
CMU 18-447 Introduction to Computer Architecture, Spring 2015

HW 2: ISA Tradeoffs, Microprogramming and Pipelining

Instructor: Prof. Onur Mutlu
TAs: Rachata Ausavarungnirun, Kevin Chang, Albert Cho, Jeremie Kim, Clement Loh

Assigned: Wed., 1/28, 2015
Due: Wed., 2/11, 2015 (Midnight)

Handin: https://milkshark.ics.cs.cmu.edu/courses/25/assessments/214

1 LC-3b Microcode [40 points]

We wrote the microcode for at least one state of the LC-3b microarchitecture in class. In this homework,
you will complete the microcode for states numbered 0, 3, 4, 6, 9, 17, 18, 19, 20, 21, 24, 25, 27, 32, 33, 35 of
the LC-3b. Refer to Appendix C of Patt and Patel for the LC-3b state machine and datapath and Appendix
A of Patt and Patel for the LC-3b ISA description.

Fill out the microcode in the microcode.csv file handed out with this homework. Enter a 1 or a 0 or an X as
appropriate for the microinstructions corresponding to states. You do not need to fill out states 8, 10 and
11. We fill out state 18 as an example. Please turn in this CSV file electronically along with your homework.

2 Addressing Modes [15 points]

We covered the following addressing modes in class:

• Absolute

• Register indirect

• Based (base + displacement)

• Scale indexed (base + index × constant)

• Memory indirect

• Auto increment/decrement (by 1 byte)

Consider the following high-level programs:

• uint8_t a[150]; // a is allocated in memory

for (i = 0; i < 150; i++) {

a[i] = 5;

}

• int a[150]; // a is allocated in memory

for (i = 0; i < 150; i++) {

a[i] = 5;

}

• int *p; // *p is allocated in memory

*p = 150;

• int **p; // *p and **p are allocated in memory

**p = 150;

Assume that in the first two programs, a register contains the address of the start of the array, and in the
last two programs, a register contains the value of p.

For each of the above three programs, which of the addressing modes, do you think, would lead to the
minimum number of instructions? (Note that no addressing mode fits perfectly. You might require other
instructions for address computation.)

1/13

https://milkshark.ics.cs.cmu.edu/courses/25/assessments/214

3 Microarchitecture vs. ISA [15 points]

(a) Briefly explain the difference between the microarchitecture level and the ISA level in the transformation
hierarchy. What information does the compiler need to know about the microarchitecture of the machine
in order to compile the program correctly?

(b) Classify the following attributes of a machine as either a property of its microarchitecture or ISA:

(i) The machine does not have a subtract instruction.

(ii) The ALU of the machine does not have a subtract unit.

(iii) The machine does not have condition codes.

(iv) A 5-bit immediate can be specified in an ADD instruction.

(v) It takes n cycles to execute an ADD instruction.

(vi) There are 8 general purpose registers.

(vii) A 2-to-1 mux feeds one of the inputs to ALU.

(viii) The register file has one input port and two output ports.

4 Single-Cycle Processor Datapath [30 points]

In this problem, you will modify the single-cycle datapath we built up in lecture to support the JAL instruc-
tion. The datapath that we will start with (from Lecture 5, Slide 53) has been reproduced on the next page.
Your job is to implement the necessary data and control signals to support the JAL instruction, which we
define to have the following semantics:

JAL : R31← PC + 4

PC← PC31...28 || Immediate || 02

Add to the datapath on the next page the necessary data and control signals to implement the JAL instruction.
Draw and label all components and wires very clearly (give control signals meaningful names; if selecting a
subset of bits from many, specify exactly which bits are selected; and so on).

2/13

P
C

In
st

ru
ct

io
n

m
em

or
y

R
ea

d
ad

dr
es

s

In
st

ru
ct

io
n4

A
dd

In
st

ru
ct

io
n

16
32

R
eg

is
te

rs
W

rit
e

re
gi

st
er

R
ea

d
da

ta
 1

R
ea

d
da

ta
 2

R
ea

d
re

gi
st

er
 1

R
ea

d
re

gi
st

er
 2

D
at

a
m

em
or

y
W

rit
e

da
ta

R
ea

d
da

ta

W
rit

e
da

ta

S
ig

n
ex

te
nd

AL
U

re

su
lt

Ze
ro

AL
U

A
dd

re
ss

M
em

R
ea

d

M
em

W
rit

e

R
eg

W
rit

e

A
LU

 o
pe

ra
tio

n
3

!is
St
or
e	

isS
to
re
	

isL
oa
d	

AL
U
Sr
c	

isI
ty
pe

	

M
em

to
Re

g	

isL
oa
d	

Re
gD

es
t	

isI
ty
pe

	

3/13

5 Pipelining [30 points]

Given the following code:

MUL R3, R1, R2

ADD R5, R4, R3

ADD R6, R4, R1

MUL R7, R8, R9

ADD R4, R3, R7

MUL R10, R5, R6

Note: Each instruction is specied with the destination register rst.

Calculate the number of cycles it takes to execute the given code on the following models:

(i) A non-pipelined machine

(ii) A pipelined machine with scoreboarding and five adders and five multipliers without data forwarding

(iii) A pipelined machine with scoreboarding and five adders and five multipliers with data forwarding.

(iv) A pipelined machine with scoreboarding and one adder and one multiplier without data forwarding

(v) A pipelined machine with scoreboarding and one adder and one multiplier with data forwarding

Note: For all machine models, use the basic instruction cycle as follows:

• Fetch (one clock cycle)

• Decode (one clock cycle)

• Execute (MUL takes 6, ADD takes 4 clock cycles). The multiplier and the adder are not pipelined.

• Write-back (one clock cycle)

Do not forget to list any assumptions you make about the pipeline structure (e.g., how is data forwarding
done between pipeline stages)

6 Fine Grain Multithreading [40 points]

Consider a design “Machine I” with five pipeline stages: fetch, decode, execute, memory and writeback.
Each stage takes 1 cycle. The instruction and data caches have 100% hit rates (i.e., there is never a stall for
a cache miss). Branch directions and targets are resolved in the execute stage. The pipeline stalls when a
branch is fetched, until the branch is resolved. Dependency check logic is implemented in the decode stage
to detect flow dependences. The pipeline does not have any forwarding paths, so it must stall on detection
of a flow dependence.

In order to avoid these stalls, we will consider modifying Machine I to use fine-grained multithreading.

(a) In the five stage pipeline of Machine I shown below, clearly show what blocks you would need to add in
each stage of the pipeline, to implement fine-grained multithreading. You can replicate any of the blocks
and add muxes. You don’t need to implement the mux control logic (although provide an intuitive name
for the mux control signal, when applicable).

4/13

R
eg

is
te

r

 F

ile
A

L
U

A
dd

re
ss

D
at

a

C
ac

he

D
at

a

A
dd

re
ss In

st
ru

ct
io

n

In
st

ru
ct

io
n

C
ac

he

PC

Fe
tc

h
D

ec
od

e
E

xe
cu

te
M

em
W

ri
te

ba
ck

5/13

(b) The machine’s designer first focuses on the branch stalls, and decides to use fine-grained multithreading
to keep the pipeline busy no matter how many branch stalls occur. What is the minimum number of
threads required to achieve this? Why?

(c) The machine’s designer now decides to eliminate dependency-check logic and remove the need for flow-
dependence stalls (while still avoiding branch stalls). How many threads are needed to ensure that no
flow dependence ever occurs in the pipeline? Why?

A rival designer is impressed by the throughput improvements and the reduction in complexity that
FGMT brought to Machine I. This designer decides to implement FGMT on another machine, Machine
II. Machine II is a pipelined machine with the following stages.

Fetch 1 stage
Decode 1 stage
Execute 8 stages (branch direction/target are resolved in the first execute stage)
Memory 2 stages

Writeback 1 stage

Assume everything else in Machine II is the same as in Machine I.

(d) Is the number of threads required to eliminate branch-related stalls in Machine II the same as in Machine
I?

YES NO (Circle one)

If yes, why? If no, how many threads are required?

(e) What is the minimum CPI (i.e., maximum performance) of each thread in Machine II when this minimum
number of threads is used?

(f) Now consider flow-dependence stalls. Does Machine II require the same minimum number of threads as
Machine I to avoid the need for flow-dependence stalls?

YES NO (Circle one)

If yes, why? If no, how many threads are required?

(g) What is the minimum CPI of each thread when this number of threads (to cover flow-dependence stalls)
is used?

(h) After implementing fine grained multithreading, the designer of Machine II optimizes the design and
compares the pipeline throughput of the original Machine II (without FGMT) and the modified Ma-
chine II (with FGMT) both machines operating at their maximum possible frequency, for several code
sequences. On a particular sequence that has no flow dependences, the designer is surprised to see that
the new Machine II (with FGMT) has lower overall throughput (number of instructions retired by the
pipeline per second) than the old Machine II (with no FGMT). Why could this be? Explain concretely.

6/13

7 Branch Prediction and Dual Path Execution [35 points]

Assume a machine with a 7-stage pipeline. Assume that branches are resolved in the sixth stage. Assume
that 20% of instructions are branches.

(a) How many instructions of wasted work are there per branch misprediction on this machine?

(b) Assume N instructions are on the correct path of a program and assume a branch predictor accuracy
of A. Write the equation for the number of instructions that are fetched on this machine in terms of N
and A. (Please show your work for full credit.)

(c) Let’s say we modified the machine so that it used dual path execution like we discussed in class (where
an equal number of instructions are fetched from each of the two branch paths). Assume branches are
resolved before new branches are fetched. Write how many instructions would be fetched in this case,
as a function of N . (Please show your work for full credit.)

(d) Now let’s say that the machine combines branch prediction and dual path execution in the following
way:

A branch confidence estimator, like we discussed in class, is used to gauge how confident the machine
is of the prediction made for a branch. When confidence in a prediction is high, the branch predictor’s
prediction is used to fetch the next instruction; When confidence in a prediction is low, dual path
execution is used instead.

Assume that the confidence estimator estimates a fraction C of the branch predictions have high confi-
dence, and that the probability that the confidence estimator is wrong in its high confidence estimation
is M .

Write how many instructions would be fetched in this case, as a function of N , A, C, and M . (Please
show your work for full credit.)

7/13

8 Mystery Instruction [40 points]

A pesky engineer implemented a mystery instruction on the LC-3b. It is your job to determine what the
instruction does. The mystery instruction is encoded as:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1010 BaseR SR1 0 0 0 0 1 0

The instruction is only defined if the value of SR1 is greater than zero.

The modifications we make to the LC-3b datapath and the microsequencer are highlighted in the attached
figures (see the last four pages). We also provide the original LC-3b state diagram, in case you need it. (As
a reminder, the selection logic for SR2MUX is determined internally based on the instruction.)

The additional control signals are

GateTEMP1/1: NO, YES

GateTEMP2/1: NO, YES

LD.TEMP1/1: NO, LOAD

LD.TEMP2/1: NO, LOAD

COND/3:
COND000 ;Unconditional
COND001 ;Memory Ready
COND010 ;Branch
COND011 ;Addressing mode
COND100 ;Mystery 1

The microcode for the instruction is given in the table below.

State Cond J Asserted Signals
001010 (10) COND000 001011 ALUK = PASSA, GateALU, LD.TEMP2,

SR1MUX = SR1 (IR[8:6])
001011 (11) COND000 110001 LD.MAR, SR1MUX = BaseR (IR[11:9]),

ADDR1MUX = BaseR, ADDR2MUX = 0,
MARMUX = ADDER, GateMARMUX

110001 (49) COND001 110001 LD.MDR, MIO.EN, DATA.SIZE=WORD
110011 (51) COND000 100100 GateMDR, LD.TEMP1, DATA.SIZE=WORD
100100 (36) COND000 100101 GateTEMP1, LD.MDR, DATA.SIZE=WORD
100101 (37) COND001 100101 R.W=WRITE, DATA.SIZE=WORD
100111 (39) COND000 101000 GateMARMUX, MARMUX = ADDER,

ADDR1MUX = BaseR (IR[11:9]), SR1MUX = BaseR
(IR[11:9]), ADDR2MUX = SEXT[IR[5:0]], DRMUX = BaseR
(IR[11:9]), LD.REG

101000 (40) COND100 001011 GateTEMP2, LD.TEMP2

Describe what this instruction does.

8/13

9 REP MOVS Déjà Vu [40 points]

Recall from Homework 1 that we can translate code under Complex Instruction Set Computing (CISC) ISA
to Reduced Instruction Set Computing (RISC) ISAs. Similarly, we can implement a CISC instruction using
microprogrammed microarchitectures as well. Here you will implement the LC-3b equivalent for a single
Intel x86 instruction, REP MOVS, which is almost similar to REP MOVSB instruction but move words
instead of bytes.

The REP MOVS instruction uses three fixed x86 registers: ECX (count), ESI (source), and EDI (destination).
The repeat (REP) prefix on the instruction indicates that it will repeat ECX times. Each iteration, it moves
one word from memory at address ESI to memory at address EDI, and then increments both pointers by
one. Thus, the instruction copies ECX bytes from address ESI to address EDI. For those who are interested,
the Intel architecture manual (found on the wiki at http://www.ece.cmu.edu/~ece447/s15/doku.php?id=
techdocs).

1. How would you implement REP MOVS if your goal is to minimize the amount of additional hardware
you add to the basic microprogrammed LC-3b design discussed in class? Show all your work and design
decisions. Write your assumptions.

2. How would you implement REP MOVS if your goal is to minimize the latency of the instruction? Show
all your work and design decisions. Write your assumptions.

9/13

http://www.ece.cmu.edu/~ece447/s15/doku.php?id=techdocs
http://www.ece.cmu.edu/~ece447/s15/doku.php?id=techdocs

10/13

11/13

C.4. THE CONTROL STRUCTURE 11DRIR[11:9]111DRMUX(a) SR1SR1MUXIR[11:9]IR[8:6] (b)Logic BENPZNIR[11:9] (c)Figure C.6: Additional logic required to provide control signalsLC-3b to operate correctly with a memory that takes multiple clock cycles to read orstore a value.Suppose it takes memory five cycles to read a value. That is, once MAR containsthe address to be read and the microinstruction asserts READ, it will take five cyclesbefore the contents of the specified location in memory are available to be loaded intoMDR. (Note that the microinstruction asserts READ by means of three control signals:MIO.EN/YES, R.W/RD, and DATA.SIZE/WORD; see Figure C.3.)Recall our discussion in Section C.2 of the function of state 33, which accessesan instruction from memory during the fetch phase of each instruction cycle. For theLC-3b to operate correctly, state 33 must execute five times before moving on to state35. That is, until MDR contains valid data from the memory location specified by thecontents of MAR, we want state 33 to continue to re-execute. After five clock cycles,th h l t d th “ d ” lti i lid d t i MDR th
12/13

C.2. THE STATE MACHINE 5R PC<! BaseR To 1812 To 18To 18RRTo 18To 18 To 18 MDR<! SR[7:0]MDR <! MIR <! MDRRDR<! SR1+OP2*set CCDR<! SR1&OP2*set CC [BEN]PC<! MDR 3215 0 01To 18To 18 To 18R R [IR[15:12]]2830R7<! PCMDR<! M[MAR]set CC BEN<! IR[11] & N + IR[10] & Z + IR[9] & P9DR<! SR1 XOR OP2* 4 22To 111011JSR JMP BR1010 To 10 2120 0 1LDBMAR<! B+off6set CCTo 18 MAR<! B+off6DR<! MDRset CCTo 18MDR<! M[MAR]2527 3762 STW STBLEASHFTRAPXORANDADDRTITo 8set CC set CCDR<! PC+LSHF(off9, 1)14 LDWMAR<! B+LSHF(off6,1) MAR<! B+LSHF(off6,1)PC<! PC+LSHF(off9,1)3335DR<! SHF(SR,A,D,amt4)NOTESB+off6 : Base + SEXT[offset6] RMDR<! M[MAR[15:1]’0]DR<! SEXT[BYTE.DATA]R 2931 18, 19 MDR<! SRTo 18R RM[MAR]<! MDR 1623 R R17To 19 24M[MAR]<! MDR**MAR<! LSHF(ZEXT[IR[7:0]],1)15To 18PC+off9 : PC + SEXT[offset9] MAR <! PCPC <! PC + 2*OP2 may be SR2 or SEXT[imm5]** [15:8] or [7:0] depending onMAR[0] [IR[11]]PC<! BaseRPC<! PC+LSHF(off11,1)R7<! PC R7<! PC13 Figure C.2: A state machine for the LC-3b
13/13

	LC-3b Microcode [40 points]
	Addressing Modes [15 points]
	Microarchitecture vs. ISA [15 points]
	Single-Cycle Processor Datapath [30 points]
	Pipelining [30 points]
	Fine Grain Multithreading [40 points]
	Branch Prediction and Dual Path Execution [35 points]
	Mystery Instruction [40 points]
	REP MOVS Déjà Vu [40 points]

