
Providing High and Predictable Performance
in Multicore Systems

Through Shared Resource Management

Lavanya Subramanian

1

Shared Resource Interference

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Main
Memory

Shared
Cache

2

High and Unpredictable
Application Slowdowns

0

1

2

3

4

5

6

leslie3d (core 0) gcc (core 1)

S
lo

w
d

o
w

n

0

1

2

3

4

5

6

leslie3d (core 0) mcf (core 1)

S
lo

w
d

o
w

n

2. An application’s performance depends
on which application it is running with
1. High application slowdowns due to

shared resource interference
3

Outline

4

Goals:
1. High performance

2. Predictable performance

• Blacklisting memory scheduler • Predictability with memory
interference

Goals:
1. High performance

2. Predictable performance

Goals:
1. High performance

2. Predictable performance

Outline

5

• Blacklisting memory scheduler • Predictability with memory
interference

Goals:
1. High performance

2. Predictable performance

Background: Main Memory

• FR-FCFS Memory Scheduler [Zuravleff and Robinson, US Patent ‘97; Rixner et al., ISCA ‘00]

– Row-buffer hit first

– Older request first

• Unaware of inter-application interference

Row
Buffer

Bank 0 Bank 1 Bank 2 Bank 3

Row
Buffer

Row
Buffer

Row
Buffer

R
o

w
s

Columns

Channel
Memory

Controller

Bank 0 Bank 1 Bank 2 Bank 3

Row
Buffer

6

Row-buffer hitRow-buffer miss

Tackling Inter-Application Interference:
Memory Request Scheduling

• Monitor application memory access
characteristics

• Rank applications based on memory access
characteristics

• Prioritize requests at the memory
controller, based on ranking

7

thread

Threads in the system

thread

thread

thread

thread

thread

thread

Non-intensive
cluster

Intensive cluster

thread

thread

thread

Memory-non-intensive

Memory-intensive

Prioritized

higher
priority

higher
priority

Throughput

Fairness

An Example:
Thread Cluster Memory Scheduling

Figure: Kim et al., MICRO 2010
8

Problems with Previous
Application-aware Memory Schedulers

• Hardware Complexity

– Ranking incurs high hardware cost

• Unfair slowdowns of some applications

– Ranking causes unfairness

9

High Hardware Complexity

• Ranking incurs high hardware cost

– Rank computation incurs logic/storage cost

– Rank enforcement requires comparison logic

10

0

2

4

6

8

10

La
te

n
cy

 (
in

 n
s)

FRFCFS

TCM

0

20000

40000

60000

80000

A
re

a
(i

n
 s

q
u

ar
e

 u
m

)
FRFCFS

TCM8x

1.8x

Synthesized with a 32nm standard cell library

Avoid ranking to achieve low hardware cost

Ranking Causes
Unfair Application Slowdowns

• Lower-rank applications experience
significant slowdowns

– Low memory service causes slowdown

– Periodic rank shuffling not sufficient0

10

20

30

40

50

0 50 100

N
u

m
b

e
r

o
f

R
e

q
u

e
st

s

Execution Time (in 1000s of Cycles)

TCM

Grouping
0

20

40

60

80

100

0 50 100

N
u

m
b

e
r

o
f

R
e

q
u

e
st

s

Execution Time (in 1000s of Cycles)

TCM

Grouping

0

2

4

6

8

10

12

Sl
o

w
d

o
w

n

TCM

Grouping

0

2

4

6

8

10

Sl
o

w
d

o
w

n
TCM

Grouping

astar soplex

11

Grouping offers lower unfairness than ranking

Problems with Previous
Application-Aware Memory Schedulers

• Hardware Complexity

– Ranking incurs high hardware cost

• Unfair slowdowns of some applications

– Ranking causes unfairness

Our Goal: Design a memory scheduler with
Low Complexity, High Performance, and Fairness

12

Towards a New Scheduler Design

• Monitor applications that have a number of
consecutive requests served

• Blacklist such applications

1. Simple Grouping Mechanism

2. Enforcing Priorities Based On Grouping

• Prioritize requests of non-blacklisted applications

• Periodically clear blacklists

13

Methodology

• Configuration of our simulated system
– 24 cores

– 4 channels, 8 banks/channel

– DDR3 1066 DRAM

– 512 KB private cache/core

• Workloads
– SPEC CPU2006, TPCC, Matlab

– 80 multi programmed workloads

14

Metrics

• System Performance:

• Fairness:


i

alone

i

shared

i

IPC

IPC
Speedup Weighted

IPC

IPC
shared

i

alone

imaxSlowdown Maximum 

15





i
shared

i

alone

i

IPC

IPC

N
Speedup Harmonic

0

2

4

6

8

10

0 0.5 1

Sl
o

w
d

o
w

n

Speedup

Previous Memory Schedulers

• FR-FCFS [Zuravleff and Robinson, US Patent 1997, Rixner et al., ISCA 2000]

– Prioritizes row-buffer hits and older requests

– Application-unaware

• PARBS [Mutlu and Moscibroda, ISCA 2008]

– Batches oldest requests from each application; prioritizes batch

– Employs ranking within a batch

• ATLAS [Kim et al., HPCA 2010]

– Prioritizes applications with low memory-intensity

• TCM [Kim et al., MICRO 2010]

– Always prioritizes low memory-intensity applications

– Shuffles request priorities of high memory-intensity applications
16

Performance Results

0

2

4

6

8

10

W
e

ig
h

te
d

 S
p

e
e

d
u

p FRFCFS

FRFCFS-Cap

PARBS

ATLAS

TCM

Blacklisting

0

5

10

15

M
ax

im
u

m
 S

lo
w

d
o

w
n

FRFCFS

FRFCFS-Cap

PARBS

ATLAS

TCM

Blacklisting

5% higher system performance and 25%
lower maximum slowdown than TCM

17

Approaches fairness of PARBS and
FRFCFS-Cap achieving better

performance than TCM

Complexity Results

Blacklisting achieves
70% lower latency than TCM

18

Blacklisting achieves
43% lower area than TCM

0

2

4

6

8

10

12

La
te

n
cy

 (
in

 n
s)

FRFCFS

FRFCFS-Cap

PARBS

ATLAS

TCM

Blacklisting

0

20000

40000

60000

80000

100000

120000

A
re

a
(i

n
 s

q
u

ar
e

u
m

) FRFCFS

FRFCFS-Cap

PARBS

ATLAS

TCM

Blacklisting

Outline

19

• Blacklisting memory scheduler • Predictability with memory
interference

Goals:
1. High performance

2. Predictable performance

Need for Predictable Performance

• There is a need for predictable performance
– When multiple applications share resources
– Especially if some applications require performance

guarantees

• Example 1: In server systems
– Different users’ jobs consolidated onto the same server
– Need to provide bounded slowdowns to critical jobs

• Example 2: In mobile systems
– Interactive applications run with non-interactive applications
– Need to guarantee performance for interactive applications

As a first step: Predictable performance
in the presence of memory interference

20

Outline

21

• Blacklisting memory scheduler • Predictability with memory
interference

Goals:
1. High performance

2. Predictable performance

Predictability in the Presence of
Memory Interference

1. Estimate Slowdown

–Key Observations

–MISE Operation: Putting it All Together

–Evaluating the Model

2. Control Slowdown

–Providing Soft Slowdown Guarantees

–Minimizing Maximum Slowdown

22

Predictability in the Presence of
Memory Interference

1. Estimate Slowdown

–Key Observations

–MISE Operation: Putting it All Together

–Evaluating the Model

2. Control Slowdown

–Providing Soft Slowdown Guarantees

–Minimizing Maximum Slowdown

23

Slowdown: Definition

Shared

Alone

 ePerformanc

 ePerformanc
 Slowdown 

24

Key Observation 1

For a memory bound application,
Performance  Memory request service rate

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1N
o

rm
al

iz
e

d
 P

e
rf

o
rm

an
ce

Normalized Request Service Rate

omnetpp

mcf

astar

Shared

Alone

 Rate ServiceRequest

 Rate ServiceRequest
Slowdown

Shared

Alone

 ePerformanc

 ePerformanc
 Slowdown 

Easy

Difficult

Intel Core i7, 4 cores
Mem. Bandwidth: 8.5 GB/s

25

Key Observation 2

Request Service Rate Alone (RSRAlone) of an
application can be estimated by giving the

application highest priority in accessing
memory

Highest priority  Little interference

(almost as if the application were run alone)

26

Key Observation 2

Request Buffer State

Main
Memory

1. Run alone
Time units Service order

Main
Memory

12

Request Buffer State

Main
Memory

2. Run with another application
Service order

Main
Memory

123

Request Buffer State

Main
Memory

3. Run with another application: highest priority
Service order

Main
Memory

123

Time units

Time units

3

27

Memory Interference-induced Slowdown Estimation
(MISE) model for memory bound applications

)(RSR Rate ServiceRequest

)(RSR Rate ServiceRequest
Slowdown

SharedShared

AloneAlone


28

Key Observation 3

• Memory-bound application

No
interference

Compute Phase

Memory Phase

With
interference

Memory phase slowdown dominates overall slowdown

time

time

Req

Req

Req Req

Req Req

29

Key Observation 3

• Non-memory-bound application

time

time

No
interference

Compute Phase

Memory Phase

With
interference

Only memory fraction () slows down with interference

1



1

Shared

Alone

RSR

RSR


Shared

Alone

RSR

RSR
) - (1 Slowdown  

Memory Interference-induced Slowdown Estimation
(MISE) model for non-memory bound applications

30

Predictability in the Presence of
Memory Interference

1. Estimate Slowdown

–Key Observations

–MISE Operation: Putting it All Together

–Evaluating the Model

2. Control Slowdown

–Providing Soft Slowdown Guarantees

–Minimizing Maximum Slowdown

31

MISE Operation: Putting it All Together

time

Interval



Estimate

slowdown

Interval

Estimate

slowdown

 Measure RSRShared,

 Estimate RSRAlone

 Measure RSRShared,

 Estimate RSRAlone

32

Predictability in the Presence of
Memory Interference

1. Estimate Slowdown

–Key Observations

–MISE Operation: Putting it All Together

–Evaluating the Model

2. Control Slowdown

–Providing Soft Slowdown Guarantees

–Minimizing Maximum Slowdown

33

Previous Work on Slowdown
Estimation

• Previous work on slowdown estimation
– STFM (Stall Time Fair Memory) Scheduling [Mutlu et al., MICRO ‘07]

– FST (Fairness via Source Throttling) [Ebrahimi et al., ASPLOS ‘10]

• Basic Idea:

Shared

Alone

 Time Stall

 Time Stall
 Slowdown 

Difficult

Easy

Count number of cycles application receives interference
34

Two Major Advantages of MISE Over STFM

• Advantage 1:
– STFM estimates alone performance while an

application is receiving interference  Difficult

– MISE estimates alone performance while giving an
application the highest priority Easier

• Advantage 2:
– STFM does not take into account compute phase for

non-memory-bound applications

– MISE accounts for compute phase  Better accuracy

35

Methodology

• Configuration of our simulated system
– 4 cores

– 1 channel, 8 banks/channel

– DDR3 1066 DRAM

– 512 KB private cache/core

• Workloads
– SPEC CPU2006

– 300 multi programmed workloads

36

Quantitative Comparison

1

1.5

2

2.5

3

3.5

4

0 20 40 60 80 100

S
lo

w
d

o
w

n

Million Cycles

Actual

STFM

MISE

SPEC CPU 2006 application
leslie3d

37

Comparison to STFM

cactusADM

0

1

2

3

4

0 50 100

S
lo

w
d

o
w

n

0

1

2

3

4

0 50 100

S
lo

w
d

o
w

n

GemsFDTD

0

1

2

3

4

0 50 100

S
lo

w
d

o
w

n

soplex

0

1

2

3

4

0 50 100

S
lo

w
d

o
w

n

wrf

0

1

2

3

4

0 50 100

S
lo

w
d

o
w

n

calculix

0

1

2

3

4

0 50 100

S
lo

w
d

o
w

n

povray

Average error of MISE: 8.2%
Average error of STFM: 29.4%

(across 300 workloads)

38

Predictability in the Presence of
Memory Interference

1. Estimate Slowdown

–Key Observations

–MISE Operation: Putting it All Together

–Evaluating the Model

2. Control Slowdown

–Providing Soft Slowdown Guarantees

–Minimizing Maximum Slowdown

39

MISE-QoS: Providing
“Soft” Slowdown Guarantees

• Goal

1. Ensure QoS-critical applications meet a prescribed
slowdown bound

2. Maximize system performance for other applications

• Basic Idea

– Allocate just enough bandwidth to QoS-critical
application

– Assign remaining bandwidth to other applications

40

Outline

41

• Blacklisting memory scheduler • Predictability with memory
interference

Goals:
1. High performance

2. Predictable performance

A Recap

• Problem: Shared resource interference causes
high and unpredictable application slowdowns

• Approach:

– Simple mechanisms to mitigate interference

– Slowdown estimation models

– Slowdown control mechanisms

• Future Work:

– Extending to shared caches

42

Shared Cache Interference

43

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Main
Memory

Shared
Cache

Impact of Cache Capacity Contention

44

Cache capacity interference causes high
application slowdowns

Shared Main Memory Shared Main Memory and Caches

0

0.5

1

1.5

2

bzip2 (core 0) soplex (core 1)

S
lo

w
d

o
w

n

0

0.5

1

1.5

2

bzip2 (core 0) soplex (core 1)
S

lo
w

d
o

w
n

Backup Slides

45

Outline

46

• Blacklisting memory scheduler • Predictability with memory
interference

Goals:
1. High performance

2. Predictable performance

• Coordinated cache/memory
management for performance

• Cache slowdown estimation
• Coordinated cache/memory
management for predictability

Outline

47

• Blacklisting memory scheduler • Predictability with memory
interference

Goals:
1. High performance

2. Predictable performance

• Coordinated cache/memory
management for performance

• Cache slowdown estimation
• Coordinated cache/memory
management for predictability

Request Service vs. Memory Access

48

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Main
Memory

Shared
Cache

Memory
Access Rate

Request
Service Rate

Request service and access rates tightly coupled

Estimating Cache and Memory Slowdowns
Through Cache Access Rates

49

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Main
Memory

Shared
Cache

Cache
Access Rate

Shared

Alone

 Rate Access Cache

 Rate Access Cache
Slowdown

Cache Access Rate vs. Slowdown

50

1

1.1

1.2

1.3

1.4

1.5

1 1.2 1.4

Sl
o

w
d

o
w

n

Cache Access Rate Ratio

1

1.2

1.4

1.6

1.8

2

2.2

1 1.5 2 2.5

Sl
o

w
d

o
w

n
Cache Access Rate Ratio

bzip2 xalancbmk

Challenge

How to estimate alone cache access rate?

51

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Main
Memory

Shared
Cache

Cache
Access Rate

Auxiliary
Tags

Priority

Outline

52

• Blacklisting memory scheduler • Predictability with memory
interference

Goals:
1. High performance

2. Predictable performance

• Coordinated cache/memory
management for performance

• Cache slowdown estimation
• Coordinated cache/memory
management for predictability

Leveraging Slowdown Estimates
for Performance Optimization

• How do we leverage slowdown estimates to
achieve high performance by allocating

– Memory bandwidth?

– Cache capacity?

• Leverage other metrics along with slowdowns

– Memory intensity

– Cache miss rates

53

Coordinated Resource
Allocation Schemes

54

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Main
Memory

Shared
Cache

Cache capacity-aware
bandwidth allocation

Bandwidth-aware
cache capacity allocation

Outline

55

• Blacklisting memory scheduler • Predictability with memory
interference

Goals:
1. High performance

2. Predictable performance

• Coordinated cache/memory
management for performance

• Cache slowdown estimation
• Coordinated cache/memory
management for predictability

Coordinated Resource Management
Schemes for Predictable Performance

Goal: Cache capacity and memory bandwidth
allocation for an application to meet a bound

Challenges:

• Large search space of potential cache capacity
and memory bandwidth allocations

• Multiple possible combinations of
cache/memory allocations for each application

56

Outline

57

• Blacklisting memory scheduler • Predictability with memory
interference

Goals:
1. High performance

2. Predictable performance

• Coordinated cache/memory
management for performance

• Cache slowdown estimation
• Coordinated cache/memory
management for predictability

Timeline

58

Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May

Cache slowdown estimation (75% Goal)

Coordinated cache/memory management

for performance (100% Goal)

Coordinated cache/memory management

for predictability (125% Goal)

Writeup thesis and defend

20152014

Summary

• Problem: Shared resource interference causes
high and unpredictable application slowdowns

• Goals: High and predictable performance

• Our Approach:

– Simple mechanisms to mitigate interference

– Slowdown estimation models

– Coordinated cache/memory management

59

