Providing High and Predictable Performance
in Multicore Systems
Through Shared Resource Management

Lavanya Subramanian

Shared Resource Interference

H Core Core H
H Core Core H
H Core Core H

Shared
Cache

High and Unpredictable
Application Slowdowns

6 6 -
e i
; 4 ; 4 -
S S

3 3 -
S S
© 2- o 2 -

eslie3d (core gcc (core 1) eslie3d (core 0 mcf (core 1)

2. JAm ggipé patioat Bopestonwdanae dejectod s
on wheheappdsmtion interierange with

I

Outline

Goals:
2. Predictable performance

7 N\

* Blacklisting memory scheduler * Predictability with memory
interference

Outline

Goals:
1. High performance

7 N\

* Blacklisting memory scheduler

¢

Background: Main Memory

Columns

Row-buffer hitss 2

n n n
Row Row Row

Buffer Buffer Buffer

Memory ch | [\
Controller anne /

. F R' FC FS M e m O ry SC h e d U Ie r [Zuravleff and Robinson, US Patent ‘97; Rixner et al., ISCA ‘00]
— Row-buffer hit first
— Older request first

 Unaware of inter-application interference

Tackling Inter-Application Interference:
Memory Request Scheduling

* Monitor application memory access
characteristics

* Rank applications based on memory access
characteristics

* Prioritize requests at the memory
controller, based on ranking

An Example:
Thread Cluster Memory Scheduling

4 higher)

priority

Non-intensive
cluster

Memory-non-intensive

“;u

stem

Throughput

/higher \

[]
Prioritized gne
/ priority
Intensive cluster

Figure: Kim et al., MICRO 2010 &)

Threads in the

Memory-intensive

Problems with Previous
Application-aware Memory Schedulers

 Hardware Complexity

— Ranking incurs high hardware cost

e Unfair slowdowns of some applications

— Ranking causes unfairness

cy (in ns)

High Hardware Complexity

e Ranking incurs high hardware cost
— Rank computation incurs logic/storage cost
— Rank enforcement requires comparison logic

10 80000

A
8% .:

0o

60000

(@)

® FRFCFS

square um)

40000 -

Avoid ranking to achieve low hardware cost

Qb

Ranking Causes
Unfair Application Slowdowns

Grouping offers lower unfairness than ranking

!

Problems with Previous
Application-Aware Memory Schedulers

Our Goal: Design a memory scheduler with

Low Complexity, High Performance, and Fairness

'\E.: 2

Towards a New Scheduler Design

 Monitor applications that have a number of
nsecutive requests serve :
1.c§|mpi’e éroﬂlpmg Mec(iwamsm

e Blacklist such applications

* Prioritize requests of non-blacklisted applications

2. Enforcing Priorities Based On Grouping
* Periodically clear blacklists

Methodology

* Configuration of our simulated system

— 24 cores
— 4 channels, 8 banks/channel

— DDR3 1066 DRAM
— 512 KB private cache/core

e Workloads

— SPEC CPU2006, TPCC, Matlab
— 80 multi programmed workloads

¢

Metrics

* System Performance:

10
PCshared c 8
Weighted Speedup = Z pC _§ 6
2 4
“ o9
Harmonic Speedup =
p p IP(:Ianne 0 T I
Z IPQshared 0 0.5 1
. Speed
Fairness: PEecEp
alone
Maximum Slowdown = max IPCS‘hared
IPC,

Previous Memory Schedulers

F R‘FC FS [Zuravleff and Robinson, US Patent 1997, Rixner et al., ISCA 2000]

— Prioritizes row-buffer hits and older requests
— Application-unaware

PARBS [Mutlu and Moscibroda, ISCA 2008]

— Batches oldest requests from each application; prioritizes batch
— Employs ranking within a batch

ATI_AS [Kim et al., HPCA 2010]

— Prioritizes applications with low memory-intensity

TCM [Kim et al., MICRO 2010]

— Always prioritizes low memory-intensity applications
— Shuffles request priorities of high memory-intensity applications

Weighted Speedup

=
o

(00
|

(0))
|

H
|

N
|

Performance Results

15
M FRFCFS g M FRFCFS
® FRFCFS-Cap -g 10 ® FRFCFS-Cap
m PARBS 2 = PARBS
M ATLAS :E, M ATLAS
= TCM E ° = TCM
m Blacklisting t; m Blacklisting

Approaches fairness of PARBS and
FRFCFS-Cap achieving better
performance than TCM

@

12

10

Latency (in ns)
(@)

Complexity Results

120000
WFRFCFS = 100000 ® FRFCFS
W FRFCFS-Cap 3 80000 m FRFCFS-Cap
M PARBS S B PARBS
S 60000
W ATLAS c M ATLAS
= TCM © 40000 — mTCM
Blacklisting < 20000 Blacklisting
0

Blacklisting achieves
43% lower area than TCM

Need for Predictable Performance

As a first step: Predictable performance
in the presence of memory interference

W

Outline

Goals:
2. Predictable performance

7 N\

* Predictability with memory
interference

Predictability in the Presence of

Memory Interference
1. Estimate Slowdown

2. Control Slowdown

Predictability in the Presence of

Memory Interference
1. Estimate Slowdown

—Key Observations

2. Control Slowdown

Slowdown: Definition

Performance aione

Slowdown =
Performance shared

Key Observation 1

For a memory bound application,
Performance o«c Memory request service rate

==0mnetpp

Difficult

d@&Rateem@ath 3.5 GB/s
\

Easy

2

=

Q.

(@)
Normalized lérformance

03 04 05 06 07 08 09 1
Normalized Request Service Rate

Key Observation 2

Request Service Rate ,; .. (RSR,,.) Of an
application can be estimated by giving the
application highest priority in accessing
memory

Highest priority = Little interference
(almost as if the application were run alone)

s

Key Observation 2

1. Run alone
Request Buffer State

Main
Memory

2. Run with another application

Request Buffer State

Main
Memory

Time units

Service order

Timewunits

SerV|ce order

Main
Memory

<€
I

3. Run with another application: highest prlor’lty

Request Buffer State

Main
Memory

Time units
<

. Service order

Main
Memory

3 ‘

Main
Memory

Memory Interference-induced Slowdown Estimation
(MISE) model for memory bound applications

Slowdown = Request Service Rate aione (RSRAI0ne)

Request Service Rate shared (RSRshared)

Key Observation 3

. . C Ph
* Memory-bound application Bl Compute Phese

- Memory Phase
ot 0 100
interference > time

. 000]
interference

—>time

Memory phase slowdown dominates overall slowdown

¢

Key Observation 3

Memory Interference-induced Slowdown Estimation
(MISE) model for non-memory bound applications

RS RAIone
RS RShared

Slowdown=(1-a) + o

Predictability in the Presence of

Memory Interference
1. Estimate Slowdown

—MISE Operation: Putting it All Together

2. Control Slowdown

MISE Operation: Putting it All Together

Interval Interval

A A

(Y 3.
———————————————————————————— SATHTE

)) EN

m Measure RSR¢; gy & m Measure RSR¢, . eqr O
= Estimate RSR = Estimate RSR

Alone Alone

v v
Estimate Estimate

slowdown slowdoyn

Predictability in the Presence of

Memory Interference
1. Estimate Slowdown

—Evaluating the Model
2. Control Slowdown

Previous Work on Slowdown

Estimation

* Previous work on slowdown estimation

<STFM (Stall Time Fair Memory) Scheduling [Mutlu et al., MICRO ‘07] —
— FST (Fairness via Source Throttling) [Ebrahimi et al., ASPLOS ‘10]

e Basic ldea: Difficult

Slowdown @ TIME Alone)

Stall Time snared

~ Easy

Count number of cycles application receives interference
Qs

Two Major Advantages of MISE Over STFM

 Advantage 1:

— STFM estimates alone performance while an
application is receiving interference = Difficult

— MISE estimates alone performance while giving an
application the highest priority = Easier

* Advantage 2:

— STFM does not take into account compute phase for
non-memory-bound applications

— MISE accounts for compute phase = Better accuracy

Methodology

* Configuration of our simulated system

— 4 cores
— 1 channel, 8 banks/channel

— DDR3 1066 DRAM
— 512 KB private cache/core

e Workloads

— SPEC CPU2006
— 300 multi programmed workloads

Quantitative Comparison

SPEC CPU 2006 application
leslie3d

/\/\/\ 4/ —Actual

20 40 60 80 100
Million Cycles

D

w
U

w

N .

Slowdown
N
(On

=
Ul

[N

o

¢

Comparison to STFM

Average error of MISE: 8.2%
Avera ' 0

N/

(across 300 workloads)

AN

Predictability in the Presence of

Memory Interference
1. Estimate Slowdown

2. Control Slowdown

—Providing Soft Slowdown Guarantees

MISE-QoS: Providing

“Soft” Slowdown Guarantees
e Goal

1. Ensure QoS-critical applications meet a prescribed
slowdown bound

2. Maximize system performance for other applications

 Basic ldea

— Allocate just enough bandwidth to QoS-critical
application

— Assign remaining bandwidth to other applications

@

Outline

Goals:

1. High performance
2. Predictable performance

v 4

* Blacklisting memory scheduler

\

* Predictability with memory
interference

A Recap

* Problem: Shared resource interference causes
high and unpredictable application slowdowns
* Approach:
— Simple mechanisms to mitigate interference
— Slowdown estimation models
— Slowdown control mechanisms

e Future Work:

— Extending to shared caches

Q>

Core

Core

Core

Core

Shared Cache Interference

Core H
Core
Core
Core

Core

Core

Core

Core

Slowdown

Impact of Cache Capacity Contention

Shared Main Memory Shared Main Memory and Caches

2 - 2 -
c

1.5 - S 15 -
3

1 1 -
l :

0.5 - O o5 -
)y

0 0 -

bzip2 (core 0) soplex (core 1)

bzip2 (core 0) soplex (core 1)

Cache capacity interference causes high
application slowdowns

s

Backup Slides

Outline

Goals:
1. High performance
2. Predictable performance

7 N\

 Coordinated cache/memory * Cache slowdown estimation
management for performance Coordinated cache/memory
management for predictability

Outline

Goals:

2. Predictable performance

7 N\

e Cache slowdown estimation

Request Service vs. Memory Access

Memory
Core Core Core Access Rate
. . Shared
Cache
Core Core Core Core
Service Rate

Request service and access rates tightly coupled

q{r_'

Estimating Cache and Memory Slowdowns
Through Cache Access Rates

coe | [e | [| ncces

Core | | Core | | Core |} Core § » . oec Rate

shared (521 main
<:| Memory

Cache
Core Core Core Core

Cache Access Rate alone
Slowdown=

Cache Access Rate shared

Slowdown

Cache Access Rate vs. Slowdown

2.2 -

c 2

S 1.8

S 16

2 14

1.2

1
1 1.2 1.4 1 1.5 2 2.5
Cache Access Rate Ratio Cache Access Rate Ratio

bzip2 xalancbmk

W

Challenge

How to estimate alone cache access rate?

. Cache

Core Core Core Access Rate

Core H Core S h a red
ke =

Core Core Core

Core H E Auxiliary
lags

Core

Core

Core

Core

Main

Outline

Goals:
1. High performance

7 N\

 Coordinated cache/memory
management for performance

Leveraging Slowdown Estimates
for Performance Optimization

* How do we leverage slowdown estimates to
achieve high performance by allocating

— Memory bandwidth?
— Cache capacity?
* Leverage other metrics along with slowdowns

— Memory intensity
— Cache miss rates

Core

Core

Core

Core

Core

Core

Core

Core

Coordinated Resource
Allocation Schemes

Cache capacity-aware

- bandwidth allocation
Core Core

Core H
Core H
Core H

Bandwidth-aware

Wpacity alw
1)

Outline

Goals:

2. Predictable performance

7 N\

 Coordinated cache/memory

management for predictability
Q-

Coordinated Resource Management
Schemes for Predictable Performance

Goal: Cache capacity and memory bandwidth
allocation for an application to meet a bound

Challenges:

e Large search space of potential cache capacity
and memory bandwidth allocations

* Multiple possible combinations of
cache/memory allocations for each application

Outline

Goals:
1. High performance
2. Predictable performance

* Blacklisting memory scheduler * Predictability with memory
interference

 Coordinated cache/memory * Cache slowdown estimation

management for performance Coordinated cache/memory

management for predictability

Timeline

2014

2015

Cache slowdown estimation (75% Goal)

Coordinated cache/memory management
for performance (100% Goal)

Apr.

May [Jun.

Jul.

Aug.

Sep.

Oct.

Nov.

Dec.

Jan.

Feb.

Mar.

Apr.

May

Coordinated cache/memory management
for predictability (125% Goal)

Writeup thesis and defend

&

Summary

 Problem: Shared resource interference causes
high and unpredictable application slowdowns

* Goals: High and predictable performance

* Our Approach:
— Simple mechanisms to mitigate interference
— Slowdown estimation models
— Coordinated cache/memory management

@

