance in each case. Today, superscalar

1Microcode can be thought of as a RISC-like level of code, used to
hard-wire a program into the CPU that emulates a more complex instruction
set. As language levels, the main difference between vertical microcode
and RISC is that microcode is typically more idiosyncratic than RISC.
Vertical microcode relates to the hardware at a somewhat lower level than
RISC operations, and usually only one program will be written in it, so the
price of obscurity is not so high. The horizontal microcode of the 1970s
resembles today’s VLIW level.

code rearrangements are viewed as ways to compensate for
dynamic changes (in latency, for example), or as mechanisms
to permit good performance on legacy code when the super-
scalar microarchitecture changes. Far-reaching adjustments
in code order must be made before the code runs.

In most of this paper, we adopt the perspective of filling
VLIW-style instructions, which contain issue slots for
individual operations. This clarifies descriptions, since
VLIW instruction streams typically map directly to the
record of execution, allowing us to avoid considering the
variety of rearrangements that superscalar hardware might
add. In particular, both VLIW and superscalar designs
have issue “slots” that must be filled, regardless of the
rearrangements performed by hardware. Filling these slots
requires essentially the same considerations for both kinds
of architectures.

B. The Problem and the Opportunity: “Filling the Slots”

In each of the environments above, there was the same
problem—how to move operations past each other in order
to fill slots. That operations must be rearranged is obvious:
when an operation cannot be issued in a given cycle, there
might be operations below it in the instruction stream that
could be. In the case of a VLIW, this means that it might be
useful for the compiler to reorder operations, so that an issue
slot is not wasted. A glance at any program will convince one
that stopping at a “blocked operation” will throw away much
of the processor’s potential.

At first, the problem of filling slots was seen as relatively
straightforward, with natural techniques to address the
problem. Although the problem is NP-complete (it is the
infamous “job shop scheduling” problem [5]), simple heuris-
tics work in practice. Techniques such aslist scheduling
(defined later) were shown to be effective [6]. We cover these
techniques in Section V, but the idea of these techniques is
very straightforward. First, build a data precedence graph (or
DAG), which represents which operations depend directly
on other operations. Then try to account for how critical
an operation is when forming the schedule. Operations are
considered critical if they have many descendants in the
DAG, and/or if they start a long chain of operations which
must be executed in turn. When operations are critical, try
to schedule them sooner than less-critical operations.

This class of techniques is referred to as “Local Com-
paction.” The earliest known work on the subject appeared
in 1971 [7], but the first papers that recognized this problem
as a field of study, and put some perspective on it, appeared
in 1974–1975 [8]. Research done at the time did not involve
realistic implementation in actual products, and some harder
problems were largely ignored. For example, there was
little consideration of phase ordering with register alloca-
tion—though the problem was discussed by Landskovet al.
[1]. Other largely ignored realities included operations with
multiple-cycle latency and complex underlying hardware
structures. Landskovet al. [1] is also a valuable general
survey of local compaction techniques.

1) Local Compaction Did Not Suffice:Local compaction
techniques were applied to a very limited region of code: a

FARABOSCHIet al.: INSTRUCTION SCHEDULING FOR INSTRUCTION LEVEL PARALLEL PROCESSORS 1639

“basic block,” namely straight-line code with no branches
out except at the bottom, and no branches in except at the top.
Intuitively, it did not make sense to schedule across branches,
because one would not want to move an operation before a
branch when there was a chance that control might transfer
to the wrong leg of the branch.

But as these techniques were proposed and investigated,
researchers noticed that too many “slots” remained—too
many in the sense that hand rearrangements still seemed to
use more of what the hardware was capable of. This shortfall
occurred because operations from other basic blocks could
fill the slots in ways that considered the branch problem and
accounted for it. For example, one might shorten a schedule
by moving an operation down past a branch, making a copy
of the operation in both basic blocks that were targets of the
branch. Sometimes this could eliminate a cycle in the earlier
block, while not adding cycles to one or both of the target
blocks. Many similar motions of this sort become evident
after even a few minutes of working with a section of code.

While these opportunities might seem small, experiments
[9] had indicated that most of the opportunity for shortening
schedules lay beyond branch boundaries. Although few
people in the field were aware of these experiments (they
were done in an architecture context, not a software tool
context), there was the broad realization in the research
community that the boundary caused by branches were the
largest limiting factor.

This realization motivated many new techniques. The
first group of “global compaction” (beyond basic block)
techniques could be described as “schedule-and-improve”
techniques. These first techniques grew mostly out of
the microcode domain, where producing microcode in
horizontal format was very difficult, error-prone and time
consuming. Schedule-and-improve techniques appeared in
the mid-1970s.

The schedule-and-improve techniques worked roughly as
follows.

1) The program is divided into basic blocks, each of
which is scheduled (local compaction).

2) The scheduled program is then iteratively improved by
moving individual operations from block to block.

These techniques gave researchers the intuitive feeling
that they were mirroring what people were doing when they
did microcode compaction by hand. The best known of
the early global compaction techniques was calledMORIF
[10]. MORIF built templates for each operation, where
the two-dimensionality of the template allowed a limited
representation of the resources used by the operation. After
local compaction, a search was done to find candidate moves
between blocks, based on the criticality of the operations.
Then a catalog of potential legal moves, similar to those
shown in Fig. 7, was considered for the most critical oper-
ations. There was an additional facility for backtracking to
avoid deadlocks that could occur when code motions left an
operation no legal slot to occupy.

One fascinating schedule-and-improve technique took the
fill-the-slots philosophy to the extreme. Nobel Laureate Ken
Wilson [11] and his students, working with FPS CPUs in the

attached processor domain, considered a scheme involving
Monte Carlo techniques, which had been quite successful
in particle physics. The basic idea was that after local com-
paction, huge quantities of random legal code motions would
be tried in search of improvements. Sometimes even bad
code motions would be tried, so that hills could be climbed.
At the time, many felt that compute time was a basic flaw
in this idea. The only report we know of on this work ac-
knowledged “It has not been determined yet how much com-
puter time will be required to achieve effective code opti-
mization by the Metropolis Monte Carlo procedures. If the
Monte Carlo approach works ”

Schedule-and-improve methods never became popular;
nearly all ILP code generation techniques proposed and
implemented during the past 20 years have instead involved
some form of Region Scheduling.

2) Using Region Scheduling Techniques to Produce Better
Schedules:A fundamental flaw in the schedule-and-im-
prove techniques, as seen by some researchers at the time,
was that too many arbitrary decisions were made when basic
blocks were scheduled. Arbitrary local choices might be all
wrong when operations from other blocks were considered.
The easiest-to-see example of this is that operations within a
block will be scheduled near the beginning of the schedule
if possible, but far more critical sequences from later blocks
may be the real processing bottleneck. Not starting the later
sequences earlier may be an undesirable choice, but by the
improve phase, there are no longer slots left in which to start
the more critical sequences. Attempting to undo the earlier
schedules to make new slots near the top of the blocks can
result in impractical computational complexity. Nor does it
make sense to reserve slots at the top of every block.

The alternative to schedule-and-improve that has domi-
nated global scheduling since it was introduced in 1979 is
called Region Scheduling. The basic idea, first elaborated
in the region scheduling techniqueTrace Scheduling[6], is
to select code originating in a large region, typically many
basic blocks, before scheduling. Then schedule operations
from the region as if it were one big basic block.

More carefully, a region scheduling compiler typically fol-
lows this sequence in its “scheduler.”

1) Given the representation of the code being compiled in
the compiler’s intermediate form, pick a region from
the as-yet-unscheduled code. The region is simply a
set of operations originating in more than one basic
block. Typically, but not necessarily, a region is a set
of contiguous basic blocks. Sometimes a code trans-
formation is done prior to region selection, with the
goal of enhancing the region selected, for example by
making it larger. Fig. 1 shows an example of a typical
code region.

2) Next, place the selected operations on a data-prece-
dence graph. Sometimes the edges or the operations
are decorated with additional information that is only
important to region scheduling. In addition, some spe-
cial edges may be added to the graph that prohibit il-
legal or undesirable code motions. These edges pre-
vent code motions that would be illegal because they

1640 PROCEEDINGS OF THE IEEE, VOL. 89, NO. 11, NOVEMBER 2001

Fig. 1. Example of a typical “region” (in this case, a
multiple-entry, multiple-exit region).

would imply a violation in flow control that cannot be
compensated for when the schedule is produced. Such
special edges are not required for local compaction,
since there is no flow control to consider within a basic
block.

3) Next, schedule the operations.
4) Finally, either along the way, or in a post-phase, do any

necessary fixups. Usually these fixups take the form of
extra operations that mitigate what would have been
an illegal transformations caused by the positions of
the scheduled operations. For example, sometimes an
operation is moved in such a way that it should have
been executed along some path through the code, but is
not. In that case, a copy of the operation is placed in the
path from which it is missing. These added operations
are often calledcompensation code.

5) Go back to step 1) until no unscheduled code remains.
This is the core algorithm of region scheduling, as

specified in Trace Scheduling. There are many other region
scheduling algorithms that have appeared in the past 20
years which vary from the Trace Scheduling algorithm at any
step, but most follow essentially this framework. Typically,
the algorithms vary in the region they select [step 1)] and in
the complexity of the schedule construction pass [step 3)].

Section III describes the regions used by the most popular
region scheduling algorithms.

C. Software Pipelining

Although region scheduling usually involves regions of
loop-free code, most algorithms handle loops in some way.
For example, many compilers unroll important loops to in-
crease region size, but, in that case, the region that is actually
scheduled is still loop-free.

Software Pipeliningis a set of techniques [12]–[14] that
deal systematically with scheduling loops. The oldest Soft-
ware Pipelining techniques we know were developed for the
CDC-6600 Fortran compiler, at least as early as 1970 (and
probably earlier). We would not be surprised to hear that they
were also applied by the IBM compilers for the high-perfor-
mance CPUs of the same era. Under software pipelining, op-

erations from several loop iterations are gathered in a single
new loop. The new loop intermingles operations from dif-
ferent iterations to fill slots. At the entrances and exits of the
new loop, new code, analogous to the compensation code of
region scheduling, is placed which allows original loop iter-
ations that are not completed in a single iteration of the new
loop to be completed.

Interestingly, there has been an idea at the intersection of
region scheduling and software pipelining. First suggested
by Fisheret al. [15], and developed fully by Aiken and
Nicolau [16], conceptually this technique unrolls loops
an indefinite number of times, and then schedules (using
some region scheduling technique) until a pattern becomes
apparent. Then a software pipeline is set up, using that
pattern as the model of the new loop. This technique has
been called “Perfect Pipelining” [17].

D. Predication

ILP is much harder to achieve in the presence of complex
control flow. A variety of hardware and software techniques,
which fall under the term “predication,” transform control
dependence into data dependence. We mention predication
from time to time throughout the paper, because its presence
is required to discuss topics of importance here. Other papers
in this Special Issue cover this topic.

E. Terminology

Because of the many origins of instruction scheduling
techniques, multiple terms exist to define the same concept.
Examples are legion: instructions, operations, syllables,
groups, and bundles all refer to the units and groups of
scheduling, issuing, and executing code. We will use a set of
preferred terms consistently throughout this paper, and we
will endeavor to point out synonyms wherever possible.2

III. REGION TYPES AND SHAPES

Most of the alternative methods of region scheduling differ
in the shape of the regions they form. Indeed, the algorithms
are usually named after the region shape. This section intro-
duces the most commonly implemented regions.

A. Basic Blocks

Basic blocks are a “degenerate” form of regions. Region
scheduling algorithms have to work even when their region
selection procedures specify a basic block (for example,
when there is an unscheduled basic block with no unsched-
uled contiguous blocks). We mention them here because,
despite the generally-held belief that region scheduling is
necessary for good performance, its engineering is seen
as so daunting that many compilers implement only basic
block (local) scheduling, leaving a region scheduling imple-
mentation to the indefinite future.

2People commonly refer to the phenomenon of inventing new terms to
describe existing concepts as one of the manifestations of the NIH (“Not In-
vented Here”) syndrome, from which the authors are certainly not immune.

FARABOSCHIet al.: INSTRUCTION SCHEDULING FOR INSTRUCTION LEVEL PARALLEL PROCESSORS 1641

B. Traces

A trace is a linear path through the code. Trace sched-
uling and its variants are probably the most commonly im-
plemented forms of region scheduling. A Trace consists of
the operations from a list of basic blocks
with the following properties.

1) Each basic block is a predecessor of the next on the list
(i.e., for each , falls through or
branches to).

2) For any and , there is no path
except for those that go through (i.e., the code is
cycle free, except that the entire region can be part of
some encompassing loop).

The outlined area of Fig. 1 shows a typical trace. Note,
as the figure shows, this definition does not prohibit forward
branches within the region, or flow that leaves the region and
comes back into the region at a later point. Indeed, the lack of
these restrictions has been controversial in the research com-
munity because it makes Trace Scheduling compilers consid-
erably more complex than many researchers feel necessary.
Adding those restrictions, sometimes with code duplication
to mitigate their impact, is the principle behind several of the
later region scheduling regions discussed below.

Traces, and Trace Scheduling, were introduced by Fisher
[6], and were described more carefully by Fisher [18], and
especially Ellis [19].

C. Superblocks

Superblocks [20] are Traces, with the added restriction
that there may not be any branches into the region except to
the first block. Thus, a Superblock consists of the operations
from a list of basic blocks with the same
properties as a trace.

1) Each basic block is a predecessor of the next on the list
(i.e., for each , falls through or
branches to).

2) For any and , there is no path
except for those that go through (i.e., the code is
cycle free, except that the entire region can be part of
some encompassing loop).

And the additional property:
3) There may be no branches into a block in the region,

except to . These outlawed branches are referred to
in the Superblock literature asside entrances.

The restriction against side entrances eliminates the very
difficult engineering surrounding compensation code in
Trace Scheduling. Superblock formation involves a region
enlarging technique calledtail duplication, which allows
Superblocks to avoid ending the moment a side entrance is
encountered. Superblocks are built by first selecting a Trace.
Then, when a side entrance is encountered, a copy is made
of the rest of the trace. The side entrance then branches to
this copy, and the new code finally branches to the end of
the region, thus eliminating the side entrance. This process
continues as more blocks are added to the region and more
side entrances are encountered. Tail duplication, in essence,

adds the compensation code mandated by an entrance to
the regionbeforethe region is scheduled. As such, it trades
space for compiler complexity and must be used selectively.
The effect of this on the quality of the resultant schedules
is not well characterized in the research. It is worth noting
that the originators of Superblock scheduling also proposed
region-enlarging techniques that are meant to minimize
the extra code involved. These same techniques could be
profitably applied to Trace formation and other region
selection and enlarging methods.

All of the region scheduling techniques rely on region en-
larging techniques to increase the amount of ILP the compiler
can exploit. But to a much greater extent, Superblock sched-
uling relies on tail duplication as an essential feature.

D. Treegions

A Treegion [21] is a region containing a tree of basic
blocks within the control flow of the program. That is, a Tree-
gion consists of the operations from a list
of basic blocks with the following properties.

1) Each basic block , except for , has exactly one
predecessor. That predecessor,is on the list, where

. This implies that any path through the Treegion
will yield a Superblock, that is, a Trace with no side
entrances.

2) For any and , there is no path
except for those that go through (i.e., the code is
cycle free, except that the entire region can be part of
some encompassing loop).

As with superblocks, tail duplication and other enlarging
techniques are used to remove side entrance restrictions. Re-
gions in which there is only a single flow of control within the
region are sometimes called “linear regions.” In that sense,
Traces and Superblocks are linear regions, while Treegions
are “nonlinear regions.”

E. Other Region Shapes

There are several other regions that have been suggested,
and some that have been implemented. We do not cover them
in detail for various reasons: some because they have only
been suggested and leave many of the required implementa-
tion details to the reader; others (in particular, Hyperblocks)
because they are covered elsewhere, and others because they
are scheduling frameworks which have similar goals, but are
difficult to describe as scheduling algorithms.

One such method is Trace-2 [22]. Trace-2 is a nonlinear
region with a single entrance, like Treegions, but without the
restriction on side entrances. The implementation was so dif-
ficult that the author gave up in disgust, and knows of no one
who has implemented it. The description of Trace-2 leaves
many details to the implementer. It is worth noting that the
author concluded that a good implementation would require
a very thorough use of Program Dependence Graphs [23].

Hyperblocks[53] are single-entry, multiple-exit regions
with internal control flow. These are variants of Superblocks
with the technique of predication (which requires very ex-

1642 PROCEEDINGS OF THE IEEE, VOL. 89, NO. 11, NOVEMBER 2001

tensive hardware support) used to fold multiple control paths
into a single Superblock.

Percolation Scheduling[24] is an algorithm for which
many rules of code motion are applied to regions that
resemble Traces.

Before proceeding, we note that this paper concentrates
on region selection in acyclic schedulers. In a cyclic sched-
uler, region shape is often quite limited, either to a single,
innermost loop or to an inner loop that has very simple con-
trol flow. These structural requirements mean that a cyclic
scheduler can be applied in only a few places, albeit pos-
sibly the hot loops of many programs. Profiles will of course
show when the cyclic scheduler will actually be beneficial
(and conversely, cyclically scheduling a loop with a low trip
count can be disastrous). See the other papers in this spe-
cial issue on cyclic scheduling and the IA-64 architecture for
more details about cyclic scheduling.

IV. REGION FORMATION

The previous section introduced a number of region shapes
used in instruction scheduling. Once one has decided on a
region shape, two questions present themselves: how does
one divide a program into regions of a particular shape, and
having chosen those regions, how does one build schedules
for them? We call the former problemregion formationand
the latter problemschedule construction; they are the topics
of this section and the next section, respectively. In a sense,
the division of instruction scheduling into these two areas in-
dicates the difficulty of the problem or the weakness of the
known solutions. One would like to “just schedule” an en-
tire program, but the technology and algorithms do not allow
such a direct approach. Instead, schedule construction solves
the scheduling problem for those limited cases that we do un-
derstand, where the region has a particular shape. Region for-
mation then must divide the general control flow of the pro-
gram into manageable, well-defined pieces for the schedule
constructor to consume.

The combined effects of region formation and schedule
construction are critical to performance. Well-selected re-
gions will cover the CFG of the program in a way that
keeps the program executing along the expected paths in
the scheduled code. Poorly selected regions penalize per-
formance because the schedule constructor will add instruc-
tions from infrequently executed parts of the program to
the critical execution path. Perhaps stating the obvious, the
goal of region formation is to select regions that will allow
the schedule constructor to produce schedules that will run
well. For this reason, it is important to keep in mind what
the schedule constructor will do. The schedule constructor
examines only one region at a time, so the goal of region
construction is to find frequently executed basic blocksthat
execute togetherand group them into the same region. If
two chunks of the program that execute together are placed
in separate regions, then very little benefit will be extracted
by instruction scheduling. Designers of region formation
passes face three main questions: Which program chunks
are frequently executed? How can we tell that two chunks

execute together? How does region shape interact with the
first two questions?

The traditional answer to the first two questions is to use
profiles to measure or heuristics to estimate how frequently
each part of the program is executed. Both heuristic and
profile-based approaches assign execution frequencies to
parts of the program such as nodes or edges in the CFG.
In using heuristics and profiles, care must be taken both
in the methodology with which the statistics are collected,
and in managing the statistics as the program is modified
by different parts of the compiler. There has been a variety
of innovations in the kinds of profiles collected and in the
efficiency of techniques used to collect them in the past
decade.

Once one has a usable set of statistics, the question re-
mains how to use them to form useful regions. Region for-
mation often means more than justselectinggood regions
from the existing CFG; it also includesduplicatingportions
of the CFG to improve the quality of the region. Duplication
increases the size of the final program, so many different al-
gorithms and heuristics have been applied that make a va-
riety of tradeoffs. Region formation must also produce valid
regions that the schedule constructor can use; this may entail
additional bookkeeping or program transformations.

The set of options for region formation can be applied in
a variety of orders; these phase orders produce an additional
set of engineering constraints and tradeoffs.

This section treats the issues roughly in what might
be termed, “compiler-engineering order.” First, we give
an overview of heuristic and profile-based techniques for
estimating execution frequencies. Once one has statistics in
which one believes, one can try to form regions; the second
subsection addresses this topic. We elaborate on enlargement
and duplication techniques in the third subsection, then we
close with a discussion of phase-ordering issues that relate
to region formation.

A. Statistics for Scheduling

All region formation techniques depend on weights as-
signed to each part of the program. These weights indicate
the relative execution frequency of that part. To simplify dis-
cussion, we will concentrate on region formation algorithms
that work within a single procedure, and therefore we need
weights that apply to parts of the procedure’s CFG.3 This
section starts by describing the kinds of profile data used for
scheduling, continues by summarizing the methods for col-
lecting the profiles, goes on to describe heuristics techniques
that avoid profiling, then concludes with a discussion of the
bookkeeping subtleties in using profiles.

1) Kinds of Profiles: Prior to 1994, all scheduling-related
profiling work concentrated onpoints in the CFG: either
nodes or edges in the graph. A node or edge profile would
then tell how many times a particular basic block was ex-
ecuted, or how many times control flowed from one basic

3One definition of “region scheduling” allows scheduling regions to span
procedure calls. For example, see Hanket al. [25]. In the interest of brevity,
we will not focus on such techniques in this section; the issues remain the
same in an interprocedural context.

FARABOSCHIet al.: INSTRUCTION SCHEDULING FOR INSTRUCTION LEVEL PARALLEL PROCESSORS 1643

block to one of its immediate neighbors, respectively. In the
past few years, researchers have also started collectingpath
profiles, measuring the number of times a path, or sequence
of contiguous blocks in the CFG, was executed. Path profiles
have been built in a variety of forms: forward paths, “gen-
eral” but bounded-length, and whole-program. Each kind of
profile has a graph-theoretic definition; comparing the merits
and costs of each kind has occupied many researchers. The
major differences have to do with trading off the resolution
or context associated with each data point with the efficiency
of collecting the profile. Each level of additional information
allows distinguishing different aspects of program behavior.
Advocates of each level have produced optimizations that
benefit from this information (e.g., various path optimiza-
tions).

One terminological note: the instruction scheduling com-
munity refers to the profiles used to drive instruction sched-
uling asstatic branch prediction. The techniques are iden-
tical.

2) Profile Collection: Profiles can be collected in a
number of different ways. The oldest technique isinstru-
mentation, where extra code is inserted into the program
text to count the frequency of a particular event. Instru-
mentation can be performed either by the compiler, or by
a post-compilation tool such as Atom [27]. More recently,
hardware manufacturers have added special registers that
record statistics on a variety of processor-related events;
these registers have been used to perform profiling in tools
such as VTUNE [28]. Hardware techniques can have very
low overheads, but they do not usually report exhaustive
statistics like instrumentation does. Some researchers have
built statistically sampling profilers, where an interrupt
occasionally examines the machine state. Statistical profiles
are noisier than exhaustive profiles, but they also can
be collected with extremely low runtime overhead. The
Morph project implemented a software-only low-overhead
instrumentation system [29], while the DCPI/CCPI project
[30] implemented a hybrid system that used both statistical
sampling and hardware registers. In an overhead-aware
approach that is different from statistical sampling, the
Dynamo project from HP [31] implements a lazy version of
profiling, where instrumentation is removed after execution
exceeds a threshold value.

Because instrumentation usually measures exhaustively,
there has been work on efficiently profiling as well. Ball and
Larus observed that edge profiling could sample a subset of
edges in the CFG but still reconstruct all edge weights [32].
Their technique samples enough edges to break all cycles in
the undirected version of the CFG. In later work on forward
path profiling, Ball and Larus describe how to enumerate all
of the forward paths in a procedure, then determine the path
number by modifying a single profiling register as control
decisions are made [33]. And the sequence of forward paths
can be compressed to describe an entire program trace; Larus
calls this a whole-program path [34]. Young describes an effi-
cient collection algorithm for general, bounded-length paths
in his thesis [35]; his approach involves lazily exploring the
finite-state automaton of all paths in a procedure.

3) Synthetic Profiles (Heuristics in Lieu of Pro-
files): Historically, there were arguments about whether
profiles were legal to use, practical to collect, part of proper
benchmarking methodology, and so forth. Heuristic branch
prediction assigns weights to each part of the program based
solely on the structure of the source program; running the
program is not required. The danger of heuristics is that
you do not get to see how the program behaves with real
data. You may not be able to tell what is common code
and what is exceptional code, and your heuristics may then
spend valuable optimization time and program space on the
uncommon case. But the win is that you might not have
to collect statistics on actual running programs, which can
seem a daunting operational task.

We know of three major approaches to heuristic profile
synthesis: loop-nest depth, weighted heuristics, and neural-
network techniques. Loop-nest depth uses standard compiler
techniques to find the loops in the program and assign a loop
nesting depth. Loop branches are assumed to loop with some
fixed probability (typically 90%), and synthetic weights are
calculated appropriately [51]. The weighted heuristic tech-
nique was pioneered by Ball and Larus [36] and refined by
Wu and Larus [37]. Ball and Larus’ original idea was to have
a set of heuristics, each of which may or may not apply to a
given branch in the program. For example, the loop heuristic
predicts that loop branches will stay in the loop, while the
return heuristic predicted that returns were not branched to.
The heuristics were then empirically ranked for relevance
by a training set of programs. Wu and Larus refined this by
empirically assigning a branch probability to each heuristic
that applied, then using the Dempster–Shaffer formula to
blend these probabilities. Lastly, Calderet al.trained a neural
network based on a corpus of C programs to heuristically
predict branches [38]. None of these heuristic techniques
gives better results than actual profiling, and no path-based
heuristic techniques have been published. But the techniques
remain interesting as a way of potentially avoiding building
and installing a profiling pass.

Since profiling has been deployed in dynamic optimiza-
tion, compilation, and translation systems the arguments
against profiling have been weakening. Training data sets
are now part of standard benchmark suites [39]. Further, in
the emerging embedded space, devices are built for a single
purpose, and both the common code and sample data sets
fall readily to hand. For purposes of discussion, we will
refer to both the heuristic and profile-based approaches as
producing profiles; one can consider the heuristic techniques
to produce synthetic profiles.

4) Profile Bookkeeping and Methodology:If the pro-
filing pass and the instruction scheduling pass are not
adjacent in the compiler’s design, then there are book-
keeping issues to manage whenever an intervening pass
transforms the program. Further, profiles only measure the
parts of the program that were visible before the profiling
pass: changes to the CFG made after instrumentation was in-
serted will not be visible to the profiling code. Furthermore,
region formation itself can transform the program in ways
that change the applicability of profile information. For

1644 PROCEEDINGS OF THE IEEE, VOL. 89, NO. 11, NOVEMBER 2001

these reasons, most textbooks [40], [41] advocate profiling
as close to the point where profile information is used as
possible. But regardless, bookkeeping issues still must be
faced.

Most bookkeeping involves applying what we callthe
axiom of profile uniformity:

When one copies a chunk of a program, one should
equally divide the profile frequency of the original
chunk among the copies.
In the case of point profiles, there is probably nothing

else to be done. The independent nature of the profile mea-
surements means that no other information remains to dis-
ambiguate the copies. However, recent work on path pro-
filing suggests that profile uniformity is a poor assumption
to make. Rather, there are correlations among branches in
a program [42]–[44], or more succinctly, programs follow
paths [45]. Path profiles are not immune to such problems
(e.g., one might duplicate an entire path, in which case the
profile would not be able to disambiguate between the two
copies), but because they capture more dynamic context, they
are more resilient to program transformations.

Some researchers have done work on reusing profiles
of older versions of a program with the current version of
the program; this involves hierarchically matching program
components [46]. Another work documents the accounting
performed to use a profile from the optimized program
code, ideally removing the need to build a separate, profiling
version of a program [47].

While not strictly a bookkeeping issue, we note here that
cross-validation is crucial to properly studying profile-based
optimizations. It is bad methodology to train (profile) and test
(evaluate) on the same input, since a real-world application
will probably face a variety of inputs. Training and testing on
the same input is calledresubstitutionin the learning theory
community; it provides a useful upper bound but not a prac-
tical performance value. Part of the early debate about using
profiles concerned variability across training data sets; Fisher
and Freudenberger’s study observed that while bad training
sets could always be found, the majority of training sets were
“reasonable” under cross-validation [48].

Many of the heuristic approaches described above also use
a training corpus to derive branch biases or to train the neural
network. Such training corpuses are similar to training data
sets; results using them without cross-validation should be
considered carefully.

B. Region Selection

From this point on, we assume that we have access to ex-
ecution frequency information. As discussed above, all of
the heuristic techniques strive to produce profile-like data
without running the program, so the engineering of this and
subsequent passes is unaffected by how profiles are collected
or synthesized.

The most popular algorithm for region selection istrace
growingusing themutual most likely heuristic. As described
before, a trace is a path through the program CFG; it is

legal for a trace to have many side entrances and exits. The
mutual most likely heuristic works as its name implies. A
trace has a first block and a last block; the mutual most
likely heuristic can be used to extend either end of the trace.
Consider the last block, , of the trace. Use edge statistics
to find its most likely successor block, . Next, consider

’s predecessors. If is ’s most likely predecessor, then
and are “mutually most likely,” and the heuristic adds
to the trace, making it the new end of the trace. The trace

can be grown either forward or backward in the CFG. Trace
growing stops whenever no mutually most likely block can
be found to extend the trace, a back edge is encountered, or
the mutually most likely block is already part of a different
trace. The process iterates by finding the highest-frequency
unselected block in the program and using that as a seed
for the trace. The process ends when all blocks have been
assigned to traces. Some traces may consist of only their
seed block.

The implementers of the Multiflow compiler [51] list a
number of alternative heuristics to mutual most likely with
which they experimented. None seemed more intuitively sat-
isfying than mutual most likely, and none of them worked
better than mutual most likely in practice [52].

Superblock formation involves traditional trace growing,
followed by an additional step calledtail duplication. Tail
duplication removes side entrances from all traces by making
duplicates of those blocks reachable by side entrances, then
reconnecting the side entrances to the duplicates. Once the
side entrance edges have been removed from the trace, the
trace is left with a single entrance block at its start, making it
a valid superblock. Tail duplication increases code size, pos-
sibly drastically, so implementers of superblock schedulers
take care to schedule only the hot procedures in a program.
Tail duplication can also be viewed as an alternative to com-
pensation code that trades code expansion for simplicity in
engineering the schedule constructor. See the next section
for further discussion of compensation code and suppression
thereof.

One unsatisfying aspect of trace formation using point pro-
files is the cumulative effect of conditional probability. In
point profiles, the probability of each branch is measured in-
dependently. Whenever the trace crosses a split or join in the
CFG, the probability of traversing the entire trace changes.
With point profiles, we must assume that this probability is
independent for each branch, so the probability of remaining
on the trace falls away rapidly. For example, a trace that
crosses ten splits, each with a 90% probability of staying on
the trace, appears to have only a 35% probability of running
from start to end. Researchers have addressed this problem in
three ways: building differently shaped regions, using pred-
ication hardware to remove branches, and getting better sta-
tistics.

Forming nonpath-shaped regions appears to simplify
the region selection process, since the region selector can
choose both sides of a difficult split or join. However,
nonpath-shaped regions require more complicated schedule
construction passes or more complicated hardware or both.
Complexity is not avoided; it is just handled elsewhere.

FARABOSCHIet al.: INSTRUCTION SCHEDULING FOR INSTRUCTION LEVEL PARALLEL PROCESSORS 1645

Nonlinear region approaches include Percolation Scheduling
[24], DAG-based scheduling [49], and Treegions [50].

Predicated execution allows a different approach to
difficult (forward) branches: go both ways. Predication
necessarily complicates the hardware, the instruction-set
architecture (ISA), and the compiler. Hyperblock formation,
the most recently documented approach to predication, still
uses the mutual-most-likely trace formation mechanism as a
basis; it then adds additional blocks to the region based on a
heuristic that considers block size and execution frequency
[51]. Predication is a very powerful tool for removing unpre-
dictable branches and exploiting otherwise-unused machine
resources, but it can also negatively affect performance. The
time to execute a predicated block includes the cycles for
all scheduled operations, so shorter paths may take longer
under predication. Predication is most effective when paths
are balanced or when the longest path is the most frequently
executed.

Young and Smith explored getting better statistics in a se-
ries of papers. Their initial work used global, bounded-length
path profiles to improve static branch prediction [54]. Their
technique,static correlated branch prediction(SCBP), col-
lected statistics about how the path by which a branch was
reached affected its direction. By analyzing this information
globally, they produced a transformed CFG with extra copies
of blocks, but in which the extra copies were statically more
predictable. Unfortunately, while SCBP was intended to help
back-end optimizations such as scheduling, its transforma-
tion of the CFG led to complex graphs in which the branches
were individually predictable but in which linear execution
traces were hard to find. In later work that directly addressed
instruction scheduling, Young and Smith used path profiles
to drive the region formation stages of a superblock scheduler
[35]. The later work, on path-based instruction scheduling,
used a very simple technique to select superblocks. Treat the
current trace as a path, and consider its execution frequency.
Then consider the execution frequency that results from ex-
tending the trace to any of the possible successor blocks. Be-
cause the general path profiles include this frequency infor-
mation, there is no need to invoke profile uniformity. Corre-
lations are preserved through the region formation process.

C. Enlargement Techniques

Region selection alone does not usually expose enough
ILP for the schedule constructor to keep a typical wide-issue
machine occupied. To further increase ILP, systems usere-
gion enlargementtechniques. These techniques increase the
size of the program but also can improve the performance
of the scheduled code; using them involves a space-time
tradeoff. Many of these techniques exploit the fact that
programs iterate; by making extra copies of highly iterated
code, more ILP can be found. Such loop-based techniques
draw criticism from advocates of other approaches such as
cyclic scheduling and loop-level parallel processing, because
the benefits of the loop-based enlargement techniques might
be found using other techniques. We are aware of no study
that has quantified this tradeoff.

The oldest and simplest region enlargement technique is
loop unrolling. To unroll a loop, make multiple copies of the
original loop body, rerouting loop back edges from one copy
to the header of the next copy. For the last copy, reroute the
loop back edges to the header of the first copy. One is said to
“unroll times” when one makes extra copies of the loop
body. Loop unrolling typically takes place before region se-
lection, so that portions of the larger, unrolled loop body are
available to the region selector. In this way, the scheduler can
overlap operations belonging to different iterations in the un-
rolled loop body. Loop unrolling has no awareness of region
shape, so it duplicates entire loop bodies without regard to
the control flow within the loop. Engineers of trace sched-
ulers do not consider this a problem, as the hot trace through
the unrolled code will still be found and the side blocks do
not overly burden the schedule constructor. Loop unrolling
is often rather effective because a small amount of unrolling
is sufficient to fill the resources of the target machine. Loop
unrolling is used in most compilers.

The engineers of superblock schedulers take a different
approach, forming superblocks before they perform en-
larging transformations. They describe three techniques,
superblock loop unrolling, superblock loop peeling, and
superblock target expansion. Superblock loop unrolling
resembles basic loop unrolling. After superblock formation
(but before schedule construction), the most likely exit from
some superblocks may jump to the beginning of the same
superblock. Such superblocks are calledsuperblock loops;
unrolling them involves making additional copies of the
basic blocks in the superblock and connecting them simi-
larly to the connection in loop unrolling. Superblock loop
peeling is similar, but is applied in cases where the profile
suggests a small number of iterations for the superblock
loop. In such cases, the expected number of iterations are
copied, but the last copy is connected to the exit block
from the loop, and a special extra copy is made to handle
extra iterations not forecast by the profile. Superblock target
expansion is similar to the mutual-most-likely heuristic for
growing traces downward: if superblock ends in a likely
branch to superblock , then the contents of superblock
are appended to superblockto make it bigger.

Young and Smith’s path-based approach to superblock se-
lection also lends itself to superblock enlargement. The same
algorithm does both formation and enlargement: grow down-
ward only, and choose the most likely successor block. A
number of thresholds stopped growing traces: low likelihood
in the successor block, low overall likelihood of reaching the
end of the trace, and sufficient number of instructions in the
trace. General path profiles provide exact execution frequen-
cies for paths within the bound of the profiling history depth.
Young and Smith found modest performance improvements
from using path profiles in addition to the engineering sim-
plifications already described.

D. Phase Ordering Considerations

Just within the region formation pass(es), there are phase
ordering considerations. The designers of the Multiflow

1646 PROCEEDINGS OF THE IEEE, VOL. 89, NO. 11, NOVEMBER 2001

compiler chose to place enlargement (loop unrolling) before
trace selection. The superblock-based techniques chose
and formed superblocks before enlarging them. Neither
is clearly preferable, but they are determined by the engi-
neering constraints of the chosen approach.

Other optimizations also have phase ordering interactions
with region formation. Other ILP-enhancing optimizations,
such as dependence height reduction [55] should be run be-
fore region formation. Hyperblock-related techniques have
an entire suite of transformations including if-conversion and
reverse if-conversion that we do not discuss here.

V. SCHEDULE CONSTRUCTION

The previous section described techniques for selecting
and enlarging the individual compilation regions. This sec-
tion discusses assigning operations in the selected region to
units on the target machine and time slots in the schedule.
A scheduleis thus the set of annotations that indicate unit
assignment and cycle time of the operations in a region. A
schedule constructoror scheduleris the phase that produces
such a schedule. Like region formation, schedule construc-
tion techniques vary depending on the shape of the region
being scheduled: different kinds of regions require different
transformations.

The goal of any scheduling algorithm is to minimize an ob-
jective cost function while maintaining the semantics of the
program and obeying the resource limitations of the target
hardware. In most cases, the objective function is thees-
timated completion timeof the region, although it is also
possible to find domains that demand more complex objec-
tive functions. For example, a scheduler for an embedded
target may addcode sizeor energy efficiencyto the objec-
tive cost function. This section of the paper concerns itself
with schedule construction while maintaining the semantics
of the program. The last part of this section, Section V-F, de-
scribes two competing approaches to resource management
under scheduling.

Depending on the ISA and microarchitecture of the target
machine, different schedules may maintain or violate the se-
mantics of the original program. Different machines can have
different amounts of hardware support or checking to support
ILP. Some of the alternatives include the following.

• Visible versus hidden latencies:Basic operations vary
widely in complexity; some execute in multiple cycles
and produce their results some cycles after their issue
time (e.g., divides typically require multiple cycles).
When the ISA exposes visible nonunit latencies to the
compiler (most VLIW machines fall into this category),
an erroneous latency assumption in the scheduler may
change the semantics of the program. Alternatively, the
microarchitecture can independently check latency as-
sumptions (through some form of scoreboarding tech-
nique, commonly used in superscalars) and correct vi-
olations through stalls or dynamic rescheduling. In this
case, the compiler can assume average or worst-case
latencies without additional work to maintain program
correctness.

• Explicitly parallel versus superscalar:Machines that
include instruction-level parallelism may choose to ex-
pose it in the ISA (VLIW), or to hide it with sequential
instruction semantics and let the hardware rediscover it
at runtime (superscalar). In the former case, the com-
piler must monitor machine resources to avoid gener-
ating illegal code. In the latter case, the compiler may
estimate resource usage for performance reasons, but
need not monitor them for legality. However, the com-
piler may still need to follow certain encoding rules to
ensure that the underlying implementation is able to
find the parallelism that the compiler has discovered.
For example, all Alpha implementations can issue mul-
tiple instructions per cycle, but all of the instructions
must come from the same cache line for them to be able
to issue in parallel.

Recently introduced EPIC architectures blend the explic-
itly parallel and superscalar approaches. Such ISAs closely
resemble VLIWs, but they also allow limited sequential exe-
cution within a parallel execution unit (called an issue group)
to accommodate the resource limits of different implemen-
tations. This blended approach allows binary compatibility
over a set of implementations, but still allows much of the
ILP extraction to be done by software.

This section begins by describing how schedulers ana-
lyze programs. Armed with the analysis techniques, we then
describe a number of approaches to compaction, or actual
schedule construction, in Section V-B. Maintaining program
semantics (or correctness) is treated next. Then we discuss
clustering, a microarchitectural technique of increasing ne-
cessity that further complicates code generation. We continue
with two broader perspectives, the first on the interactions
of phases in code generation, and the second on other opti-
mization (in the true, not compilation-only sense) approaches
to scheduling. Lastly, we discuss managing resources during
scheduling.

A. Analyzing Programs for Schedule Construction

Dependences (sometimes also calleddependencies) are
sequential constraints that derive from the semantics of the
program under compilation. Dependences prohibit some re-
orderings of the program. Program dependences come in two
kinds: data andcontrol dependences. The data flow of the
program imposesdata dependences, and similarly the con-
trol flow of the program imposescontrol dependences.

Data dependences come in three types:read-after-write
dependences,write-after-readdependences, andwrite-after-
write dependences. The first kind, read-after-write depen-
dences (also calledRAW, flowor true), occurs when one oper-
ation uses the result of another; reordering would break this
flow of data in the program. Write-after-read dependences
(also calledWARor anti dependences) occur when one op-
eration overwrites a value after it has been used by another
operation; reordering would overwrite the correct value be-
fore it is used. Third, write-after-write dependences (also
calledWAWor outputdependences) occur when two oper-
ations write to the same location; reordering the operations

FARABOSCHIet al.: INSTRUCTION SCHEDULING FOR INSTRUCTION LEVEL PARALLEL PROCESSORS 1647

Fig. 2. Example of data dependences. Solid arcs are flow dependences, dashed arcs are output
dependences.

will cause the wrong value to be the final value. The latter
two kinds of dependences, WAR and WAW, are also called
falsedependences because they can be removed by renaming
(adding extra temporary variables to the program). Fig. 2
shows an example of data dependences expressed as arcs be-
tween operations.

Control dependences represent constraints imposed by the
control flow of the program. For example, if an instruction
can only be reached by passing through a particular condi-
tional branch, then that instruction is control-dependent on
the branch. For basic blocks, control dependences only af-
fect the scheduling of the single entrance and single exit of
the region. For more complex region types (with multiple
entrances or exits), control dependences may also constrain
scheduling, preventing certain operations from executing be-
fore an entrance (join) or after an exit (split). Once the pro-
gram reaches the scheduler, the compiler usually represents
the control dependences as arcs connecting control-depen-
dent pieces. For example, Fig. 3 shows the control depen-
dences among basic blocks in a simple program.

As described above, both data and control dependences are
constraints between pieces of the program that make some re-
orderings illegal. These constraints induce a partial ordering
on the pieces (whether the pieces are instructions or basic
blocks), and any partial ordering can be represented as a di-
rected acyclic graph (DAG). Such graphs of dependences are
used frequently in scheduling analysis passes; variants (de-
pending on how the graphs are built) are known simply as the
DAG, as thedata dependence graph(DDG), or as thepro-
gram dependence graph(PDG). All such variants are graphs
where nodes represent operations and arcs are the data-de-
pendence constraints among them; building the variants typ-
ically requires quadratic time complexity in the number of
operations.

The DAG represents the constraints that the scheduler
must obey to maintain program semantics. But it also

Fig. 3. Example of control dependences among basic-blocks.

includes information that allows the scheduler to evaluate
the relative order and importance of the operations. After
building a DAG, we can label operations with some inter-
esting properties. Two obvious ones aredepth (the length
of the longest path from any root of the DAG) andheight
(the length of the longest path to any leaf of the DAG).
Operations for whichdepthequalsmax_height heightare
on the critical path of the region. For noncritical operations,
the range [depth, (max_height height)] are the time slots
in the schedule where the operation can be placed without
increasing the schedule length.

The intermediate representation adopted by the upstream
phases of the compiler may choose various methods to rep-
resent dependences, such as virtual register names, arcs of an
SSA (static single assignment) web, memory references, and
so on. The case of memory references is particularly inter-
esting: unlike other types, the schedule must often make con-
servative assumptions for memory references.Alias analysis
is the set of techniques that help the schedulerdisambiguate
among memory references.

Most scheduling decisions obey the constraints found in
the DAG. However, some of the most powerful scheduling

1648 PROCEEDINGS OF THE IEEE, VOL. 89, NO. 11, NOVEMBER 2001

Fig. 4. Example of fully and partially predicated code. In the full-predication case, thecmpgt
operation produces the true (p2) and false (p3) predicate at the same time. A predicate T means
“always executed.” In the partial-predication case, we use aselectoperation to implement the
“a = b?c : d” function. Note that partial predication usually requires speculation to be effective
(the load operation becomes a speculativeload.soperation).

techniques aim to relax or remove dependences. Two funda-
mental techniques are employed by schedulers (or in the pre-
ceding phases) to transform or remove control dependences.

• Predication(also calledif-conversionandconditional
execution), converts multiple regions of a control flow
graph into a single region composed ofpredicated
(conditional) code. In other words, predication trans-
forms control dependences into data dependences. In
the case offull predication, instructions take additional
operands that determine at run-time whether they
should be executed or ignored (treated as nops). These
additional operands are calledpredicate operandsor
guards. In the case ofpartial predication, special op-
erations (such asconditional move, or select) achieve
similar results. Fig. 4 shows the same code used in
Fig. 3, after predication. The case of full predication
is particularly relevant to region compaction, since
it can affect how the scheduler chooses units and
allocates registers. Partial predication, for example
using selects, is a more natural fit to the scheduling
phase and we will not treat it separately.

• Speculative code motion(or code hoistingand some-
timescode sinking), moves operations above control-
dominating branches. Note that this transformation
does not always preserve the original program seman-
tics, and in particular, it may change the exception
behavior of the program. A compiler may only intro-
duce speculative operations when certain conditions
are satisfied, depending on the degree of ISA support
for the execution of speculative memory operations
and in general on the exception model imposed by
the runtime system. Note that, unlike predication,
speculation actuallyremoves control dependences,
thus potentially reducing the critical path of execution.

Fig. 5. Example of speculative code motion (compare it with
Fig. 3). The load operation becomes speculative (marked load.s),
once we move it above a branch.

Fig. 5 shows an example of speculative code motion.
As another example, atrace schedulermay be able
to move operations either above splits or below joins,
knowing that a successivebookkeepingphase will
generate compensation code to re-establish the correct
program semantics.

After regions have been formed, classical optimizations
(e.g., constant propagation and partial redundancy elimina-
tion) can often serve to remove operations and their corre-
sponding data dependences. Also, there is a class ofdepen-
dence-height reducing optimizations[55].

B. Compaction Techniques

This subsection briefly reviews some of the most widely
used scheduling techniques for ILP targets. Research and
production compilers in the past 20 years adopted many
different approaches, making exhaustive description impos-
sible. Instead, we enumerate techniques that are components
of almost all approaches to compaction.

FARABOSCHIet al.: INSTRUCTION SCHEDULING FOR INSTRUCTION LEVEL PARALLEL PROCESSORS 1649

Fig. 6. A set of decision trees characterizing compaction techniques.

We classify compaction techniques according to different
features, such as: cycle versus operation scheduling, linear
versus graph-based analysis, acyclic versus cyclic regions,
and greedy versus backtracking search. Fig. 6 shows a set
of decision trees characterizing compaction techniques. This
paper largely focuses ongreedyscheduling techniques for
scalar (acyclic) regions, but this section touches briefly on
the set of alternatives.

1) Cycle Versus Operation Scheduling:As discussed
above, the goal of the scheduler is to allocate operations
to cycle slots while minimizing an objective function.
The two parts of this allocation, operations and time slots,
suggest two approaches to overall scheduler strategy:oper-
ation-basedandcycle-basedscheduling.

• Operation schedulingrepeatedly selects an operation in
the region and allocates it in the earliest cycle that de-
pendences and target resources allow. Operation sched-
uling techniques vary based on the selection method,
which can be guided by a number of heuristics or pri-
ority schemes.

• Cycle scheduling(sometimes unfortunately calledin-
struction scheduling) repeatedly fills a cycle (usually
corresponding to an issue group) with operations se-
lected from the region, proceeding to the next cycle
only after exhausting the operations available in the
current cycle.

Operation scheduling is theoretically more powerful than
cycle-based scheduling, but it is much more complicated to
engineer, especially for complex regions that extend beyond
basic blocks. We are not aware of any production compilers
that use operation scheduling.

2) Linear Techniques:The simplest schedulers use linear
techniques [1]. When compile time is of utmost importance,
linear methods have the major advantage of having
complexity, for a region composed of operations. Tech-
niques that use data-dependence graphs have at least
complexity. However, for practical region sizes and machine
speeds, differences are often not significant enough to jus-
tify the performance loss of an inferior technique. For this
reason, graph-based techniques have almost universally re-
placed linear techniques in modern compilers.

Most of the linear techniques use either or both.

• As-Soon-As-Possible(ASAP) scheduling, where we
place operations in the earliest possible cycle that
resource and data constraints allow through a single

top-down linear scan of the region. Note that a graph
is not necessary to enforce data dependences, but
a simple time-annotated table of produced values
suffices.

• As-Late-As-Possible(ALAP) scheduling, where we
place operations in the latest possible cycle that re-
source and data constraints allow through a single
bottom-up linear scan of the region.

For example, Critical-Path (CP) scheduling uses an ASAP
pass followed by an ALAP pass to identify operations in the
critical path of the computation (those that have the same
cycle assignment in both schedules). Remaining noncritical
operations are allocated in a third linear pass.

3) Graph-Based Techniques (List Scheduling):The
major limitation of linear techniques is their inability to
make decisions based on global properties of the operations
in the considered regions. Such global properties are incor-
porated in the DAG described above. Most of the scheduling
algorithms that operate on DAGs fall into the category oflist
scheduling. List scheduling techniques work by repeatedly
assigning a cycle to an operation without backtracking
(greedy algorithms), and efficient implementations have

computational complexity (in addition to the
DAG creation, which has complexity).

List scheduling repeatedly selects an operation from a
data-ready queue(DRQ) of operations ready to be sched-
uled. An operation isreadywhen all of its DAG predecessors
have been scheduled. Once scheduled, the operation is re-
moved from the DRQ and its successors that have become
ready are inserted. This iterates until all operations in the
region are scheduled. The performance of list scheduling is
highly dependent on the order used to select the scheduling
candidates from the DRQ, and—in case of cycle-based
scheduling—on the scheduler’s greediness.

We can tackle the first problem (DRQ order) by assigning
a priority function to each operation in the DAG. Ideally,
theheightof the operation is what should drive the priority
function: at any point during scheduling, operations with the
greatest height are the most critical. However, depending on
other scheduling considerations, compilers have also used
the depth, a combination of the two, or a depth-first topo-
logical sorting of operation within a connected component
of a region. In general, all these choices are based on heuris-
tics, and have to strike a balance among schedule quality,
implementation complexity and compile-time performance.
Chekuriet al. [60] survey priority functions.

1650 PROCEEDINGS OF THE IEEE, VOL. 89, NO. 11, NOVEMBER 2001

The second problem (greed control) is more complex,
since cycle-based schedulers often tend to be too greedy.
Greediness may hurt performance in two ways.

1) Operations that we schedule too early and that occupy
resources for multiple cycles may prevent more critical
operations that become ready later to be scheduled due
to resource constraints.

2) Operations that we schedule too early may unneces-
sarily increase register pressure and force spills that
could be avoided if we had decided to delay their
schedule.

Unfortunately, most workarounds for this problem rely on
heuristics that rarely apply outside of the domain where they
were introduced.

4) Loop Scheduling:Many programs spend most of their
time in loops. Therefore, a good loop scheduling strategy
is a fundamental component of an optimizing compiler.
The simplest approach to loop scheduling,loop unrolling,
was mentioned in Section IV-C on region enlargement.
Loop unrolling does not actually allow acyclic schedulers
to handle loops; rather, it enlarges the acyclic part of a
loop to allow the acyclic scheduler room to work. More
sophisticated techniques directly address scheduling loops
and their back edges.

Software pipeliningis the class of global cyclic scheduling
algorithms, which exploit inter-iteration ILP while handling
the back-edge barrier. Within software pipelining algorithms,
modulo schedulingis a framework that produces akernelof
code that sustainably overlaps multiple iterations of a loop.
The kernel is built so that neither data dependence nor re-
source usage conflicts arise. Correctly entering and exiting
the kernel code is handled by special code sequences called
prologuesandepilogues, respectively; they prepare the state
of the machine to execute the kernel and correctly finish exe-
cuting the kernel and recording its results. Prologue and epi-
logue code is analogous to compensation code generated by
acyclic schedulers: it is necessary to maintain correctness but
causes code expansion. Hardware techniques can reduce or
remove the need for prologues and epilogues.

Modulo scheduling efficiently explores the space of
possible kernel schedules to find the shortest legal one.
The length of the kernel, which is the constant interval
between the start of successive kernel iterations, is called
the initiation interval (II). The resources required by the
operations in a loop and the inter-iteration data dependences
in a loop place lower bounds on the II; these are called
the resource-constrained minimum II(ResMII) and the
recurrence-constrained minimum II(RecMII), respectively.
To enforce II-derived resource constraints, the modulo
scheduler uses areservation tablefor the machine resources
that checks for conflicts not just in the current cycle, but also
in all schedule cycles that differ by II from the current cycle.
The scheduler begins searching schedules at the higher
MII, and heuristics guide whether to continue searching, to
backtrack, or to abandon the current II for the next higher
one. In practice, iterative modulo scheduling generates
near-optimal schedules (optimality in about 96% of the

observed loops). In addition, its compile-time performance
is good, and it is often much more efficient than any other
cyclic or acyclic scheduler based on loop unrolling.

On the downside, modulo scheduling is most effective on
well-structured single loops. Nested loops can be handled by
recursively invoking the modulo scheduler, but outer loops
must then include the prologue and epilogue code of the inner
loop. Loops with exits can be handled, but at the expense of
a much greater complexity. Control flow in the loop body
(e.g., a single if–then–else) can be handled only with great
difficulty; most approaches rely on some form of predication
to if-convert the loop body.

C. Compensation Code

Under the term “compensation code,” we cover the set
of techniques that are necessary to restore the correct flow
of data and control because of a global scheduling phase
or a global code motion across basic blocks. Depending on
the shape of the region that the compiler adopts, the com-
plexity of the task of generating compensation code varies
from trivial to extremely complex.

• Scheduling techniques that primarily deal with basic
blocks and move operations around them generate
compensation code as part of the code motion itself.

• Superblock techniques generate compensation code as
part of the tail duplication process, as we described in
the previous sections.

• Trace scheduling (as well as other techniques that allow
multiple-entry regions) involves a more complex book-
keeping process, since the compiler is allowed to move
operations above join points, as well as move branches
(split points) above operations that were below them in
the original program sequence.

A complete discussion of all the intricacies of compensa-
tion code is well beyond the scope of this paper. However,
compilers base many of the compensation techniques on a
variation of a few simple concepts that we illustrate in the
following. When the compiler schedules a region, and is al-
lowed to move operations freely with respect to entries and
exits, we can identify four basic scenarios (Fig. 7).

1) No Compensation, Fig. 7(a): This happens when the
code motions do not change the relative order of
operations with respect to joins and splits. This also
covers the case when we move operations above a
split point, in which case they becomespeculative, as
we discussed in the previous sections. The generation
of compensation code for speculative code motions
depends on the recovery model for exceptions. In the
case ofnonrecovery speculation(also calledsilent
speculation or dismissible speculation), no com-
pensation code is necessary. In the case ofrecovery
speculation, the compiler has to emit a recovery block
to guarantee the timely delivery of exceptions for
correctly speculated operations.

2) Join Compensation, Fig. 7(b): This happens when an
operation moves above a join point . In this case,

FARABOSCHIet al.: INSTRUCTION SCHEDULING FOR INSTRUCTION LEVEL PARALLEL PROCESSORS 1651

Fig. 7. The four basic scenarios for compensation code. In each panel, the picture on the left
represents the original control flow graph, with the selected region to be compacted. The picture
on the right represents the compacted schedule (withA moved aboveB), and the compensation
code added to the resulting flow graph to restore correctness.

we need to drop a copy of operation (called)
in the join path. A successive phase of the region se-
lector picks operation as part of a new region and
schedules it accordingly. Note that, if operationis
only partially movedabove the join point (this can
happen for multi-cycle operations in explicitly sched-
uled machines), then we only need to partially copy

to the join path. Also, in this case (calledpartial
schedule) the partial copy must be constrained to be
scheduled exactly before the join point.

3) Split Compensation, Fig. 7(c): This happens when a
split operation (i.e., a branch) moves above a pre-
vious operation . In this case, the compiler produces
a copy of (called) in the split path. The same
scheduling considerations from the join case apply to
the split case: is successively picked as part of an-
other region, unless it is a partial copy, in which case
is constrained to happen right after the split.

4) Join-Split Compensation, Fig. 7(d): Cases that are
more complicated appear when we allow splits to
move above joins (presented in the figure), or splits
above splits. For example, if we move a splitabove
a preceding join , in addition to having to copy
to , we also need to create a copy of the branch
to target the split destination, to guarantee the correct
execution of the path.

In general, the rule to keep in mind when thinking about
compensation code is to make sure that we preserve all paths
from the original sequence in the transformed control flow
after scheduling. Obviously, the order of operations may be
different, but we nonetheless need to execute all the opera-
tions from the original control flow. For example, the copy

in (b) restores the path; the copy
in (c) restores the path, and so on. If
certain conditions apply, it is possible to optimize (that is, in-
hibit) the generations of compensation copies. For example,
in (c) we do not need to copy to the split path if has no
side effects and the values produced byare not live at the
exit point .

D. Clustering

ILP architectures have high register demands. Each par-
allel execution unit typically consumes two operands and
produces a third, requiring a large, multiported register file
to support even narrow-issue machines.Clustering[56] pro-
vides a natural solution to these problems. A clustered archi-
tecture divides a multiple-issue machine into separate pieces
(obviously calledclusters), each consisting of a register bank
and one or more functional units. Functional units can ef-
ficiently access the local registers in their associated bank.
Depending on the architecture, remote registers may be di-
rectly addressable or they may only be reachable using in-
tercluster move instructions. Regardless of how remote ac-
cess is specified, it is typically slower than local access and
is often subject to resource limitations. Fig. 8(b) shows a
4-issue ILP datapath with an 8-read, 4-write central register.
Fig. 8(a) shows the related clustered 4-issue ILP datapath,
with two clusters of two function units and one register bank
each. Fig. 8(a) also shows the communication link between
the clusters.

Clustering complicates compilation. As long as the
clusters are architecturally visible, the compiler must place
operations to minimize intercluster moves and unbalanced
use of the clusters. This is a new compiler responsibility, as

1652 PROCEEDINGS OF THE IEEE, VOL. 89, NO. 11, NOVEMBER 2001

Fig. 8. Clustered VLIW architectures.

the decision aboutwhereto execute an operation was tradi-
tionally either empty (e.g., for a scalar machine) or handled
transparently by the hardware (e.g., for a completely con-
nected superscalar machine). The difficulty of the compiler
problem depends on the way that the ISA specifies commu-
nication among clusters. When the hardware transparently
supports fetching remote operands (possibly with a dynamic
penalty), the compiler’s task is to minimize the number of
dynamic stalls. In this case, compiler choices can degrade
performance, but correct code will always be generated.
When connectivity is architecturally exposed (either by
explicit intercluster moves or by limited ways to specify
remote registers), the compiler must issue copy operations
to move data to appropriate locations. In this case, compiler
choices affect correctness on top of performance.

Although some recent approaches (such theunified as-
sign-and-scheduletechnique) advocate a unified clustering
and scheduling step, most compilers implement clus-
tering before scheduling. The clustering phase preassigns
operations to clusters, then the scheduling phase assigns op-
erations to functional units within clusters. As examples, we
outline two preassignment techniques,Bottom-Up-Greedy
(BUG) andPartial Component Clustering (PCC).

BUG was originally designed for the Bulldog compiler
[19] at Yale in the mid-1980s. BUG has two phases.

1) BUG first traverses the DAG from the exit nodes
(leaves) to the entry nodes (roots), estimating the
likely set of functional units to be assigned to a node
based on the location of previously assigned operands
and destinations. When it reaches the roots, BUG
works its way back to the leaves, selecting the final
assignment for the nodes along the way. To reach a
final assignment, BUG estimates the cycle in which
a functional unit can compute the operation based on
resource constraints, the location of the operands and
the machine connectivity. Once the cycle estimates

for all the feasible units for a node are available, BUG
selects the unit producing the smallest output delay
for each node.

2) In the second phase, BUG assigns initial and final lo-
cations to the variables that are live in and out of the
DAG. This phase is quite delicate, since it affects the
adjoining regions of code, and particular care must be
taken to avoid redundant duplication of locations for
critical values (such as induction variables in loops)
without sacrificing the parallelism opportunities.

BUG makes a few simplifying assumptions in its operating
mode. First, functional units are the only limiting resources
in the machine; conflicts over register-bank ports or buses are
ignored. Second, resource costs and delays for scheduling ex-
plicit copy instructions are ignored. Third, register pressure
is ignored. Under register pressure, the topology of the DAG
can change significantly due to the presence of spill/restore
operations. This is one of the major limitations of the algo-
rithm.

Scheduling a DAG of 1000 operations for a machine with
four symmetrical clusters implies 4 clustering combi-
nations. As an alternative to BUG, consider reducing the
dimensionality of the problem and applying some form of
componentization. To do this, construct “macro-nodes” for
partially connected components of the original DAG. These
components can then be treated as indivisible units and as-
signed to a single cluster. PCC adopts this philosophy. It
works in three phases.

1) Partial Component Growth, where the compiler
assembles groups of operations from the DAG into
“components” (macro-nodes), based on connectivity
criterion.

2) Initial Assignment, where we perform a greedy BUG-
style pass to produce a reasonable cluster assignment
for the components.

FARABOSCHIet al.: INSTRUCTION SCHEDULING FOR INSTRUCTION LEVEL PARALLEL PROCESSORS 1653

3) Iterative Improvement, where pairs of cluster assign-
ments for components are swapped repeatedly until we
meet a termination criteria.

Various experiments suggest this rule of thumb: breaking
the CPU into two clusters costs around 15%–20% lost cy-
cles; breaking into four clusters costs around 25%–30%.
Whether these results approach the theoretical limits is open
research. Direct computation of optimal clustering remains
infeasible.

E. Phase Ordering of Register Allocation and Scheduling

Register allocation and scheduling have conflicting goals.
A register allocator tries to minimize spill and restore op-
erations, creating sequential constraints (for register reuse)
between operations that the scheduler could otherwise place
in parallel. A scheduler tries to fill all the parallel units in the
target machine and may extend variable lifetimes by specu-
lative code motion. Both of these changes increase register
pressure. Register allocation and scheduling must coexist in
the compiler, but how to order them is not apparenta priori
[57]–[59]. These are some of the alternatives.

• Instruction Scheduling followed by Register Alloca-
tion values exploiting ILP over register utilization.
It assumes enough registers are usually available to
match the schedule. This method encounters problems
when the scheduler increases register pressure beyond
the available registers. This can happen on wide-issue
machines in regions with considerable amounts of
ILP (e.g., scientific code or multimedia applications).
Note that the register allocator must insert spill and
restore code in the already scheduled code, which can
be difficult task on statically scheduled targets. This
technique is common in product compilers for modern
RISC processors.

• Scheduling followed by Register Allocation followed by
Post-Scheduling. This variation of the previous tech-
nique adds apost-schedulingpass after register allo-
cation. The post-scheduler rearranges the code after
spill code has been placed and register assignments are
final. To guarantee convergence, the post-scheduling
phase cannot increase the number of required registers.
This approach makes a good engineering/performance
tradeoff and is common in industrial compilers.

• Register Allocation followed by Instruction Scheduling
prioritizes register use over exploiting ILP. This tech-
nique works well for target machines with few available
registers (such as x86 architectures). However, the reg-
ister allocator introduces additional dependences every
time it reuses a register. This leads to very inefficient
schedules.

• Combined Register Allocation and Instruction Sched-
uling attempts to build a single pass that trades off spill
costs against lost ILP. Although potentially very pow-
erful, this approach involves the most engineering com-
plexity. Since register resources may never be freed, a
straightforward list-scheduling algorithm may not con-

verge, and additional measures are necessary to en-
sure that scheduling terminates. The DAG changes dy-
namically with the addition of spill and restore oper-
ations. These changes affect operation heights, opera-
tion depths, and the critical path of the region, possibly
invalidating previously made choices. Finally, the inte-
grated scheduler-allocator must handle values that pass
through but are not used in the region. A mechanism
called “delayed binding” (to defer the choice of a lo-
cation of a value until needed) addresses this problem,
but further complicates the scheduler.

Finally, it is worth mentioningcooperative approaches
where the scheduler monitors the register resources of the
target and estimates register pressure in its heuristics. A
post-pass register allocator adds spill and restore code when
needed. This approach is particularly promising, since the
scheduler remains simple but the system can still avoid
pathological register pressure cases.

F. Another View of Compaction Problems

Scheduling problems are not unique to compilers. In fact,
the entire field of Operational Research (OR) is dedicated
to solving scheduling problems. From an OR viewpoint, re-
gion compaction is very similar to manyjob-shop scheduling
(JSP) problems from the manufacturing realm. In JSP, a fi-
nite set of machines process a finite set of jobs. Each job in-
cludes a fixed order of operations, each of which occupies a
specific machine for a specified duration. Each machine can
process at most one job at a time and, once a job initiates on
a given machine, it must complete uninterrupted. The objec-
tive of the JSP is to find an assignment of operations to time
slots on the machines that minimizes the maximum comple-
tion time of the jobs.

Deterministic representation and techniques that apply to
JSP problems include the following.

• Mixed integer linear programming (MIP). MIP repre-
sents the problem as a linear program with a set of
linear constraints and a single linear objective function,
but with the additional restriction that some of the deci-
sion variables are integers. The simplex method is one
of the best-known algorithms for MIP problems.

• Branch-and-Bound techniques dynamically explore a
tree representing the solution space of all feasible se-
quences. Bounding techniques prune the search space.
Tight bounds are critical to the convergence of the al-
gorithm to a good solution.

• Iterative improvement methods, starting from an initial
legal solution, optimize a cost function by exploring
neighboring solutions. These are analogous to such
techniques used to solve max-flow/min-cut problems
in other domains.

• Approximation methods, bottleneck-based heuristics,
constraint satisfaction AI techniques, neural net-
works, adaptive searches, hybrid approaches, iterative
improvement, are other techniques that have been
proposed.

1654 PROCEEDINGS OF THE IEEE, VOL. 89, NO. 11, NOVEMBER 2001

• Non-deterministic iterative methods include tech-
niques like:

Simulated Annealing (SA), a random oriented
search technique introduced as an analogy from
the physics of the annealing process of a hot metal
until it reaches its minimum energy state.
Genetic Algorithms (GA), based on an abstract
model of natural evolution, where the quality of
individuals improves to the highest level com-
patible with the environment (constraints of the
problem).
Tabu-Search (TS), based on intelligent problem
solving.

Why have compiler writers not extensively used these
techniques? In general, OR techniques seek optimal or near-
optimal solutions and are designed to solve small numbers
of large-scale problems. On the other hand, a compiler can
often compromise optimality for the sake of compile speed,
and it needs to solve a very large number of comparatively
small problems. We omit more details of OR techniques;
they are readily available in the related literature.

G. Resource Management During Scheduling

During schedule construction, the constructor must be
aware of a number of constraints on the schedule. The pre-
vious parts of this section described management of the data
dependence graph during scheduling and different possible
orders and techniques for scheduling the DAG. Resource
management is the other major concern during scheduling.
While dependences and operational latencies may allow
an instruction to be scheduled in a particular cycle, the
target machine may not have enough of the appropriate
functional units, issue slots, or other pieces of hardware to
launch or execute the instruction in the desired place. These
constraints on scheduling are calledresource hazards, and
a separate module of the schedule constructor typically
models all of them. This module maintains its own state in
response to scheduling actions, and answers queries about
whether a given instruction can be scheduled in a particular
place given the already-scheduled instructions.

Early approaches accounted for resources in the under-
lying machine using reservation tables. A second approach
used finite-state automata to model resource constraints,
allowing an instruction to be scheduled in a slot if a transi-
tion existed in the resource automaton. The past decade has
seen innovation in both approaches. Applying automaton
theory to the FSA models, researchers have factored re-
source automata into simpler components, they have used
reverse automata to support reverse scheduling, and they
have used nondeterminism to model functional units with
overlapping capabilities. Responding to these innovations
in automata-based resource modeling, reservation-vector
proponents have built reduced reservation vector schemes
that approach the abilities and efficiencies of the new FSA
techniques.

1) Resource Vectors:The basic resource vector approach
involves simple accounting. Areservation tableis a matrix

with a column for each cycle of a schedule and a row for each
resource in the machine. When an instruction is scheduled,
the system records the resources that it uses in the appro-
priate table entries. Reservation tables allow easy scheduling
of instructions; unscheduling can be supported by keeping
a pointer from each resource to the instruction that uses it
[61]. Reservation tables can easily be extended to include
counted resources, where an instruction uses one resource
from a hardware-managed pool of identical resources. They
are less good at managing instructions that can be handled
by multiple functional units (e.g., an integer add might be
processed by either the ALU or the AGU). And in their sim-
plest implementation, they require space proportional to the
length of the schedule times the number of resources in the
machine. Determining whether an instruction can be sched-
uled requires examining all of the resources used by the “tem-
plate” of the instruction, which could be a large constant
factor.

2) Finite-State Automata:Finite-state automata have in-
tuitive appeal. “Can I schedule this?” is similar to “does this
state machine accept?” One can view the set of resource-
valid schedules as a language over the alphabet of opera-
tions. It turns out that these languages are simple enough to
model using finite-state automata (FSA), one of the simplest
of computational abstractions. Early models [62] built FSAs
directly from the reservation vectors. Proebsting and Fraser
[63] reduced the size of the FSAs by changing the underlying
model. Instead of using reservation vectors as states, they ab-
stracted to vectors that modeled whether an instruction in the
current cycle would conflict with a second instruction in a
later cycle.

Finite-state automata do not support backtracking, un-
scheduling, or cyclic scheduling well. But they could answer
queries about forward, cycle scheduling (less so operational
scheduling) very quickly.

3) Recent Improvements to FSAs:In their 1995 paper,
Bala and Rubin [64] present a number of innovations to
FSA-based resource management: factor automata, merge
automata, and reverse automata. Each of them draws on
well-known techniques in automata theory.

Factor automata reduce the number of FSA states (and
therefore the size to store them) by observing that the dif-
ferent functional areas of modern machines tend to operate
independently. For example, the MIPS R3000 model has
separate integer and floating-point sides; they share issue
and load/store hardware but not much else. These indepen-
dent pieces can then be modeled by separate (factored) au-
tomata. The cross-product of the factors produces an au-
tomaton that is equivalent to the original, but the state of
both factors can be represented more compactly than the
state of the larger (product) automaton. The factors interact
only in issue resources; otherwise they run independently.
Bala and Rubin report that factoring reduced an automaton
for the Alpha 21 064 of 13 524 states to two automata of 237
and 232 states.

Resource modeling across control flow merges (joins or
splits) has long been a thorny engineering problem. One must
model the state that results from either path. Resource vector

FARABOSCHIet al.: INSTRUCTION SCHEDULING FOR INSTRUCTION LEVEL PARALLEL PROCESSORS 1655

approaches can logicallyOR the vectors of the parent blocks,
but not until Bala and Rubin proposed join tables did the
FSA approaches have a complementary technique. A join
table maps from the cross-product of states to a single state,
allowing two pipeline FSA states to be mapped to a single
state that represents both sets of resources being used.

Adding instructions to an already-scheduled block of code
has also posed engineering problems in the past. The for-
ward automaton allows its users to verify that a sequence of
instructions holds no structural hazards, but it only allows
new instructions to be appended to the sequence. Insertion re-
quires a linear rescan to verify that the new instruction did not
conflict with any later instructions. Reverse automata (which
is the FSA reversal of the forward automaton into a nondeter-
ministic automaton over the power set of original automaton
states) provide a partial answer to this problem, by allowing
the system to model the resource constraints of those future
instructions. A scheduler that maintains both forward and re-
verse automaton states can verify that there are no structural
hazards for a single inserted instruction. However, inserting
additional instructions still requires linearly rescanning to re-
compute the forward and reverse automaton states affected
by the first inserted instruction.

What about nondeterminism? Bala and Rubin’s later tech-
nical report use nondeterminism to model flexible pipeline
resources that can execute a variety of instruction classes.
Suppose a machine has two functional units, FU1 and FU2,
and three instruction classes , and . FU1 can execute
instructions of types and ; FU2 can execute instructions
of type and . In a deterministic automaton or a reserva-
tion vector model, scheduling a typeinstruction requires
it to be assigned to either FU1 or FU2. This excludes the fu-
ture possibility of issuing an instruction of typeor , re-
spectively. With nondeterminism, the FSA can model simply
issuing the type instruction without committing it to FU1
or FU2. Then a later type or type instruction can still
be scheduled, in effect lazily choosing the unit on which the
type instruction executes.

4) Minimal Resource Vectors:In response to Bala and
Rubin’s innovations, Eichenberger and Davidson [61] ex-
plored ways to build better resource vector models. Their
key observation is that many explicitly-modeled resources
are in fact schedule-equivalent. For example in the canon-
ical in-order RISC five-stage pipeline, any instruction that
uses the decode phase one cycle will certainly use the ex-
ecute phase in the next. These stages do not require sepa-
rate vector entries; they will always be allocated together.
Eichenberger and Davidson present techniques to synthe-
size a minimal set of resources that are equivalent to but less
numerous than the actual machine resources. Such reduced
reservation vector models are much better users of space
and time than the original vectors, although Eichenberger
and Davidson do not directly compare their implementa-
tion to that of Bala and Rubin. The minimal resource vector
approach supports flexible pipeline resources less elegantly
than the nondeterministic FSA approach: alternate instruc-
tion locations are searched exhaustively in Eichenberger and
Davidson’s work.

VI. L OOKING FORWARD

ILP scheduling techniques have matured over the past 20
years. The original intuition that inspired trace scheduling
and its region-scheduling descendants has blossomed into
a large field from which many practical technologies have
emerged. In the past, compiler writers adapted their work
to match what the architects and implementers produced.
Today, the requirements of all three groups contribute to de-
signs.

A production compiler is like a bridge: it takes years to
build, is used for many more years, and it requires constant
repairs and improvements during its working lifetime. But
bridge building and compiler construction are worlds apart
in maturity and reliability. Bridge building is a well-studied
engineering discipline; despite the advances of the past
two decades, compiler construction remains a black art. A
number of challenges remain for the research and devel-
opment communities; we illustrate them by extending our
bridge simile into a bridge conceit.

• Methodology: The past decade of architecture and
optimizing compiler research benefited from a new
emphasis on quantitative methods, in particular an
emphasis on performance measured by (and only
by) execution time. This “quantitative approach” was
better than previous qualitative evaluations, but it is
no more the whole picture than the load capacity of a
bridge is the only salient aspect of bridge design. It is
difficult to isolate the value of new compilation ideas,
as they affect many pieces of a compiler in different,
systemic ways. It is hard to compare techniques, as
they may be embodied in very different systems. And
it can be hard to publish either sort of result without
reducing one’s results to SpecMarks. Rather than
inveighing against quantitative methods (a Luddite
position), the research community should find and
use more sophisticated methods that allow compo-
nent-wise, isolated analysis and comparison. Bridge
designers speak of tensile strength, torsional rigidity,
and strength/weight; what are the equivalent metrics
for optimizations and intermediate representations?

• Infrastructure: Designers of bridges have a large set
of previous designs, each with documented histories,
benefits, and drawbacks, from which to choose. Com-
piler researchers have relatively few, and compiler de-
velopers have even fewer because of intellectual prop-
erty restrictions. This imposes many costs on the com-
munity: high entry cost for both researchers and devel-
opers, lack of comparability among designs (see pre-
vious point), inability to combine results from different
projects, and a lack of standardized tools. The National
Compiler Infrastructure Project [65] hoped to provide
some of these benefits; the Gnu C Compiler, gcc, serves
as the de-facto platform for many experiments. Both
have their drawbacks.

• Goals: New computing realities rarely have a proper
influence on compiler design. It is as if we designed all

1656 PROCEEDINGS OF THE IEEE, VOL. 89, NO. 11, NOVEMBER 2001

bridges solely to maximize load, whereas some bridge
designers care about cost, maintainability, stability in
crosswinds, esthetics, etc. The next generation of com-
puting devices has begun to appear, in the “embedded”
space. Designers of such devices care about code
size, power dissipation, heat, and unit cost. Compilers
should follow suit, although few compilation systems
allow such factors to be traded off.

In addition to the high-level challenges above, we list some
more specific challenges to compilers and schedulers.

• Dynamic techniques:Post-compilation techniques,
which operate at link time, load time, or run time, have
become quite sophisticated. There is vast potential
in combining such techniques with compile-time
methods, but very little work has been done in this
intersection.

• Debugging:Few people recognize that debugging op-
timized code (or DOC) is a compiler problem. Worse,
debugging is a pariah like system administration: the
problem that everyone must face but which is seen as
too unglamorous for research. DOC can only be suc-
cessful if it is part of the compiler, but the scheduling
techniques described above are never presented in that
light. DOC is necessary at two levels: both to verify
the correct operation of optimizations, and to verify the
correct operation of object code.

• True optimization:Ken Wilson (see Section II-B1) may
have had the right idea 20 years too early. Compiling
is now done on computers with enormous power; tech-
niques that were unacceptably slow a few years ago are
now practical. None of the algorithms described above
scale to exploit computing power; they just run faster
on newer computers. Putting it another way, developers
tolerate only a fixed amount of compile time. As ma-
chines go faster, they can search more space in the
same amount of time. Has the time finally arrived to re-
consider compilation, solving phases exhaustively and
optimally rather than heuristically? Researchers have
scratched the surface of this problem, in limited areas
such as register allocation [66] and code layout [67].
We have yet to see a systematic treatment of all aspects
of compilation, or an approach to true optimization.

We fervently hope that the next time someone writes a
survey article such as this, that some of the topics we list
above will have been solved or incorporated into standard
practice.

ACKNOWLEDGMENT

The authors thank “Reviewer A” for their insightful com-
ments, particularly those concerning the treatment of loops
in this paper.

REFERENCES

[1] D. Landskov, S. Davidson, B. D. Shriver, and P. W. Mallett, “Local
microcode compaction techniques,”ACM Comput. Surv., vol. 12, pp.
261–294, Sept. 1980.

[2] Charlesworth, “An approach to scientific array processing: The ar-
chitectural design of the AP-120b/FPS-164 family,”IEEE Comput.,
vol. 14, no. 3, pp. 18–27, 1981.

[3] J. E. Thornton, Ed.,Design of a Computer: The Control Data 6600:
Scott, Foresman and Company, Library of Congress Catalog No.
74-96 462, 1970.

[4] P. Faraboschi, G. Desoli, and J. A. Fisher, “VLIW architectures for
DSP and multimedia applications—The latest word in digital and
media processing,”IEEE Signal Processing Mag., Mar. 1998.

[5] E. G. Coffman, Jr., Ed.,Computer and Job-Shop Scheduling
Theory. New York: Wiley, 1976.

[6] J. A. Fisher, “The optimization of horizontal microcode within and
beyond basic blocks: An application of processor scheduling with
resources,” Ph.D. dissertation, Technical Report COO-3077-161,
Courant Mathematics and Computing Laboratory, New York Univ.,
New York, Oct. 1979.

[7] F. Astopas and K. I. Plukas, “Method of minimizing micropro-
grams,”Automat. Contr., vol. 5, no. 4, pp. 10–16, 1971.

[8] C. V. Ramamoorthy, K. M. Chandy, and M. J. Gonzalez, Jr., “Op-
timal scheduling strategies in a multiprocessor system,”IEEE Trans.
Comput., vol. C-21, pp. 137–146, Feb. 1972.

[9] E. M. Riseman and C. C. Foster, “The inhibition of potential paral-
lelism by conditional jumps,”IEEE Trans. Comput., vol. C-21, pp.
1405–1411, Dec. 1972.

[10] M. Tokoro, E. Tamura, and T. Takizuka, “Optimization of micro-
programs,” IEEE Trans. Comput., vol. C-30, pp. 491–504, July
1981.

[11] D. Jacobs, J. Prins, P. Siegel, and K. Wilson, “Monte Carlo tech-
niques in code optimization,” inProc. 15th Annu. Workshop Micro-
programming, Oct. 1982, pp. 143–148.

[12] B. R. Rau and C. D. Glaeser, “Some scheduling techniques and
an easily schedulable horizontal architecture for high performance
scientific computing,” in14th Annu. Microprogramming Workshop
(MICRO-14), 1981, pp. 183–198.

[13] M. Lam, “Sofware pipelining: An effective scheduling tech-
nique for VLIW machines,” inProc. SIGPLAN’88 Conf. Prog.
Language Design and Implementation, Atlanta, GA, 1988, pp.
318–328.

[14] B. R. Rau, “Iterative modulo scheduling: An algorithm for software
pipelining loops,” inProc. 27th Annu. Int. Symp. Microarchitecture,
Nov. 1994, pp. 63–74.

[15] J. A. Fisher, D. Landskov, and B. D. Shriver, “Microcode com-
paction: Looking backward and looking forward,” inProc. National
Computer Conf.: AFIPS, 1981, pp. 95–102.

[16] A. Aiken and A. Nicolau, “Optimal loop parallelization,” inSIG-
PLAN’88 Conf. Programming Language Design and Implementa-
tion, pp. 308–317.

[17] , “Perfect pipelining: A new loop parallelization technique,”
in Proc. 2nd Eur Symp. Programming, ser. Lecture Notes in
Computer Science: Springer-Verlag, Mar. 1988, vol. 300, pp.
221–235.

[18] J. Fisher, “Trace scheduling: A technique for global microcode
compaction,” IEEE Trans. Comput., vol. 30, pp. 478–490, July
1981.

[19] J. R. Ellis, “Bulldog: A compiler for VLIW architectures,” Dept.
Computer Science, Yale Univ., Tech. Rep. YALEU/DCS/RR-364,
Feb. 1985.

[20] P. P. Chang, N. J. Warter, S. A. Mahlke, W. Y. Chen, and W. W.
Hwu, “Three superblock scheduling models for superscalar and
superpipelined processors,” Center for Reliable and High-Per-
formance Computing, Univ. Illinois at Urbana-Champaign, Rep.
CRHC-91-25, Oct. 1991.

[21] W. A. Havanki, “Treegion scheduling for VLIW processors,” M.S.
thesis, Dept. Electrical and Computer Engineering, North Carolina
State Univ., Raleigh, NC, 1997.

[22] J. A. Fisher, “Global code generation for instruction-level par-
allelism: Trace scheduling-2,”, HP Laboratories Tech. Rep.
HPL-932-43, 1993.

[23] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program de-
pendence graph and its uses in optimization,”ACM Trans. Program.
Lang. Syst., vol. 9, pp. 319–349, July 1987.

[24] R. Potasman, J. Lis, A. Nicolau, and D. Gajski, “Percolation-based
scheduling,” inProc. ACM/IEEE Design Automation Conf., 1990,
pp. 444–449.

[25] R. E. Hank, W. W. Hwu, and B. R. Rau, “Region-based compilation:
An introduction and motivation,” inProc. 28th Annu. Int. Symp. Mi-
croarchitecture, Dec. 1995, pp. 158–168.

FARABOSCHIet al.: INSTRUCTION SCHEDULING FOR INSTRUCTION LEVEL PARALLEL PROCESSORS 1657

[26] W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter,
R. A. Bringmann, R. O. Ouellette, R. E. Hank, T. Kiyohara, G. E.
Haab, J. G. Holm, and D. M. Lavery, “The superblock: An effective
technique for VLIW and superscalar compilation,”J. Supercomput.,
vol. 7, pp. 229–248, Mar. 1993.

[27] A. Srivastava and A. Eustace, “ATOM: A system for building cus-
tomized program analysis tools,” inProc. 1994 Conf. Programming
Language Design and Implementation (PLDI), June 1994, pp.
196–205.

[28] Intel. VTune: Visual Tuning Environment (1997). [Online]. Avail-
able: http://developer.intel.com/design/perftool/vtune/index.htm.

[29] X. Zhang, Z. Wang, N. Gloy, J. B. Chen, and M. D. Smith, “System
support for automatic profiling and optimization,” inProc. 16th
ACM Symp. Operating Systems Principles, USENIX, Oct. 1997, See
also [Online]. Available: http://www.eecs.harvard.edu/morph, to be
published.

[30] J. M. Anderson, L. Berc, J. Dean, S. Ghemawat, M. Henzinger, S.-T.
A. Leung, D. Sites, M. Vandevoorde, C. Waldspurger, and W. E.
Weihl, “Continuous profiling: Where have all the cycles gone?,”
Digital Equipment Corporation Systems Research Center, Palo Alto,
CA, Tech. Note 1997-016, July 1997.

[31] V. Bala, E. Duesterwald, and S. Banerjia, “Dynamo: A transparent
dynamic optimization system,” inProc. ACM SIGPLAN 2000 Conf.
Programming Language Design and Implementation, Vancouver,
BC, Canada, 2000.

[32] T. Ball and J. R. Larus, “Optimally profiling and tracing programs,”
in Conf. Record 19th ACM Symp. Principles of Programming Lan-
guages, Jan. 1992, pp. 59–70.

[33] , “Efficient path profiling,” in Proc. Micro 96, Dec. 1996, pp.
46–57.

[34] J. Larus, “Whole Program Paths,” inPLDI ’99, May 1999.
[35] A. Young, “Path-based compilation,” Ph.D. dissertation, Harvard

Univ., Cambridge, MA, Oct. 1997.
[36] T. Ball and J. Larus, “Branch prediction for free,” inProc. SIGPLAN

’93 Conf. Programming Language Design and Implementation, June
1993, pp. 300–313.

[37] Y. Wu and J. R. Larus, “Static branch frequency and program pro-
file analysis,” in27th Int. Symp. Microarchitecture. San Jose, CA:
IEEE, Nov. 1994, pp. 1–11.

[38] B. Calder, D. Grunwald, M. Jones, D. Lindsay, J. Martin, M. Mozer,
and B. Zorn, “Evidence-based static branch prediction using ma-
chine learning,”ACM Trans. Program. Lang. Syst., vol. 19, no. 1,
1997.

[39] SPEC. SPEC CPU95, Version 1.0. (1995, Aug.). Standard Perfor-
mance Evaluation Corporation. [Online]. Available: http://www.
specbench/org.

[40] S. S. Muchnik,Advanced Compiler Design & Implementation. San
Mateo, CA: Morgan Kaufmann, 1997.

[41] R. Morgan,Building an Optimizing Compiler. Boston, MA: Dig-
ital Press, 1998.

[42] T. Y. Yeh and Y. N. Patt, “Two-level adaptive training branch predic-
tion,” in Proc. 24th Annu. Int. Symp. Microarchitecture, Nov. 1991,
pp. 51–61.

[43] S. Pan, K. So, and J. Rahmeh, “Improving the accuracy of dynamic
branch prediction using branch correlation,” inASPLOS-V, Oct.
1992, pp. 76–84.

[44] C. Young, N. Gloy, and M. D. Smith, “A comparative analysis of
schemes for correlated branch prediction,” inProc. 22nd Annu. Int.
Symp. Computer Architecture, Santa Margherita Ligure, Italy, June
22–24, 1995, pp. 276–286.

[45] T. Ball and J. Larus, “Programs follow paths,”, Tech. Rep.
MSR-TR-99-01, Jan. 1999.

[46] Z. Wang, K. Pierce, and S. McFarling, “BMAT—A binary matching
tool,” in Proc. Feedback Directed Optimization 2, 1999.

[47] G. Albert, “A transparent method for correlating profiles with
source programs,” inProc. Feedback Directed Optimization 2,
1999.

[48] J. Fisher and S. Freudenberger, “Predicting conditional branches
from previous runs of a program,” inProc. 5th Int. Conf. Architec-
tural Support for Programming Languages and Operating Systems,
Oct. 1992, pp. 85–95.

[49] R. P. Colwell, R. P. Nix, J. J. O’Donnell, D. B. Papworth, and
P. K. Rodman, “A VLIW architecture for a trace scheduling
compiler,” in Proc. 2nd Int. Conf. Architectural Support for
Programming Languages and Operating Systems, Apr. 1987, pp.
180–192.

[50] P. G. Lowney, S. M. Freudenberger, T. J. Karzes, W. D. Lichten-
stein, R. P. Nix, J. O’Donnell, and J. C. Ruttenberg, “The multi-
flow trace scheduling compiler,”J. Supercomput., vol. 7, pp. 51–142,
Mar. 1993.

[51] S. M. Moon and K. Ebcioglu, “An efficient resource-constrained
global scheduling technique for superscalar and VLIW Processors,”
in Proc. MICRO-25: IEEE Press, Dec. 1992, pp. 55–71.

[52] W. A. Havanki, S. Banerjia, and T. M. Conte, “Treegion scheduling
for wide issue processors,” inProc. 4th Int. Symp. High-Performance
Computer Architecture, Feb. 1998, pp. 266–276.

[53] S. A. Mahlkeet al., “Effective compiler support for predicated exe-
cution using the hyperblock,” inProc. 25th Int. Symp. Microarchi-
tecture (MICRO 25), 1992, pp. 45–54.

[54] C. Young and M. Smith, “Improving the accuracy of static branch
prediction using branch correlation,” inASPLOS-VI, Oct. 1994, pp.
232–241.

[55] M. Schlansker and V. Kathail, “Critical path reduction for scalar
programs,” inProc. 28th Annu. Int. Symp. Microarchitecture, Ann
Arbor, MI, Nov. 29–Dec. 1, 1995, pp. 57–69.

[56] C. Chekuri, R. Johnson, R. Motwani, B. K. Natarajan, B. R. Rau, and
M. Schlansker, “Profile-driven instruction level parallel scheduling
with applications to super blocks,” inProc. 29th Annu. Int. Symp.
Microarchitecture (MICRO-29), Paris, France, Dec. 2–4, 1996.

[57] P. Faraboschi, G. Desoli, and J. A. Fisher, “Clustered instruction-
level parallel processors,” Hewlett-Packard, Tech. Rep. HPL-98 204,
1998.

[58] S. M. Freudenberger and J. C. Ruttenberg, “Phase ordering of
register allocation and instruction scheduling,” inCode Gener-
ation—Concepts, Tools, Techniques: Proc. Int. Workshop Code
Generation, May 1992.

[59] R. Motwani, K. V. Palem, V. Sarkar, and S. Reyen, “Combining reg-
ister allocation and instruction scheduling technical report,” Courant
Institute, Tech. Rep. 698, July 1995.

[60] Norris and L. L. Pollock, “Register allocation sensitive region
scheduling,” inPACT ’95: Int. Conf. Parallel Architectures and
Compilation Techniques, Limassol, Cyprus, June 1995.

[61] A. E. Eichenberger and E. S. Davidson, “A reduced multipipeline
machine description that preserves scheduling constraints,” inPLDI
96.

[62] E. S. Davidson, A. T. Thomas, L. E. Shar, and J. H. Patel, “Effec-
tive control for pipelined processors,” inProc. COMPCON75: IEEE,
Mar. 1975, pp. 181–184.

[63] T. A. Proebsting and C. W. Fraser, “Detecting pipeline structural haz-
ards quickly,” in21st Annu. ACM SIGPLAN-SIGACT Symp. Princi-
ples of Programming Languages, Jan. 1994, pp. 280–286.

[64] V. Bala and N. Rubin, “Efficient instruction scheduling using finite
state automata,” inProc. MICRO-28.

[65] The National Compiler Infrastructure Project home page [Online].
Available: http://www.cs.virginia.edu/nci/.

[66] D. W. Goodwin and K. D. Wilken, “Optimal and near-optimal global
register allocation using 0–1 integer programming,”Softw.—Pract.
Exp., vol. 26, pp. 929–965, Aug. 1996.

[67] C. Young, D. S. Johnson, D. R. Karger, and M. D. Smith, “Near-op-
timal intraprocedural branch alignment,” inProc. ACM SIGPLAN 97
Conf. Prog. Lang. Design and Implementation. New York: ACM,
June 1997.

Paolo Faraboschi (Member, IEEE) received
the Ph.D. degree in electrical engineering and
computer science from the University of Genova,
Italy, in 1994.

He is a Principal Research Scientist at Hewlett-
Packard Laboratories, Cambridge, MA. His inter-
ests include VLIW architectures and compilers,
instruction level parallelism, and embedded com-
puting.

1658 PROCEEDINGS OF THE IEEE, VOL. 89, NO. 11, NOVEMBER 2001

Joseph A. Fisher (Senior Member, IEEE)
received the Ph.D. degree from New York
University in 1979.

He is a Hewlett-Packard Fellow and directs
the Hewlett-Packard Laboratories research lab,
Cambridge, MA. He is best known for his con-
tributions to VLIW Architectures and compiling
for Instruction-Level Parallel architectures and
has worked in high-performance embedded
processing since 1994. Prior to joining HP, he
was on the Computer Science faculty of Yale

University and cofounded Multiflow Computer, which manufactured
high-performance VLIW processors.

Dr. Fisher won an NSF Presidential Young Investigator Award in 1984,
and was Eli Whitney Connecticut Entrepreneur of the Year in 1987.

Cliff Young (Member, IEEE) received the Ph.D.
degree in computer science from Harvard Univer-
sity, Cambridge, MA, in 1997.

He works in the Computing Sciences Re-
search Laboratory at the Computing Concepts
Department, Bell Laboratories, Murray Hill,
NJ. Most of his graduate work involved playing
tricks to make computers go faster: improving
performance through compiler optimizations
driven by exotic statistics and applying archi-

tectural techniques such as branch prediction. Since joining Bell Labs,
his research interests have broadened to include multicomputers (i.e.,
big servers), information theory (i.e., even more exotic statistics), and
distributed systems (in particular, handheld, wireless-connected devices).

FARABOSCHIet al.: INSTRUCTION SCHEDULING FOR INSTRUCTION LEVEL PARALLEL PROCESSORS 1659

