Providing High and Predictable Performance
in Multicore Systems
Through Shared Resource Management
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High and Unpredictable
Application Slowdowns
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Background: Main Memory
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 Unaware of inter-application interference



Tackling Inter-Application Interference:
Memory Request Scheduling

* Monitor application memory access
characteristics

* Rank applications based on memory access
characteristics

* Prioritize requests at the memory
controller, based on ranking



An Example:
Thread Cluster Memory Scheduling
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Problems with Previous
Application-aware Memory Schedulers

 Hardware Complexity

— Ranking incurs high hardware cost

e Unfair slowdowns of some applications

— Ranking causes unfairness
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High Hardware Complexity

e Ranking incurs high hardware cost
— Rank computation incurs logic/storage cost
— Rank enforcement requires comparison logic
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Ranking Causes
Unfair Application Slowdowns

Grouping offers lower unfairness than ranking
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Problems with Previous
Application-Aware Memory Schedulers

Our Goal: Design a memory scheduler with

Low Complexity, High Performance, and Fairness

'\E.: 2




Towards a New Scheduler Design

 Monitor applications that have a number of
nsecutive requests serve :
1.c§|mpi’e éroﬂlpmg Mec(iwamsm

e Blacklist such applications

* Prioritize requests of non-blacklisted applications

2. Enforcing Priorities Based On Grouping
* Periodically clear blacklists



Methodology

* Configuration of our simulated system

— 24 cores
— 4 channels, 8 banks/channel

— DDR3 1066 DRAM
— 512 KB private cache/core

e Workloads

— SPEC CPU2006, TPCC, Matlab
— 80 multi programmed workloads
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Metrics

* System Performance:
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Previous Memory Schedulers

F R‘FC FS [Zuravleff and Robinson, US Patent 1997, Rixner et al., ISCA 2000]

— Prioritizes row-buffer hits and older requests
— Application-unaware

PARBS [Mutlu and Moscibroda, ISCA 2008]

— Batches oldest requests from each application; prioritizes batch
— Employs ranking within a batch

ATI_AS [Kim et al., HPCA 2010]

— Prioritizes applications with low memory-intensity

TCM [Kim et al., MICRO 2010]

— Always prioritizes low memory-intensity applications
— Shuffles request priorities of high memory-intensity applications



Weighted Speedup

=
o

(00
|

(0))
|

H
|

N
|

Performance Results

15
M FRFCFS g M FRFCFS
® FRFCFS-Cap -g 10 ® FRFCFS-Cap
m PARBS 2 = PARBS
M ATLAS :E, M ATLAS
= TCM E ° = TCM
m Blacklisting t; m Blacklisting

Approaches fairness of PARBS and
FRFCFS-Cap achieving better
performance than TCM

@



12

10

Latency (in ns)
(@)

Complexity Results

120000
WFRFCFS = 100000 ® FRFCFS
W FRFCFS-Cap 3 80000 m FRFCFS-Cap
M PARBS S B PARBS
S 60000
W ATLAS c M ATLAS
= TCM © 40000 — mTCM
Blacklisting < 20000 Blacklisting
0

Blacklisting achieves
43% lower area than TCM







Need for Predictable Performance

As a first step: Predictable performance
in the presence of memory interference
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Predictability in the Presence of

Memory Interference
1. Estimate Slowdown

2. Control Slowdown
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—Key Observations

2. Control Slowdown



Slowdown: Definition

Performance aione

Slowdown =
Performance shared



Key Observation 1

For a memory bound application,
Performance o«c Memory request service rate
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Key Observation 2

Request Service Rate ,; .. (RSR,,.) Of an
application can be estimated by giving the
application highest priority in accessing
memory

Highest priority = Little interference
(almost as if the application were run alone)
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Key Observation 2

1. Run alone
Request Buffer State

Main
Memory

2. Run with another application
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Memory Interference-induced Slowdown Estimation
(MISE) model for memory bound applications

Slowdown = Request Service Rate aione (RSRAI0ne)

Request Service Rate shared (RSRshared)



Key Observation 3

. . C Ph
* Memory-bound application Bl  Compute Phese

- Memory Phase
ot 0 100
interference > time

. 000 ]
interference

—>time

Memory phase slowdown dominates overall slowdown

¢



Key Observation 3

Memory Interference-induced Slowdown Estimation
(MISE) model for non-memory bound applications
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Slowdown=(1-a) + o



Predictability in the Presence of

Memory Interference
1. Estimate Slowdown

—MISE Operation: Putting it All Together

2. Control Slowdown



MISE Operation: Putting it All Together
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Predictability in the Presence of

Memory Interference
1. Estimate Slowdown

—Evaluating the Model
2. Control Slowdown



Previous Work on Slowdown

Estimation

* Previous work on slowdown estimation

<STFM (Stall Time Fair Memory) Scheduling [Mutlu et al., MICRO ‘07] —
— FST (Fairness via Source Throttling) [Ebrahimi et al., ASPLOS ‘10]

e Basic ldea: Difficult

Slowdown @ TIME Alone )

Stall Time snared

~ Easy

Count number of cycles application receives interference
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Two Major Advantages of MISE Over STFM

 Advantage 1:

— STFM estimates alone performance while an
application is receiving interference = Difficult

— MISE estimates alone performance while giving an
application the highest priority = Easier

* Advantage 2:

— STFM does not take into account compute phase for
non-memory-bound applications

— MISE accounts for compute phase = Better accuracy



Methodology

* Configuration of our simulated system

— 4 cores
— 1 channel, 8 banks/channel

— DDR3 1066 DRAM
— 512 KB private cache/core

e Workloads

— SPEC CPU2006
— 300 multi programmed workloads



Quantitative Comparison
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Comparison to STFM

Average error of MISE: 8.2%
Avera ' 0

N/

(across 300 workloads)
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Predictability in the Presence of

Memory Interference
1. Estimate Slowdown

2. Control Slowdown

—Providing Soft Slowdown Guarantees



MISE-QoS: Providing

“Soft” Slowdown Guarantees
e Goal

1. Ensure QoS-critical applications meet a prescribed
slowdown bound

2. Maximize system performance for other applications

 Basic ldea

— Allocate just enough bandwidth to QoS-critical
application

— Assign remaining bandwidth to other applications
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A Recap

* Problem: Shared resource interference causes
high and unpredictable application slowdowns
* Approach:
— Simple mechanisms to mitigate interference
— Slowdown estimation models
— Slowdown control mechanisms

e Future Work:

— Extending to shared caches

Q>
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Slowdown

Impact of Cache Capacity Contention

Shared Main Memory Shared Main Memory and Caches
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Request Service vs. Memory Access

Memory
Core Core Core Access Rate
. . Shared
Cache
Core Core Core Core
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Request service and access rates tightly coupled
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Estimating Cache and Memory Slowdowns
Through Cache Access Rates
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Slowdown

Cache Access Rate vs. Slowdown
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Challenge

How to estimate alone cache access rate?

. Cache
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Leveraging Slowdown Estimates
for Performance Optimization

* How do we leverage slowdown estimates to
achieve high performance by allocating

— Memory bandwidth?
— Cache capacity?
* Leverage other metrics along with slowdowns

— Memory intensity
— Cache miss rates
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Coordinated Resource Management
Schemes for Predictable Performance

Goal: Cache capacity and memory bandwidth
allocation for an application to meet a bound

Challenges:

e Large search space of potential cache capacity
and memory bandwidth allocations

* Multiple possible combinations of
cache/memory allocations for each application
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Timeline
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Summary

 Problem: Shared resource interference causes
high and unpredictable application slowdowns

* Goals: High and predictable performance

* Our Approach:
— Simple mechanisms to mitigate interference
— Slowdown estimation models
— Coordinated cache/memory management
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