
CMU 18-447 Introduction to Computer Architecture, Spring 2013

HW 1 Solutions: Instruction Set Architecture (ISA)

Instructor: Prof. Onur Mutlu
TAs: Justin Meza, Yoongu Kim, Jason Lin

1 The SPIM Simulator [5 points]

There isn’t a solution per se to this. The expectation is that you are familiar with SPIM/XSPIM, understand
its strengths and limitations, and are using it to debug your labs and homeworks.

2 Big versus Little Endian Addressing [5 points]

1.
7d ea d3 21
0 1 2 3

2.
21 d3 ea 7d
0 1 2 3

3 Instruction Set Architecture (ISA) [25 points]

Code size:
Each instruction has an opcode and a set of operands

• The opcode is always 1 byte (8 bits).

• All register operands are 1 byte (8 bits).

• All memory addresses are 2 bytes (16 bits).

• All data operands are 4 bytes (32 bits).

• All instructions are an integral number of bytes in length.

Memory Bandwidth:
Memory bandwidth consumed = amount of code transferred (code size) + amount of data transferred
Amount of data transferred = number of data references * 4 bytes

We will call the amount of code transferred as I-bytes and the amount of data transferred as D-bytes.

(a), (b)

Instruction Set Architecture Opcode Operands I-bytes D-bytes Total Bytes

Zero-address
PUSH B 3 4
PUSH C 3 4
ADD 1
POP A 3 4
PUSH A 3 4
PUSH B 3 4
ADD 1
POP B 3 4
PUSH A 3 4
PUSH B 3 4
ADD 1
POP D 3 4

30 36 66

1/5



Instruction Set Architecture Opcode Operands I-bytes D-bytes Total Bytes

One-address
LOAD B 3 4
ADD C 3 4
STORE A 3 4
ADD B 3 4
STORE B 3 4
LOAD A 3 4
ADD B 3 4
STORE D 3 4

24 32 56
Two-address

SUB A, A 5 12
ADD A, B 5 12
ADD A, C 5 12
ADD B, A 5 12
ADD D, D 5 12
ADD D, A 5 12
ADD D, B 5 12

35 86 121
Three-address
Memory-Memory ADD A, B, C 7 12

ADD B, A, B 7 12
ADD D, A, B 7 12

21 36 57
Three-address
Load-Store LD R1, B 4 4

LD R2, C 4 4
ADD R2, R1, R2 4
ST R2, A 4 4
ADD R3, R1, R2 4
ST R3, B 4 4
ADD R3, R1, R3 4
ST R3, D 4 4

32 20 52

(c) The three-address memory-memory machine is the most efficient as measured by code size - 21 bytes.

(d) The three-address load-store machine is the most efficient as measured by total memory bandwidth
consumption (amount of code transferred + amount of data transferred) - 52 bytes.

4 The ARM ISA [40 points]

4.1 Warmup: Computing a Fibonacci Number [15 points]

NOTE: More than one correct solution exists, this is just one potential solution.

fib :

mov r1 , #0 // initialize the function

mov r2 , #1

add r3 , r1 , r2

branch :

cmp r0 , #0 // check if we are done

ble done

2/5



add r3 , r1 , r2 // fo fib(n) = fib(n-1)+fib(n-2)

mov r1 , r2 // increment the indices

mov r2 , r3

subs r0 , r0 , #1 // decrement the counter

b branch // loopback

done :

mov r0 , r3

mov r15 , r14 // return

4.2 ARM Assembly for REP MOVSB [25 points]

(a)
subs r0, r3, #1, // check the condition

blt finish

copy :

ldrb r4, [r1] #1 // load 1 byte, move the source pointer to the next addr

strb r4, [r2] #1 // store (copy) 1 byte, move the destination pointer to the next addr

subs r3, r3, #1 // decrement the counter

bge copy

finish:

Following instructions

(b) The size of the ARM assembly code is 4 bytes × 6 = 24 bytes, as compared to 2 bytes for x86 REP
MOVSB.

(c) The count (value in ECX) is 0xcafebeef = 3405692655. Therefore, loop body is executed (3405692655
* 4) = 13622770620 times. Total instructions executed = 13622770620 + 2 (instructions outside of the
loop) = 13622770622.

(d) The count (value in ECX) is 0x00000000 = 0. In this case, the total instruction executed is 2 instructions
(instructions outside the loop. Note that this can varies based on the assemble codes).

3/5



5 Data Flow Programs [15 points]

6 Performance Metrics [10 points]

• No, the lower frequency processor might have much higher IPC (instructions per cycle).

More detail: A processor with a lower frequency might be able to execute multiple instructions per cycle
while a processor with a higher frequency might only execute one instruction per cycle.

• No, because the former processor may execute many more instructions.

More detail: The total number of instructions required to execute the full program could be different on
different processors.

7 Performance Evaluation [15 points]

• ISA A: 6 instructions
cycle ∗ 400, 000, 000 cycle

second = 2400 MIPS

• ISA B : 2 instructions
cycle ∗ 800, 000, 000 cycle

second = 1600 MIPS

• Don’t know.
The best compiled code for each processor may have a different number of instructions.

4/5



8 Fixed Length vs. Variable Length [15 points]

Code size:
We can use Huffman encoding to encode the opcode

Instruction Opcode numBits Total Bits

SUB 0 10 100
ADD 10 11 55
BEQ 110 17 to 41 (Assuming immediate is 8 to 32 bits) 51 to 123
MULT 1110 10 20

TOTAL 226 to 298

In a traditional MIPS, this will take 640 bits (20 instructions, 32 bits each) So, the saving is 64.7% to
46.6%.

5/5


	The SPIM Simulator [5 points]
	Big versus Little Endian Addressing [5 points]
	Instruction Set Architecture (ISA) [25 points]
	The ARM ISA [40 points]
	Warmup: Computing a Fibonacci Number [15 points]
	ARM Assembly for REP MOVSB [25 points]

	Data Flow Programs [15 points]
	Performance Metrics [10 points]
	Performance Evaluation [15 points]
	Fixed Length vs. Variable Length [15 points]

