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High and Unpredictable 
Application Slowdowns
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2. An application’s performance depends 
on which application it is running with
1. High application slowdowns due to 

shared resource interference
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Background: Main Memory

• FR-FCFS Memory Scheduler [Zuravleff and Robinson, US Patent ‘97; Rixner et al., ISCA ‘00]

– Row-buffer hit first

– Older request first

• Unaware of inter-application interference
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Tackling Inter-Application Interference:
Memory Request Scheduling

• Monitor application memory access 
characteristics

• Rank applications based on memory access 
characteristics

• Prioritize requests at the memory 
controller, based on ranking
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Problems with Previous 
Application-aware Memory Schedulers

• Hardware Complexity

– Ranking incurs high hardware cost

• Unfair slowdowns of some applications

– Ranking causes unfairness
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High Hardware Complexity

• Ranking incurs high hardware cost

– Rank computation incurs logic/storage cost

– Rank enforcement requires comparison logic
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Ranking Causes 
Unfair Application Slowdowns

• Lower-rank applications experience  
significant slowdowns

– Low memory service causes slowdown

– Periodic rank shuffling not sufficient0
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Problems with Previous 
Application-Aware Memory Schedulers

• Hardware Complexity

– Ranking incurs high hardware cost

• Unfair slowdowns of some applications

– Ranking causes unfairness

Our Goal: Design a memory scheduler with
Low Complexity, High Performance, and Fairness
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Towards a New Scheduler Design

• Monitor applications that have a number of 
consecutive requests served

• Blacklist such applications

1. Simple Grouping Mechanism

2. Enforcing Priorities Based On Grouping

• Prioritize requests of non-blacklisted applications

• Periodically clear blacklists
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Methodology

• Configuration of our simulated system
– 24 cores

– 4 channels, 8 banks/channel

– DDR3 1066 DRAM 

– 512 KB private cache/core

• Workloads
– SPEC CPU2006, TPCC, Matlab

– 80 multi programmed workloads
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Metrics

• System Performance:

• Fairness:
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Previous Memory Schedulers

• FR-FCFS [Zuravleff and Robinson, US Patent 1997, Rixner et al., ISCA 2000]

– Prioritizes row-buffer hits and older requests

– Application-unaware

• PARBS [Mutlu and Moscibroda, ISCA 2008]

– Batches oldest requests from each application; prioritizes batch

– Employs ranking within a batch

• ATLAS [Kim et al., HPCA 2010]

– Prioritizes applications  with low memory-intensity

• TCM [Kim et al., MICRO 2010]

– Always prioritizes low memory-intensity applications

– Shuffles request priorities of high memory-intensity applications
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Performance Results
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Complexity Results

Blacklisting achieves 
70% lower latency than TCM
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Need for Predictable Performance

• There is a need for predictable performance
– When multiple applications share resources 
– Especially if some applications require performance 

guarantees

• Example 1: In server systems
– Different users’ jobs consolidated onto the same server
– Need to provide bounded slowdowns to critical jobs 

• Example 2: In mobile systems
– Interactive applications run with non-interactive applications
– Need to guarantee performance for interactive applications

As a first step: Predictable performance 
in the presence of memory interference
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Predictability in the Presence of 
Memory Interference

1. Estimate Slowdown

–Key Observations

–MISE Operation: Putting it All Together

–Evaluating the Model

2. Control Slowdown

–Providing Soft Slowdown Guarantees

–Minimizing Maximum Slowdown
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Predictability in the Presence of 
Memory Interference

1. Estimate Slowdown
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–Minimizing Maximum Slowdown
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Slowdown: Definition
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Key Observation 1

For a memory bound application,  
Performance  Memory request service rate
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Key Observation 2

Request Service Rate Alone (RSRAlone) of an 
application can be estimated by giving the 

application highest priority in accessing 
memory 

Highest priority  Little interference

(almost as if the application were run alone)
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Key Observation 2
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Memory Interference-induced Slowdown Estimation 
(MISE) model for memory bound applications
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Key Observation 3

• Memory-bound application

No 
interference

Compute Phase

Memory Phase

With 
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Memory phase slowdown dominates overall slowdown
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Key Observation 3

• Non-memory-bound application
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Predictability in the Presence of 
Memory Interference

1. Estimate Slowdown

–Key Observations

–MISE Operation: Putting it All Together

–Evaluating the Model

2. Control Slowdown

–Providing Soft Slowdown Guarantees

–Minimizing Maximum Slowdown
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MISE Operation: Putting it All Together
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Predictability in the Presence of 
Memory Interference

1. Estimate Slowdown

–Key Observations

–MISE Operation: Putting it All Together

–Evaluating the Model

2. Control Slowdown

–Providing Soft Slowdown Guarantees

–Minimizing Maximum Slowdown
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Previous Work on Slowdown 
Estimation

• Previous work on slowdown estimation
– STFM (Stall Time Fair Memory) Scheduling [Mutlu et al., MICRO ‘07] 

– FST (Fairness via Source Throttling) [Ebrahimi et al., ASPLOS ‘10]

• Basic Idea:
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Two Major Advantages of MISE Over STFM

• Advantage 1:
– STFM estimates alone performance while an 

application is receiving interference  Difficult

– MISE estimates alone performance while giving an 
application the highest priority Easier

• Advantage 2:
– STFM does not take into account compute phase for 

non-memory-bound applications 

– MISE accounts for compute phase  Better accuracy
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Methodology

• Configuration of our simulated system
– 4 cores

– 1 channel, 8 banks/channel

– DDR3 1066 DRAM 

– 512 KB private cache/core

• Workloads
– SPEC CPU2006 

– 300 multi programmed workloads
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Quantitative Comparison
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Comparison to STFM
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Average error of MISE: 8.2%
Average error of STFM: 29.4%

(across 300 workloads)
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Predictability in the Presence of 
Memory Interference

1. Estimate Slowdown

–Key Observations

–MISE Operation: Putting it All Together

–Evaluating the Model

2. Control Slowdown

–Providing Soft Slowdown Guarantees

–Minimizing Maximum Slowdown
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MISE-QoS: Providing 
“Soft” Slowdown Guarantees

• Goal

1. Ensure QoS-critical applications meet a prescribed 
slowdown bound

2. Maximize system performance for other applications

• Basic Idea

– Allocate just enough bandwidth to QoS-critical 
application

– Assign remaining bandwidth to other applications
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A Recap

• Problem: Shared resource interference causes 
high and unpredictable application slowdowns

• Approach:

– Simple mechanisms to mitigate interference

– Slowdown estimation models

– Slowdown control mechanisms

• Future Work:

– Extending to shared caches
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Shared Cache Interference
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Impact of Cache Capacity Contention
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Cache capacity interference causes high 
application slowdowns

Shared Main Memory Shared Main Memory and Caches

0

0.5

1

1.5

2

bzip2 (core 0) soplex (core 1) 

S
lo

w
d

o
w

n

0

0.5

1

1.5

2

bzip2 (core 0) soplex (core 1) 
S

lo
w

d
o

w
n



Backup Slides
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• Coordinated cache/memory 
management for performance 

• Cache slowdown estimation
• Coordinated cache/memory 
management for predictability
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• Coordinated cache/memory 
management for predictability 



Request Service vs. Memory Access
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Estimating Cache and Memory Slowdowns
Through Cache Access Rates
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Cache Access Rate vs. Slowdown
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Challenge

How to estimate alone cache access rate?
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Leveraging Slowdown Estimates 
for Performance Optimization

• How do we leverage slowdown estimates to 
achieve high performance by allocating

– Memory bandwidth?

– Cache capacity?

• Leverage other metrics along with slowdowns

– Memory intensity

– Cache miss rates
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Coordinated Resource 
Allocation Schemes
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Coordinated Resource Management 
Schemes for Predictable Performance

Goal: Cache capacity and memory bandwidth 
allocation for an application to meet a bound

Challenges:

• Large search space of potential cache capacity 
and memory bandwidth allocations

• Multiple possible combinations of 
cache/memory allocations for each application
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management for performance 

• Cache slowdown estimation
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management for predictability 



Timeline
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Summary

• Problem: Shared resource interference causes 
high and unpredictable application slowdowns

• Goals: High and predictable performance 

• Our Approach:

– Simple mechanisms to mitigate interference

– Slowdown estimation models

– Coordinated cache/memory management
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