
A Stateless, Content-Directed Data Prefetching Mechanism

Robert Cooksey Stephan Jourdan
Intel Corporation Intel Corporation

rncookse@ichips.intel.com sjourdan@ichips.intel.com

Dirk Grunwald
University of Colorado

grunwald@cs.colorado.edu

ABSTRACT
Although central processor speeds continues to improve, improve-
ments in overall system performance are increasingly hampered
by memory latency, especially for pointer-intensive applications.
To counter this loss of performance, numerous data and instruc-
tion prefetch mechanisms have been proposed. Recently, several
proposals have posited a memory-side prefetcher; typically, these
prefetchers involve a distinct processor that executes a program
slice that would effectively prefetch data needed by the primary
program. Alternative designs embody large state tables that learn
the miss reference behavior of the processor and attempt to prefetch
likely misses.

This paper proposes Content-Directed Data Prefetching, a data
prefetching architecture that exploits the memory allocation used
by operating systems and runtime systems to improve the perfor-
mance of pointer-intensive applications constructed using modem
language systems. This technique is modeled after conservative
garbage collection, and prefetches "likely" virtual addresses ob-
served in memory references. This prefetching mechanism uses the
underlying data of the application, and provides an 11.3% speedup
using no additionalprocessor state. By adding less than ½% space
overhead to the second level cache, performance can be further in-
creased to 12.6% across a range of"real world" applications.

1. INTRODUCTION
In early processor designs, the performance of the processor and

memory were comparable, but in the last 20 years their relative
performances have steadily diverged [4], with the performance im-
provements of the memory system lagging those of the processor.
Although both memory latency and bandwidth have not kept pace
with processor speeds, bandwidth has increased faster than latency.
Until recently, a combination of larger cache blocks and high band-
width memory systems have maintained performance for applica-
tions with considerable spatial reference locality. A number of data
prefetching methods have been developed for applications that have
regular memory reference patterns. Most hardware prefetch mech-
anisms work by recording the history of load instruction usage, and
index on either the address or the effective address of load instruc-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASPLOSX 10/02 San Jose, CA, USA
Copyright 2002 ACM 1-58113-574-2/02/0010 ...$5.00.

tions [3, 6, 11]. This requires the prefetcher to have observed the
load instruction one or more times before an effective address can
be predicted and can work very well for loads that follow an arith-
metic progression.

At the same time, modem managed runtime environments such
as Java and .NET, rely on dynamic memory allocation, leading to
reduced spatial locality because of these linked data structures. Al-
though these applications do benefit from prefetchers designed for
regular address patterns, their irregular access patterns still cause
considerable delay. An alternative mechanism is to try to find a
correlation between miss addresses and some other activity. The
correlation [2] and Markov [5] prefetchers record patterns of miss
addresses in an attempt to predict future misses, but this prefetch
technique requires a large correlation table and a training phase.
Roth et al. introduced dependence-based techniques for capturing
producer-consumer load pairs [12].

Compiler-based techniques [9] insert prefetch instructions at sites
where pointer dereferences are anticipated. Luk and Mowry [8]
showed that a greedy approach to pointer prefetching can improve
performance despite the increased memory system overhead. Li-
pasti et al. [7] developed heuristics that consider pointers passed
as arguments on procedure calls and inserted prefetches at the call
sites for the data referenced by the pointers. Ozawa et al. [10] clas-
sify loads whose data address come from a previous load as list
accesses, and perform code motions to separate them from the in-
structions that use the data fetched by list accesses.

Since prefetch mechanisms target different classes of program
references, they can be combined to yield a more effective total
prefetching behavior; this was explored for the Markov prefetcher
and it was found that stride prefetchers improve the performance of
the Markov prefetcher by filtering references with arithmetic pro-
gressions, leaving more table space for references to linked data
structures [5].

This paper investigates a technique that predicts addresses in
pointer-intensive applications using a hardware only technique with
no built-in biases toward the layout of the recursive data struc-
tures being prefetched, and with the potential to run many instances
ahead of the toad currently being executed by the processor. The
ability to "run ahead" of an application has been shown to be a re-
quirement for pointer-intensive applications [12], which tradition-
ally do not provide sufficient computational work for masking the
prefetch latency. Some hybrid prefetch engines [13] do have the
ability to run several instances ahead of the processor, but require
aprior i knowledge of the layout of the data structure, and in some
cases, the traversal order of the structure.

The method proposed, content-directed data prefetching, bor-
rows techniques from conservative garbage collection [1], in that
when data is demand-fetched from memory, each address-sized

279

word of the data is examined for a "likely" address. Candidate
addresses need to be translated from the virtual to the physical ad-
dress space and then issued as prefetch requests. As prefetch re-
quests return data from memory, their contents are also examined
to retrieve subsequent candidates. There are a number of ways to
identify "likely" addresses. Conservative garbage collection must
identify all possible addresses, and occasionally errs in a way that
classifies non-addresses as possible addresses, causing garbage to
be retained. The problem here is simpler since prefetching is not
necessary for correctness and only serves to improve performance.

The content-directed data prefetcher also takes advantage of the
recursive construction of linked data structures. By monitoring
both demand load traffic and the prefetch request traffic, the con-
tent prefetcher is able to recursively traverse linked structures. A
common challenge found in data pEt fetching of most application
types is finding sufficient computationfil work to mask the latency
of the prefetcher reqt~ests. Chen and Baer [3] approached this prob-
lem using a look-ahead program counter. The recursive feature of
the content prefetcher achieves the same effect, in that it allows the
content prefetcher to run ahead of the program's execution, provid-
ing the needed time to mask the prefetch request latencies.

The content-directed data prefetcher is designed to assist ap-
plications using linked data structures. Applications with regular
or "stride" references do not commonly load and then follow ad-
dresses. However, most modem processors provide some sort of
stride prefetcher. Some prefetchers, such as correlation prefetch-
ers, can mimic a stride prefetcher when used in isolation, and using
only these prefetchers may inflate their true impact. In this pa-
per, the content-directed data prefetcher is combined with a stride
prefetcher to achieve a robust prefetcher, and performance is al-
ways compared to a baseline architecture that includes a stride pre-
fetcher to clarify the contribution of the content data prefetcher.

The main contributions of this paper are:

• Establishing the concept of content-directed data prefetch.-
ing. This paper contributes a history-free prefetching method-
ology that can issue timely prefetches within the context of
pointer-intensive applications. The scheme overcomes the
limitations of"context-based" prefetchers (e.g. Markov pre-
fetchers), which require a training period. The content pre-
fetcher described in this paper does not require such a train-
ing period, and has the ability to mask compulsory cache
misses.

• Evaluation of an effective pointer recognition algorithm. This
is a core design feature of the content prefetcher. Without an
accurate means of distinguishing an address from any other
random data, content-directed data prefetching would not
yield performance increases.

• Introduction of a reinforcement mechanism that accurately
guides the content prefetcher down active prefeteh paths. This
method affords the content prefeteher with a storage-efficient
way of recording the current prefeteh paths, providing the
needed feedback required to continue uninterrupted down a
recursive prefetch path.

The rest of this paper is organized as follows. The simulation
framework used to examine the feasibility and practicality of the
content prefetcher is presented in Section 2, followed by the de-
sign and implementation of the prefetcher in Section 3. A perfor-
mance evaluation of the content prefetcher embodiment is given in
Section 4. Section 5 provides a design and performance compari-
son between the content prefetcher and the Markov prefeteher, with
Section 6 concluding this paper.

Processor
Core Frequency 4000 MHz
Width fetch 3, issue 3, retire 3
Misprediction Penalty 28 cycles
Buffer Sizes reorder 128, store 32, load 48
Functional Units integer 3, memory 2, floating point 1
Load-to-use LI: 3 cycles,
Latencies L2:16 cycles
Branch Predictor 16K entry gshare
Data Prefetcher Hardware stride prefeteher
Busses
L2 throughput 1 cycle
L2 queue size 128 entries
Bus bandwidth 4.26 GBytes/sec

- 133 MHz 8B quad pumped
Bus latency 460 processor cycles

- 8 bus cycles thru chipset (240)
- 55 nsec DRAM access time (220)

Bus queue size 32 entries
Caches
Trace Cache 12 K#ops, 8-way associative
ITLB 128 entry, 128-way associative
DTLB 64 entry, 4-way associative
DL1 Cache 32 Kbytes, 8-way associative
UL2 Cache 1 Mbytes, 8-way associative
Line Size 64 bytes
Page Size 4 Kbytes

Table 1: Performance model: 4-GHz system configuration.

2. SIMULATION M E T H O D O L O G Y
Results provided in this paper were collected using simulation

tools built on top of a pop-level IA-32 architectural simulator that
executes Long Instruction Traces (LIT). Despite the name, a LIT
is not a trace but is actually a checkpoint of the processor state, in-
eluding memory, that can be used to initialize an execution-based
simulator. Included in the LIT is a list of LIT injections which are
interrupts needed to simulate events like DMA. Since the LIT in-
cludes an entire snapshot of memory, this methodology allows the
execution of both user and kernel instructions. To re&tee simula-
tion time, rather than running an entire application, multiple care-
fully chosen LITs are run for 30 million instructions and are aver-
aged to represent an application.

2.1 Performance Simulator
The performance simulator is an execution-driven cycle-accurate

simulator that models an out-of-order microprocessor similar to the
In te l~ Pentium(~) 4 microprocessor. The performance simulator
includes a detailed memory subsystem that fully models busses
and bus contention. The parameters for the processor configura-
tion evaluated in this paper are given in Table 1. Such a configu-
ration tries to approximate both the features and the performance
of future processors. Included with the base configuration of the
performance simulator is a stride-based hardware prefetcher. It is
important to note that all the speedup results presented in this paper
are relative to the model using a stride prefetcher. By using both an
accurate performance model, and making sure the base model is
complete in its use of standard performance enhancement compo-
nents (e.g., a stride prefetcher), the speedups presented in this paper
are both accurate and realistic improvements over existing systems.

2.2 Avoiding Cold Start Effects
When executing the benchmarks within the simulators, it is nee-

essary to allow the workloads to run for a period of time to warm-

280

10

9

8

i s

! ,

a

2

0

MPTU Trace: 4-Mbyte UL2 Cache

/ 5,000,000
Retired uops

7.500,000 I
Retfi'ea uops

.. x A Y'~.....,

10,0C0,(X)0
Re~tred uopa

wcvv

1 n ~ * • o v o * ~ - R l • l , , l ~ , 7 ~ , * m ~ n ~ s N ~ a m m ~ u ~ m . ~ N m ~ a a ~ a ~ M ~ m a u m m ~ m m e

of Retired uops (x 200,000)

i -o-b2c -m--quake rc3 '"'~'"tpcc-2 "-~,,-verilog-func -e-specjbb-vsnet I

Figure 1: Non-cumulative MPTU trace for a 4-MByte UL2 Cache.

up the simulator. In the framework of this paper, it is important
to allow the memory system to warmup to minimize the effects of
compulsory misses on the performance measurements. The con-
ventional means for warming up a simulator is to allow the simula-
tor to execute for a given number of instructions before collecting
statistics. The metric used in this paper to establish this instruction
count is Misses Per 1000 #ops (MPTU). This is the average number
of demand data fetches that will miss during the execution of 1000
#ops. MPTU takes into account the number of operations being ex-
ecuted by the program, as well as the number of cache accesses, and
provides a measure of a program's demand on the particular cache
level. Figure 1 provides an MPTU trace of the second-level cache.
The trace was generated for a processor configuration utilizing a
4-MByte unified second-level cache (UL2), as this will require a
longer warm-up period. Using such a large cache guarantees that
the instruction count will be valid for the UL2 cache sizes used
during this study. The X-axis of the trace represents time, which
is measured in retired #ops. It should be noted that for readabil-
ity purposes, the sequence has been limited to showing only one
benchmark from each of the six workload suites (see Table 2).

The MPTU trace shows a very distinct transient period from
zero to 5,000,000 retired #ops. By the time the execution of the
programs reach 7,500,000 retired #ops, the MPTU has reached a
steady-state. Several spikes are seen later in the program's execu-
tion, but this is to be expected as both transitions between contexts
within the program are encountered, and capacity misses start to
appear. Using the trace as a guide, each application is allowed to
execute for 5,000,000 IA-32 instructions (~ 7, 500,000#ops), be-
fore the collection of performance statistics starts.

2.3 Workloads
The workloads used in this paper are presented in Table 2. The

applications are either commercial applications or compiled using
highly optimizing commercial compilers. The table lists the num-
ber of IA-32 instruction executed, the number of #ops executed,
and the MPTU for both 1-MByte and 4-MByte second-level cache
configurations. The workloads include applications from some of
the most common productivity application types. This includes In-

temet business applications (e.g. b2b), game-playing and multime-
dia applications (e.g. quake), accessibility applications (e.g. speech
recognition), on-line transaction processing (e.g. tpcc), computer-
aided design (e.g. verilog), and Java (or runtime) applications (e.g.
specjbb).

3. PREFETCHER SCHEME AND IMPLE-
MENTATION

This section presents the basic operation of the content prefetcher,
and discusses some of the issues involved in the design decisions.

3.1 Basic Design Concept
The primary role of any prefetcher is to predict future memory

accesses. The content prefetcher attempts to predict future memory
accesses by monitoring the memory traffic at a given level in the
memory hierarchy, looking expressly for virtual addresses (point-
ers). The prefetcher is based on the premise that if a pointer is
loaded from memory, there is a strong likelihood that the address
will be used as the load address (effective address) of a future load.
Specifically, the content prefetcher works by examining the fill con-
tents of demand memory requests that have missed at some level in
the memory hierarchy (e.g. L2 cache). Wheri the fill request re-
turns, a copy of the cache line is passed to the content prefetcher,
and the cache line is scanned for likely virtual addresses. I fa can-
didate address is found, a prefetch request is issued for that ad-
dress. The inherent difficulty in this prediction technique is trying
to discem a virtual address from both data values and random bit
patterns.

3.2 On-chip versus Off-chip
The content prefetcher can be implemented as being either on-

chip, as an integrated piece of the processor's memory hierarchy, or
as part of the memory controller (off-chip). Placing the prefetcher
on-chip provides several benefits. First, with the content prefetcher
residing at and prefetching into the L2 cache, the cache itself can
be used to provide useful feedback to the content prefetcher. This
can identify which prefetches suppressed a demand request cache

281

Sui te Benchmark Instructions #ops
Internet
Interact
Multimedia

b2b
b2e

30,000,000
30,000,000

40,369,085
49,979,480

quake 30,000,000 45,208,724
Productivity speech 30,000,000 43,825,381
Productivity re3 30,000,000 47,226,941
Productivity creation 30,000,000 52,939,628
Server
Server
Server
Server
Workstation
Workstation
Workstation
Workstation
Runtime

30,000,000
30,000,000
30,000,000
30,000,000
30,000,000
30,000,000
30,000,000
30,000,000

tpce-1
tpcc-2
tpcc-3
tpcc-4
venlog-fune
vefilog-gate
proE
slsb
specjbb-vsnet

52,944,514
53,149,114
51,719,199
51,896,535
45,893,143
36,933,152
43,863,049
49,697,532
45,694,508

L2 MPTU
(1 MB)] (4 MB)

1.04 0.83
0.13 0.13
1.41 0.30
1.19 0.44
0.43 0.33
0.56 0.24
1.88 0.68
2.29 0.87
2.49 0.87
2.05 0.70
7.60 5.49

24.12 19.74
0.26 0.23
3.23 2.74
1.23 1.10

Table 2: Instructions executed, ~op executed, and L2 MPTU statistics for the benchmark sets.

miss, and whether the content prefetcher is issuing prefetcbes for
cache lines that already reside in the L2 cache. Second, having
the prefetcher on-chip provides the prefetcher with access to the
memory arbiters, allowing the prefetcher to .determine whether a
matching memory request is currently in-flight. The final and the
most compelling benefit is that placing the content prefetcher on-
chip resolves issues concerning address translation. The candidate
addresses being generated by the prefetcher are virtual addresses.
However such addresses need to be translated to access main mem-
ory. With the content prefetcher on-chip, the prefetcher can utilize
the on-chip data translation look-aside buffer (TLB). This is very
important since statistics collected during simulation runs showed
that on average, over a third of the prefetch requests issued required
an address translation not present in the data TLB at the time of
the request. The main drawback of an on-chip content prefetcher
is that it may keep the pointer chasing critical path thru membry
untouched. However, since the pointer chasing is now decoupled
from the instruction stream execution, this critical time is now no
longer additive to other limiting factors like computational work
and branch mispredicts. Stated differently, pointer-intensive ap-
plications do not strictly utilize recursive pointer paths (e.g hash
tables).

The major benefit of having the prefetcher off-chip is the possi-
ble reduction in the prefetch latency, as prefetch requests will not
have to endure a full L2 to main memory request cycle; the pointer
chasing critical path would be broken. An off-chip prefetcher could
potentially maintain a TLB to provide the address translations. The
problem with this implementation is that while this secondary TLB
may be able to monitor the physical pages being accessed, it does
not have direct access to the virtual addresses associated with the
physical pages. Adding pins to provide the linear address bits is an
option. A second drawback to placing the prefetcher off-chip is the
lack of feedback available to the prefetcher, as it is not receiving
any direct reinforcement concerning the accuracy of the prefetches
being issued.

After analyzing the benefits of both placement options, the deci-
sion was made to place the content prefetcher on-chip. The main
reason is that in the applications focused on in this study, limit-
ing factors other than true pointer chasing are mostly predominant.
This will be confirmed by the fact that 72% of the prefetches is-
sued have their latency completely hidden. It will also be shown
later in this paper that allowing the prefetcher to use feedback from
the caches is extremely desirable for performance, and placing the
content prefetcher on-chip affords the prefetcher its best access to

31 Effective Address 0

f!l l llllllllllllllllllllllllll
Compare Bits / / Filter Bits Align Bits

31 Candidate Virtual Address 0

Figure 2: Position of the Virtual Address Matching compare,
filter, and align bits.

the various feedback sources.

3.3 Address Prediction Heuristics
Some method must be designed to determine ifa cache line value

is a potential virtual address, and not a data value. The virtual
address matching predictor originates from the idea that the base
address of a data structure is hinted at via the load of any member
of the data structure. In other words, most virtual data addresses
tend to share common high-order bits. This is a common design in
modern operating systems that is exploited by the content-designed
prefetcher.

More accurately, we assume all data values found within the
structure that share a base address can be interpreted as pointers
to other members (nodes) of the same structure. For tiffs method,
the effective address of the memory request that triggered the cache
miss and subsequent fill is compared against each address-sized
data value in the newly filled cache line. A given bit arrangement
can be interpreted as a pointer, a value, or some random bits. Ex-
amples of the latter are compressed data or values taken out of their
original byte grouping. A bit array is deemed to be a candidate ad-
dress if the upper N compare bits of both the effective address of
the triggering request and the bit arrangement match (see Figure 2),
as this is a strong indicator that they share the same base address.
The number of bits compared needs to be large enough to minimize
false predictions on random patterns.

The virtual address matching heuristic works well except for the
two regions defined by the upper N bits being all O's or all 1 's. For
the lower region, any value less than 32-N bits will match an effec-
tive address whose upper N bits are all zeros. The same is true for

282

the upper region, where a large range of negative values can poten-
tially be predicted as a likely virtual address. This is problematic
because many operating systems allocate stack or heap data in those
locations.

Instead of not predicting in these regions, an additional filter as
shown in Figure 2 is used to distinguish between addresses and data
values. In the case of the lower region, if the upper N bits of both
the effective address and the data value being evaluated are all zero,
the next M bits, called filter bits, past the upper N compare bits of
the data value are examined. If a non-zero bit is found within the
filter bit range, the data value is deemed to be a likely address. The
same mechanism is used for the upper range, except a non-one bit
is looked for in the filter bit range. Using zero filter bits would
mean no prediction within both extreme regions, while increasing
the number of filter bits relaxes the requirements for a candidate
address.

One further method of isolating addresses from data is using
memory alignment. For memory efficiency reasons, most IA-32
compilers will attempt to place variables and structures on 4-byte
boundaries. Given the following data structure:

struct x {

char a ;

struct x *next;
}

the compiler may not only place the base address of the structure
on a four byte boundary, but it may also pad the size of the c h a r
to be 4-bytes so that both members of the structure will also be on
4-byte boundaries. The result is that all addresses related to the
data structure will be 4-byte aligned. This alignment information
can be used to the address predictor's benefit in two ways. First,
with all the pointers being 4-byte aligned, the two least significant
bits of each address will be zero. Therefore any candidate with a
non-zero bit in either of these two bit locations can be discarded as
a possible address. Figure 2 shows the position of the align bits.

The second benefit involves the scanning of the cache line. In
a 64-byte cache line, if the predictor were to take single byte steps
through the cache line, 61 data values would have to be scrutinized.
Knowing that addresses only reside on 4-byte boundaries can allow
the predictor to take a scan step of four through the cache line, re-
ducing the number of data values that need to be examined from 61
to 16. This reduces the amount of work required during a cache line
scan, and minimizes false predictions on non-aligned data values.

3.4 Content Prefeteher Design Considerations

3.4.1 Recursion and Prefetch Priorities
The content prefetcher contains a recurrence component. Tra-

ditional prefetchers (e.g. stride, stream, correlating) observe only
the demand fetch reference stream, or the demand miss reference
stream subset, when trying to generate prefetch load addresses. The
content prefetcher differs in that it not only examines the demand
reference stream, but it also examines theprefetch reference stream.
The result is that the content-based prefetcher will generate new
prefetches based on previous prefetches (a recurrence relationship).
This recurrence feature allows the prefeteher to follow the recursive
path implicit in linked data structures.

The request depth is a measure of the level of recurrence of a
specific memory request. A demand fetch is assigned a request
level of zero. A prefetch resulting from a demand fetch miss is
assigned a request depth of one. A chained prefetch, a prefetch
resulting from a prior prefetch, is assigned a request depth equal
to one more than the prefetch that triggered the recurrent prefetch

A)

B)

C)

D)

E)

P R E F E T C H C H A I N I N G

Deamnd Miss Depth - 0
Cache line A scanned as a
result of the demand miss.
Prefetch for line B issued.

Prefetch Depth = 1
Cache line B scanned
when prefetch fall returns.
Prefetch for line C issued.

Prefetch Depth=2
This is a chained prefetch.
Line C scanned.
Prefetch for line D issued.

Prefetch D e p t h - 3
Prcfetch chain terminated
as the req depth reaches 3.
Line D is not scanned.

P A T H R E I N F O R C E M E N T

Demand (PF) Hi t Depth = 0
Cache line B (re)scanned as
result of the prefctch hit.
Depth updated from 1 to 0.
Prefctch of line C is issued.

Prefetch Depth= 1
Depth reset from 2 to I when
prcfetch found in cache f rom
the previous scan of line B.
Cache line C is (re)scanned.
Prefctch rcq issued for line D.

Prefetch D e p t h - 2
Depth reset from 3 to 2,
prefetch mere transaction
Cache line D is (re)scanned.
found in- f l ight .

Prefeteh req issued for line E.

Prefetch D e p t h - 3
Prefetch chain is extended.
The prefetch chain is term-
inated as the depth reaches 3.
Cache Hne E is not scanned.

Figure 3: Example of prefetch chaining and path reinforcement.

request. The request depth can be seen as the minimal number of
links since a non-speculative request.

This depth element provides a means for assigning a priority to
each memory request, with this priority being used during memory
bus arbitration. To limit speculation, prefetch requests with a depth
greater than a defined depth threshold are dropped, and not sent to
the memory system. An example of this recurrence mechanism is
shown in the first part (left side) of Figure 3.

3.4.2 Feedback-Directed Prefetch Chain Reinforce-
ment

A prefetch chain defines a recursive path that is being traversed
by the content prefetcher. Any termination of a prefetch chain
can lead to lost prefetch opportunities, as no explicit history of the
prefetch chain is stored. To re-establish a prefetch chain, a cache
miss must occur along the traversal path; the content prefetcher
then evaluates the cache miss traffic and may once again establish
the recursive prefetch chain. This is shown in Figure 4(a) where the
base scheme results in a miss every four requests when the thresh-
old depth has been set to 3.

To avoid interruption in the prefetch chain, the content prefetcher
includes a reinforcement mechanism that is based on the obser-
vation that the chain itself is implicitly stored in the cache. Thus
any demand hit on a prefetched cache line provides the content
prefetcher with the needed feedback required to sustain a prefetch
chain. To determine the hit on a prefetched cache line, a very small
amount of space is allocated (enough bits to encode the maximum
allowed prefetch depth) in the cache line to maintain the depth of
a reference. This amounts to less than a ½% space overhead when
using two bits per cache line.

Assigned request depth values are not fixed for the lifetime of the
associated prefetch memory transaction or cache line. When any
memory request hits in the cache, and has a request depth less than

283

(a) no reinforcement

Rescan

(b) with reinforcement

Resean

(c) controlling the number ofrescans

~>~ MISS (~ lilT Depth Threshold - 3

Figure 4: Re-establishing a terminated prefetch chain.

the stored request depth in the matching cache line, it is assumed
that the cache line is a member of an active prefetch chain. In such
events, two actions are taken. First, the stored request depth of the
prefetched cache line is updated (promoted) for having suppressed
the cache miss of the fetch request. This is consistent with m/tin-
taining the request depth as the number of links since a non spec-
ulative request. The second action is that the cache line is scanned
(using the previously described mechanism) in order to extend the
prefetch chain.

So while a prefetch chain may be temporarily halted due to a
large request depth, the ability to both change a cache line's stored
request depth and rescan the cache line allows the content prefetcher
to re-establish a prefetch chain. This reinforcement mechanism is
applied to the example of the previous section in Figure 3 (right
side). This mechanism also allows a prefetch chain to be restarted
due to a prefetch request being dropped due to other unspecified
reasons (e.g. insufficient bus arbiter buffer space).

Figure 4(b) graphically shows that a hit on the first prefetch re-
quest causes a rescan of the next two lines, resulting in the prefetch
of the fourth line. This outcome happens for every subsequent hit,
resulting in no other misses than the original one. In short, the rein-
forcement mechanism strives to keep the prefetching a number of
depth threshold links ahead of the non speculative stream. This is
a very effective way of controlling speculation without impairing
potential performance improvement. The cost is a few more bits
in each cache line as well as consuming second level cache cycles
to re-establish prefetch chains. Figure 4(c) shows how to half the
number ofrescans by re*establishing a chain only when the incom-
ing depth is at least two fewer than the stored depth.

3.4.3 Bandwidth Efficiency: Deeper versus Wider
The recursive component of the content prefetcher can lead to

highly speculative prefetches. One could take the stance that

Figure 5: Flow diagram of the content prefetcher prediction
mechanism.

prefetches "deeper" in the pmfetch chain are more speculative than
those earlier in the chain. The prefetcher needs to place a thresh-
old on this depth to limit highly speculative prefetches. But the
question then arises how deep is deep enough, and can the mem-
ory bandwidth being allocated to highly speculative prefetches be
better utilized elsewhere.

Until now, there has been an implicit assumption that the size of
a node instance within a linked data structure is correlated in some
manner to the size of the cache lines - obviously no such correla-
tion exists since allocated data structures may span multiple cache
lines. This means that no guarantees can be made about the loca-
tions of the data structure members within the cache lines. More
specifically, the location of the pointer that leads to the next node
instance of the reeursive data structure may be in the same or the
next cache line. Without these next pointers, the prefetch opportu-
nities provided the content prefetcher will be limited.

To overcome this possible limitation, the content prefetcher has
the ability to fetch wider references; that is, instead of specula-
tively prefetching down longer, deeper prefetch chains, tile content
prefetcher limits the depth ofprefetch chains, and will attempt to
prefetch more cache blocks that may hold more of the node instance
associated with a candidate address. This is easily done by simply
issuing one or more prefetches for the cache lines sequentially fol-
lowing the candidate address as "next-line" prefetches. The right
combination of depth versus width is established in Section 4.2,
where empirical measurements are used to choose a specific con-
figuration.

3.5 Content Prefeteher Micro-Architecture
Figure 5 provides a flow diagram showing the operation of the

content prefetcher prediction mechanism that makes use of the vir-
tual address matching heuristic. As shown in the flow diagram, for
an address-sized word to be validated as a candidate virtual address,
it must meet the requirements defined by the compare, filter, and
align bits, as well as the prefetch depth threshold. An examination
of the flow diagram can lead to the conclusion that the scanning of a
cache line for candidate addresses is strictly a sequential operation.
This is not true, as such scanning is parallel by nature, with each

284

Data

LI Fill

Processor I

~ ~ emand
Requests

Content Pr~fetch L I Miss Stride Prefeteh
R e q ~ L ~ L 2 Arbiter Requests.1

c ---- -L2uni edCache
Prefetchcr Miss

Stride Pre fetcher Virtual
Address
Predictor] T L2Mis s

Copy of / L2 Fill
L2 Fill /

Bus arbiter

L2 Fill Traffic Memoly Requests

ON"CHIP
OFF-CHIP

Bus

Main Meraoxy

Figure 6: Microarchitecture with a memory system that in-
cludes both a stride and content prefetcher.

address-sized being evaluated concurrently. Such a design can (and
does) lead to multiple prefetches being generated per cycle.

The microarchitecture of the memory system that includes the
on-chip content prefetcher is shown in Figure 6. The content data
prefetcher is located at the second cache level of the memory hierar-
chy, which is the lowest on-chip level. This provides the prefetcher
with access to various components that can be used to provide
feedback to the prefetcher. This memory system features a vir-
tuaUy indexed L1 data cache and a physically indexed L2 uni-
fied cache; meaning L1 cache misses require a virtual-to-physical
address translation prior to accessing the L2 cache. The stride
prefetcher monitors all the L1 cache miss traffic and issues requests
to the L2 arbiter. A copy of all the L2 fill traffic is passed to the
content prefetcher for evaluation, with candidate addresses issued
to the L2 arbiter.

Unlike many RISC processors, the processor model used in this
study uses a hardware TLB "page-walk", which accesses page table
structures in memory to fill TLB misses. All such "page-walk"
traffic bypasses the prefetcher because some of the page tables are
large tables of pointers to lower level page entries. Scanning such
a cache line (which is full of virtual addresses) would lead to a
combinational explosion of highly speculative prefetches.

The L2 and bus arbiters maintain a strict, priority-based order-
ing of requests. Demand requests are given the highest priority,
while stride prefetcher requests are favored over content prefetcher
requests because of their higher accuracy.

Having the content prefetcher on-chip provides the prefetcher
with ready access to all arbiters. Before any prefetch request is en-
queued to the memory system, both L2 and bus arbiters are checked
to see if a matching memory transaction is currently in-flight. If

such a transaction is found, the prefetch request is dropped. In the
event that a demand load encounters an in-flight prefetch memory
transaction for the same cache line address, the prefetch request is
promoted to the priority and depth of the demand request, thus pro-
viding positive reinforcement (feedback) to the content prefetcher
and insuring timely prefetches.

The arbiters are a fixed size. If in the process of trying to enqueue
a request the arbiter is found to not have any available buffer space,
the prefetch request is squashed. No attempt is made to store the
request until buffer space becomes available in the arbiter. The be-
havior of the arbiters is such that no demand request will be stalled
due to lack of buffer space if one or more prefetch requests cur-
rently reside in the arbiter. In this event, the arbiter will dequeue
a prefetch request in favor of the demand request. The prefetch
request with the lowest priority is removed from the arbiter, with
the demand request taking its place in the arbiter. At this point the
prefetch request is dropped.

A limit study was performed to measure the impact of prefetch-
ing directly into the L2 cache. Bad prefetches were injected on
every idle bus cycles to force evictions, resulting in cache pollu-
tion. This study showed that a low accuracy prefetcher can lead
to an average 3% performance reduction, and highlighted the need
to maintain a reasonable accuracy with any prefetcher that directly
fills into the cache.

4. EVALUATION OF THE CONTENT PRE-
FETCHER IMPLEMENTATION

This section begins by describing the steps taken to tune the
address prediction heuristics. The tuning takes an empirical ap-
proach to adjusting the parameters specific to the address predic-
tion mechanism. The results of the tuning are carried over to the
cycle-accurate performance model, where they are used to demon-
strate the performance improvements made possible when a content
prefetcher is added to a memory system that already makes use of
a stride prefetcher.

4.1 Tuning The Vi r tua l Address Matching Pre-
d ic tor

Traditionally coverage and accuracy (shown in Equations 1 and 2)
have been used to measure the goodness ofa prefetch mechanism.

prefetch hits (1)
coverage = misses wi thout prefetching

useful prefetches (2)
accuracy = number of prefetches generated

The coverage and accuracy metrics are not sufficient metrics to use
when making performance measurements, because they do not pro-
vide any information about the timeliness or criticality of the load
misses being masked by the prefetches. What coverage and accu-
racy do provide is good feedback when tuning the prefetcher mech-
anism. Therefore in the framework of the simulation environment
used in this paper, they are being used strictly as a means of tuning
the prefetch algorithm, and should not be construed as providing
any true insight into the performance of the content pmfetcher.

As described in Section 3, the virtual address matching predictor
has four "knobs" that can be set to control the conditions placed
on a candidate address. These are compare bits, filter bits, align
bits, and scan step. Figure 7 summarizes the average impact of the
number of compare and filter bits on both prefetch coverage and
accuracy. In this figure the prefetch coverage and accuracy values
have been adjusted by subtracting the content prefetches that would

285

40%

Average Adjusted Prefetch Coverage and Accuracy
(Compare and Filter Bl t l)

35%

30%

25%

20%

15%

10%

5%

0%

• 11-. : = " ~ = = = ~ ; ¢ ;

f - IBest Coverage and I
! . . [Accuracy T mde°ff I

i

08.0 08.2 08.4 08.6 08.8 09.0 09.1 09.3 09.5 09.7 10.0 10.2 10.4 10.6 11.0 11.1 11.3 11.5 12.0 12.2 12.4

Compare Bits.Flltsr BIts

I --~- adj ustsd-covara~e -m-adjusted-accuracy I

Figure 7: A summary of various compare and filter bit combinations. The horizontal axis shows a specific configuration of compare
and filter bits. For example 08.4 uses 8 "compare" bits and 4 "filter" bits within the 32-bit address space.

have also been issued by the stride prefetcher. It is important to
isolate the contribution made by the content prefetcher to properly
determine a productive configuration. From the author's perspec-
tive, the decision as to which compare-filter bit combination to use
is the pair of 8 compare bits and 4 filter bits, as it provides the best
coverage/accuracy tradeoff.

This decrease in the coverage and increase in accuracy is ex-
plained by examining the operation of the virtual address matching
algorithm. A tradeoff is being made between accuracy and oov-
erage as the number of compare bits is increased. By increasing
the number of compare bits, a more stringent requirement is being
placed on candidate addresses in that more of the upper address bits
are required to match. This obviously has to have a positive influ-
ence on the accuracy, as it should reduce the number of false pre-
dictions that lead to useless prefetches. The decrease in coverage
comes from the reduction in the size of the prefetchable range. As-
suming 32-bit addresses, using 8 compare bits leads to a prefetch-
able range of 16 MBytes (32 minus 8 bits equals 24 bits, which
provides an address range of 0 to 16M). Now increasing the num-
ber of compare bits to 9, effectively halves the prefetchable range,
which manifests itself as a decrease in the prefetch coverage.

Figure 8 summarizes the impact of varying the number of least-
significant bits examined to drop candidate prefetches (alignment
bits) and the number of bytes stepped after each evaluation (scan
step), with the compare and filter bits fixed at 8 and 4, respectively.

Increasing the number of alignment bits to two increases the ac-
curacy as expected, but at the expense of the coverage. This indi-
cates that not all compilers align the base address of each node; this
is expected from compilers optimizing for data footprint. For this
reason, predicting only on 2-byte alignment seems the best tradeoff
between coverage and accuracy. Extending this logic to cache-line
scanning, the step size should be set to two bytes as pointers are ex-
pected to be at least 2-byte aligned. This is confirmed in Figure 8
where the 2-byte step size appears as the best tradeoff. This leads
to a final address prediction heuristic configuration of 8 compare
bits, 4 filter bits, 1 align bit, and a scan step of 2-bytes.

These bit combinations are subjective, and were chosen as such
to carry out the experiments presented in the following sections.
They are specific to the applications, compilers, and operating sys-
tems utilized in this study. They would require further tuning if
the content prefetcher was going to be used beyond the scope of
this study. One area of research currently being investigated by the
authors is adaptive (runtime) heuristics for adjusting these parame-
ters.

4.2 Performance Evaluation

4.2.1 Speedup Comparison
Pointer-intensive applications can and do exhibit regularity, thus

the logical extension to the content prefetcher is the next line pre-
fetcher. The only concern is the added UL2 cache pollution that
will occur as a result of the increase in the number of prefetches
being issued. A means of compensating for this increase in re-
quests is to decrease the prefetch chain depth threshold, that is,
to trade "deeper" for "wider". A second reason for trading depth
bandwidth for width bandwidth is that the deeper (or longer) the
prefetch chain, the more speculative are the prefetches. Next line
prefetches are not as speculative, and are more time critical. Thus
the reasoning is that prefetching wider will lead to better perfor-
mance.

Figure 9 provides the speedups for various combinations of pre-
vious and next line prefetching relative to a content-based prefetch.
Also varied is the allowed depth of the prefetch chains, and the use
of prefetch path reinforcement. When examining Figure 9, a first
observation is that on the average, prefetching the previous line pro-
vides no added benefit. At the individual benchmark level, some of
the benchmarks do respond positively to the previous line prefetch-
ing, but when viewed collectively, the previous line prefetching is
not beneficial. This becomes more evident when making the com-
parison across constant bandwidth requirements. Issuing a single
next line prefetch consumes the same memory bandwidth as is-
suing a single previous line prefetch. Examining Figure 9 shows
that when next line bandwidth is exchanged for previous line band-

286

Average Adjusted Prefetch Coverage and Accuracy
(Compare Bits, Filter BIts, Align BIts, and Scan Step)

40%

35%

30%

25%

20%

15%

10%

5%

0%

IBest Coverage and [
/ [Accuracy Tradsoff I

/ ?

8.4.0.1 8-4.1.1 8.4.2.1 8.4.4.1 8.4.0.2 8.4.1.2 8.4.2.2 8.4.4.2 8.4.0.4 8.4.1.4 8.4.2.4 8.4.4.4
Compare Bits.Filtsr Bits.Align Bits.Scan Step

I -~--edlustsd-coverge -~ - adjustsd-accuracy [

Figure 8: A summary of align bits and scan step. For example the value "8.4.1.2" means that 8 compare bits and 4 filter bits were
used and that possible memory addresses in the contents were 2-byte aligned and two bytes were skipped before looking for another
address.

Speedup Comparison: Pmfetch Depth vs. Next Une

1.13

1.12

1.11

1.10

i 1.09

1.08

1.07

1.06

1.05

\ \

p0.n0 p0.nl p0.n2 p0.n3 p0.n4 pl.n0 pl.nl
Prev.Next Lines

[--*-- dep~h.9-nr ~ depth.5-nr ~ deplh.3-nr ---X-- dep~h.9-relnf ~ depth.5-reinf ---P-- depth.3-reinf I

Figure 9: Speedup Summary: Prefetch Depth vs. Next Line Count. The horizontal axis shows the number of previous lines and
next lines that are fetched. For example, "p0.n2" means that no blocks prior to the prefetched block are requested, but two blocks
following the block are requested. The "nr" suffix designates configurations with no reinforcement, while "reinf" indicates the use of
path reinforcement.

287

width (one previous and one next, vs., two next), an overall drop in
the performance is seen. In a sense this was expected. Recurrence
pointers, the pointers that provide the internode connection (and the
pointers that the content prefetcher tries to detect), generally point
to the start address of the node, and so the previous cache line usu-
ally has no association to the cache line pointed to by the candidate
address identified by the content prefetcher.

Of interest is why when no prefetch path reinforcement is uti-
lized, using larger prefetch depths results in better performance.
As stated previously, deeper chains can lead to more speculative
prefetches, and the possibility of increased cache pollution. But
from a performance perspective, prematurely terminating a prefetch
chain can be costly. In order to re-establish an active prefetch chain,
the memory system must take a demand load miss to allow the con-
tent prefetcher to see the existing UL2 fill data, and affording it the
opportunity to scan the data. So for active chains when no path re-
inforcement is being used, a smaller allowed prefetch depth limits
the benefits the content prefetcher can provide, forcing the prefetch
and execution paths to converge.

Recursive prefetch path reinforcement, discussed in Section 3,
provides the needed feedback required to continue uninterrupted
down an active prefetch path. Seeing that the recursive paths are
indeed being actively pursued, such a feedback mechanism should
prove beneficial. Further examination of Figure 9 shows that path
reinforcement does indeed improve performance. The important
observation to be made is the reversal of which prefetch depths
provide the best performance. As discussed above, when no path
reinforcement is being utilized, the larger the prefetch depth thresh-
old, the better the performance. When reinforcement is turned on,
the exact opposite is true, and the best performance is seen when
the prefetch depth threshold is set at three. This occurs for sev-
eral reasons. The first is path reinforcement overcomes the per-
formance limitations that can occur when a prefetch chain is be-
ing repeatedly started, terminated, and then subsequently restarted.
With reinforcement, i fa prefetch chain is active it should never be
terminated, regardless of the prefetch depth threshold. Next, al-
lowing longer prefetch chains allows more bad prefetches to enter
the memory system, as non-used prefetch chains will be allowed
to live longer until being terminated. Lastly, the rescan overhead
of the path reinforcement mechanism can put a strain on the mem-
ory system, specifically the UL2 cache. Allowing longer prefetch
chains can result in a significant increase in the number of rescans,
which can flood the bus arbiters and cache read ports, impacting
the timeliness of the non-rescanned prefetches.

Figure 9 shows that the best performance is seen when path
reinforcement is turned on, the prefetch depth threshold is set at
three, and the content prefetcher issues prefetch requests for both
the predicted candidate address, and the next three cache lines fol-
lowing the candidate address. In this configuration, the content
prefetcher enhanced memory system provides a 12.6% speedup,
which is a 1.3% improvement over not using path reinforcement.
These speedups are relative to the stride prefetcher enhanced per-
formance simulator.

4.2.2 Contribution of TLB Prefetching
One of the benefits of the virtual address matching heuristic is its

ability to issue prefetches when a virtual-to-physical address trans-
lation is not currently cached in the data TLB. The ability for the
content prefetcher to issue page-walks not only leads to speculative
prefetching of data values, but also leads to speculative prefetching
of address translations. To measure the contribution of this TLB
prefetching to the overall performance gains realized by the con-
tent prefetcher, the size of the data TLB was repeatedly doubled,

starting at 64 entries, until the size of the TLB was 1024 entries.
By allowing more translations to be cached, and if a significant
portion of the speedups were due to prefetches to the data TLB, a
marked drop in the content prefetcher speedup would be observed.

Repeatedly doubling the size of the cache from 64 entries to 1024
entries results in a small decrease in the measured speedups, only
dropping from 12.6% at 64 entries, to 12.3% at 1024 entries. Two
conclusions can be drawn from the results. First, the speedups real-
ized across the various TLB sizes remains approximately the same.
This indicates that the TLB prefetching is a minor contributor to
the overall performance gains being realized, and that the content
prefetcher can not be simply replaced by a larger data TLB. A sec-
ond conclusion is that the data TLB does not appear to be suffering
from pollution caused by the speculative prefetching. I fTLB pol-
lution was a factor, an increase in speedups would be be expected
as the number of TLB entries was increased.

4.2.3 Performance Summary
Figure 10 provides a look at the timeliness of both the stride

prefetcher and the content prefetcher. The bottom two stacked
bar provides the percentage of full and partial prefetches for stride
prefetcher. The next two sub-bars are the full and partial prefetches
for the content prefetcher, with the top sub-bar being the percent-
age of demand load misses that were not eliminated by the two
prefetchers. A couple of important observations can be made. As-
suming that the stride prefetcher is effective at masking the stride-
based load misses, then those loads not masked by the stride pre-
fetcher exhibit a more irregular pattern. Of these remaining non-
stride based loads, the content prefetcher is fully eliminating 43%
of the load misses, and is at least partially masking the load miss
latency of 60% of these loads. Not all irregular loads are caused by
pointer-following, and as such, the content prefetcher can not mask
all the non-stride based load misses.

In the on-chip versus off-chip prefetcher placement discussion
(see Section 3), one of the drawbacks expressed for placing the
content prefetcher on-chip was pointer-intensive applications of-
ten have little work between pointer references. This makes it
difficult to find the needed computational work to fully mask the
prefetch latencies. Of the issued content prefetches that at least par-
tially masked the memory use latency of a load request, 72% fully
masked the load-use latency. This large percentage is an indication
that the pointer-chasing path is not a limiting factor on the work-
loads used in this study, and thus validates the decision to place the
content prefetcher mechanism on-chip. Using the information con-
cerning full versus partial latency masking, the content prefetcher
is more timely than the stride-based prefetcher.

Overlaid on Figure 10 is the individual speedups for each of the
benchmarks. For clarity, the performance results given throughout
the paper have been presented using the average. Here, the perfor-
mance of individual benchmarks is shown.

5. QUANTITATIVE COMPARISON
The content prefetcher is not alone in its ability to issue prefetches

in pointer-intensive applications. One prefetcher design that shares
this ability is the Markov prefetcher [5]. The content prefetcher
may have numerous advantages over the Markov prefetcher: it uses
very little state and needs no training period. In this section, we
compare the performance of the content-directed prefetcher to the
Markov prefetcher using the same simulation framework:.

The Markov prefetch mechanism used in this paper is based on
the 1-history Markov model prefetcher implementation described
in [5]. The prefetcher uses a State Transition Table (STAB) with
a fan out of four, and models the transition probabilities using the

288

J

¢3
=

(¢
~3
3
]
z

100%

80%

60%

40%

20%

0%

UL2 Cache Load Request Distribution

/

\

1 \

i
;

i
I

I
__ m

@

/ ,
Benchmarks

I ~ str-fuq l i e str-part 1~3 cpf-full 1SS3 cpf-part B ul2-miss ~ speedup I

Figure 10: Distribution of UL2 Cache Load Requests.

1.50

1.40

1.30

1.20

1.10

1.00

Markov STAB
size
associativity

UL2 Cache
size
associativity

1/2 1/8

512 Kbytes 128 Kbytes
16-way 16-way

512 Kbytes 896 Kbytes
8-way 7-way

Table 3: The Markov prefetcher system configurations.

least recently used (LRU) replacement algorithm. The stride and
Markov prefetchers are accessed sequentially, with precedence be-
ing given to the stride prefetcher. If the stride prefetcher issues
a prefetch request for the given memory reference, the Markov
prefetcher will be blocked from issuing any prefetch requests. This
is used to reduce the number of redundant prefetches, and provide
more space in the prefetch request queue.

Two different Markov configurations were examined (see Ta-
ble 3). In the first configuration, the resources allocated to the UL2
are divided equally between the Markov STAB and the UL2 cache.
For the simulated processor configuration, the original 1-MByte
UL2 is divided into a 512 KByte UL2 and a 512 KByte Markov
STAB. In the second configuration, 1/8 of the resources allocated
to the UL2 cache are re-allocated to the Markov STAB. The perfor-
mance model uses an UL2 cache that is 8-way set associative, thus
the 1/8 - 7/8 division of resources between the Markov STAB and
UL2, respectively, is equivalent to allocating one way of each set
within the UL2 cache to the Markov STAB. The resulting division
of the original UL2 resources is an 896 KByte UL2 cache, and a
128 KByte Markov STAB. Resource division was used to keep the
overall system resources equal between the Markov prefetcher and
the content prefetcher.

The speedups provided the two memory system configurations
are shown in Figure 11. These speedups are relative to the per-
formance simulator utilizing a 1-MByte UL2 cache and enhanced
with a stride prefetcher.

1.15

Markov vs. Content Prefetcher Performance Comparison

1.10

.~ 1.05

i
m 1.00

0,95

0.90

/

J

ma rkovl/8 rnarkov 1/2 markov big content
Pmfetcher Configur~lon

Figure 11: Comparison of the average speedup provided by the
Markov and Content prefetchers.

Also included in Figure 11 is a Markov configuration that uses
a l-MByte UL2 cache, but allows the Markov STAB to grow un-
bounded. This unbounded configuration, markov_big, provides an
upper limit on the performance contributions the Markov prefetcher
can provide. The first configurations, markov_l/8 and markov_l/2,
clearly show that repartitioning the original UL2 resources between
the UL2 and the Markov STAB is not a wise design decision. The
Markov prefetcher is not capable of compensating for the perfor-
mance loss induced by reducing the size of the UL2 cache. When
allowing the Markov STAB to grow unbounded (markov_big), and
thus allowing resources to be added as needed to the prefetcher
mechanism, the maximum possible speedup provided by the Markov
prefetcher is 4.5%. The content prefetcher provides nearly three
times a higher speedup, at very little cost.

The greater improvement of the content prefetcher can be ex-
plained by both the operation of the content prefetcher, and by the
simulation framework. The content prefetcher does not require

289

a training phase, which proves to be a distinct advantage. The
Markov prefetcher must endure a training phase, and with large
caches, such as the 1-MByte cache used in this study, there is still a
strong likelihood, (modulo the application's working set size) that
the data that trained the Markov prefetcher is still resident in the
cache. So while the Markov prefetcher has seen the sequence pre-
viously and is now in a state to issue prefetches for the memory
sequence, it is not provided the opportunity to issue prefetches as
the data is still resident in the cache. Thus the training phase re-
quired by the Markov prefetcher severely restricts the prefetcher's
performance potential. The content prefetcher does not suffer from
these compulsory misses, and is capable of issuing prefetches while
the Markov prefetcher is still training. Further, the length of the
LITs may also impede the realized performance of the Markov
prefetcher. Expecting the Markov prefetcher to both adequately
train and provide a performance boost within the 30 million in-
struction constraint of the LITs may be overly optimistic, but it is
believed that longer runs will not drastically change these conclu-
sions.

6. CONCLUSIONS
This paper has presented content-directed data prefetching, a

hardware only technique for data prefetching, and simulated its
performance over a number of significant applications. Also in-
troduced is virtual address matching, an innovative heuristic that
takes into account both memory alignment issues and bounding
cases when dynamically discerning between virtual addresses and
data or random values.

This study has shown that a simple, effective, and realizable con-
tent sensitive data prefetcher can be built as an on-chip compo-
nent of the memory system. The design includesprefetch chaining,
that takes advantage of the inherent recursive nature of linked data
structures to allow the prefetcher to generate timely requests. The
implementation was validated using a highly detailed and accurate
simulator modeling a Pentium-like microarchitecture. Simulations
were run on aggressively sized L2 caches, thus eliminating any
false beriefits that may have been realized through the use of un-
dersized caches. The average speedup for the set ofworldoads was
12.6%, with the speedups of the individual workloads ranging from
1.4% to 39.5%. These speedups are very significant in the context
of realistic processor designs and the fact that this improvement is
in addition to that gained by using a stride prefetcher.

One of the major findings is that the content prefetcher enhanced
memory system is capable of delivering timely prefetches to fully
suppress demand load misses in all the applications used in this
study. Previous research has indicated that this is a difficult task to
achieve in the context of pointer-intensive applications.

7. REFERENCES

[1] H.-J. Boehm. Hardware and operating system support for
conservative garbage collection. In International Workshop
on Memory Management, pages 61-67, Palo Alto,
California, October 1991. IEEE Press.

[2] M. Charney and A. Reeves. Generalized correlation based
hardware prefetching. Technical Report EE-CEG-95-1,
Cornell University, February 1995.

[3] T.-E Chen and J.-L. Baer. Reducing memory latency via
non-blocking and prefetching caches. In Proceedings of the
5th International Conference on Architectural Support for
Programming Languages and Operating Systems, pages
51-61, Boston, Massachusetts, October 1992. ACM.

[4] J. Hennessey and D. Patterson. Computer Architecture: A
Quantitative Approach. Second Edition. Morgan Kaufman
Publishers, San Francisco, California, 1996.

[5] D. Joseph and D. Grunwald. Prefetching using markov
predictors. In Proceedings of the 2 4th Annual International
Symposium on Computer Architecture, pages 252-263,
Denver, Colorado, June 1997. ACM.

[6] N. Jouppi. Improving direct-mapped cache performance by
the addition of a small fully-associative cache and prefetch
buffers. In Proceedings of the 17th Annual International
Symposium on Computer Architecture, pages 388-397, 1990.

[7] M. Lipasti, W. Schmidt, S. Kunkel, and R. Roediger. SPAID:
Software prefetching in pointer and call intensive
environments. In Proceedings of the 28th Annual
International Symposium on Microarchitecture, pages
231-236, Ann Arbor, Michigan, November 1995. ACM.

[8] C.-K. Luk and T. Mowry. Compiler-based prefetching for
recursive data structures. In Proceedings of the 7th
International Conference on Architectural Support j e t
Programming Languages and Operating Systems, pages
222-233, Cambridge, Massachusetts, October 1996. ACM.

[9] T. Mowry, M. Lam, and A. Gupta. Design and evaluation of
a compiler algorithm for prefetching. In Proceedings of the
5th International Conference on Architectural Support for
Programming Languages and Operating Systems, pages
62-73, Boston, Massachusetts, October 1992. ACM.

[10] T. Ozawa, Y. Kimura, and S. Nishizaki. Cache miss
heuristics an preloading techniques for general-purpose
programs. In Proceedings of the 28th Annual International
Symposium on Microarchitecture, pages 243-248, Arm
Arbor, Michigan, November 1995. ACM.

[11] S. Palacharla and R. Kessler. Evaluating stream buyers as a
secondary cache replacement. In Proceedings of the 21st
Annual International Symposium on Computer Architecture,
pages 24-33, Chicago, Illinois, April 1994. ACM.

[12] A. Roth, A. Moshovos, and G. Sohi. Dependence based
prefetching for linked data structures. In Proceedings of the
8th International Conference on Architectural Support for
Programming Languages and Operating Systems, pages
115--126, San Jose, California, October 1998. ACM.

[13] C.-L. Yang and A. Lebeck. Push vs. pull: Data movement for
linked data structures. In Proceedings of the 2000
International Conference on Supercomputing, page.,;
176-186, Santa Fe, New Mexico, May 2000. ACM.

290

