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Abstract. A compiler for VLIW and superscalar processors must expose sufficient instruction-level parallelism 
(ILP) to effectively utilize the parallel hardware. However, ILP within basic blocks is extremely limited for control- 
intensive programs. We have developed a set of techniques for exploiting ILP across basic block boundaries. 
These techniques are based on a novel structure called the superblock. The superblock enables the optimizer 
and scheduler to extract more ILP along the important execution paths by systematically removing constraints 
due to the unimportant paths. Superblock optimization and scheduling have been implemented in the IMPACT-I 
compiler. This implementation gives us a unique opportunity to fully understand the issues involved in incorporat- 
ing these techniques into a real compiler. Superblock optimizations and scheduling are shown to be useful while 
taking into account a variety of architectural features. 
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1. Introduction 

VLIW and superscalar processors contain multiple data paths and functional units, making 
them capable of issuing multiple instructions per clock cycle [Colwell et al. 1987; Fisher 

1981; Horst et al. 1990; Intel 1989; Rau et al. 1989; Warren 1990]. As a result, the peak 

performance of the coming generation of VL1W and superscalar processors will range from 
two to eight times greater than their scalar predecessors that execute at most one instruction 
per clock cycle. However, previous studies have shown that using conventional code opti- 
mization and scheduling methods, superscalar and VLIW processors cannot produce a sus- 
tained speedup of more than two for control-intensive programs [Jouppi and Wall 1989; 

Schuette and Shen 1991; Smith et al. 1989]. For such programs, conventional compilation 
methods do not provide enough support to utilize these processors. 

Traditionally, the primary objective of code optimization is to reduce the number and 
complexity of executed instructions. Few existing optimizing compilers attempt to increase 
the instruction-level parallelism (ILP) 1 of the code. This is because most optimizing com- 

pilers have been designed for scalar processors, which benefit little from the increased 
ILP. Since VLIW and superscalar processors can take advantage of the increased ILP, it 
is important for the code optimizer to expose enough parallelism to fully utilize the parallel 
hardware. 
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The amount of ILP within basic blocks is extremely limited for control-intensive pro- 
grams. Therefore, the code optimizer must look beyond basic blocks to find sufficient ILP. 
We have developed a set of optimizations to increase ILP across basic block boundaries. 
These optimizations are based on a novel structure called the superblock. The formation 
and optimization of superblocks increase the ILP along the important execution paths by 
systematically removing constraints due to the unimportant paths. Becauase these optimiza- 
tions increase the ILP within superblocks, they are collectively referred to as superblock 
ILP optimizations. 

Unlike code optimization, code scheduling for VLIW processors has received extensive 
treatment in the literature [Aiken and Nicolau 1988; Bernstein and Rodeh 1991; Ellis 1986; 
Fisher 1981; Gupta and Sofia 1990]. In particular, the trace scheduling technique invented 
by Fisher [1981] has been shown to be very effective for rearranging instructions across 
basic blocks. An important issue for trace scheduling is the compiler implementation com- 
plexity incurred by the need to maintain correct program execution after moving instruc- 
tions across basic blocks. The code scheduling technique described in this paper, which 
is derived from trace scheduling, employs the superblock. Superblock ILP optimizations 
remove constraints, and the code scheduler implementation complexity is reduced. This 
code scheduling approach will be referred to as superblock scheduling. 

In order to characterize the cost and effectiveness of the superblock ILP optimizations 
and superblock scheduling, we have implemented these techniques in the IMPACT-I com- 
piler developed at the University of Illinois. The fundamental premise of this project is 
to provide a complete compiler implementation that allows us to quantify the impact of 
these techniques on the performance of VLIW and superscalar processors by compiling 
and executing large control-intensive programs. In addition, this compiler allows us to fully 
understand the issues involved in incorporating these optimizations and scheduling tech- 
niques into a real compiler. Superblock optimizations are shown to be useful while taking 
into account a variety of architectural parameters. 

Section 2 of this paper introduces the superblock. Section 3 gives a concise overview 
of the superblock ILP optimizations and superblock scheduling. Section 4 presents the cost 
and performance of these techniques. The concluding remarks are made in Section 5. 

2. The Superblock 

The purpose of code optimization and scheduling is to minimize execution time while pre- 
serving program semantics. When this is done globally, some optimization and scheduling 
decisions may decrease the execution time for one control path while increasing the time 
for another path. By making these decisions in favor of the more frequently executed path, 
an overall performance improvement can be achieved. 

Trace scheduling is a technique that was developed to allow scheduling decisions to be 
made in this manner [Ellis 1986; Fisher 19811. In trace scheduling the function is divided 
into a set of traces that represent the frequently executed paths. There may be conditional 
branches out of the middle of the trace (side exits) and transitions from other traces into 
the middle of the trace (side entrances). Instructions are scheduled within each trace ignor- 
ing these control-flow transitions. After scheduling, bookkeeping is required to ensure the 
correct execution of off-trace code. 
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Code motion past side exits can be handled in a fairly straightforward manner. If an 
instruction I is moved from above to below a side exit, and the destination of I is used 
before it is redefined when the side exit is taken, then a copy of I must also be placed 
between the side exit and its target. Movement of an instruction from below to above a 
branch can also be handled without too much difficulty. The method for doing this is de- 
scribed in Section 3.4. 

More complex bookkeeping must be done when code is moved above and below side 
entrances. Figure 1 illustrates this bookkeeping. In Figure la, when Instr I is moved below 
the side entrance (after Instr 4), the side entrance is moved below Instr 1. Instr 3 and Instr 4 
are then copied to the side entrance. Likewise, in Figure lb, when Instr 5 is moved above 
the side entrance, it must also be copied to the side entrance. 

Side entrances can also make it more complex to apply optimizations to traces. For ex- 
ample, Figure 2 shows how copy propagation can be applied to the trace and the necessary 
bookkeeping for the off-trace code. In this example, in order to propagate the value of rl 
from I1 to 13, bookkeeping must be performed. Before we propagate the value of rl, the 
side entrance is moved below 13 and instructions 12 and 13 are copied to the side entrance. 

The bookkeeping associated with side entrances can be avoided if the side entrances are 
removed from the trace. A superblock is a trace that has no side entrances. Control may 
only enter from the top but may leave at one or more exit points. Superblocks are formed 
in two steps. First, traces are identified using execution profile information [Chang and 
Hwu 1988]. Second, a process called tail duplication is performed to eliminate any side 
entrances to the trace [Chang, Mahlke, and Hwu 1991]. A copy is made of the tail portion 
of the trace from the first side entrance to the end. All side entrances into the trace are 
then moved to the corresponding duplicate basic blocks. The basic blocks in a superblock 
need not be consecutive in the code. However, our implementation restructures the code 
so that all blocks in a superblock appear in consecutive order for better cache performance. 

The formation of superblocks is illustrated in Figure 3. Figure 3a shows a weighted flow 
graph that represents a loop code segment. The nodes correspond to basic blocks, and 
the arcs correspond to possible control transfers. The count of each block indicates the 
execution frequency of that basic block. In Figure 3a the count of {A, B, C, D, E, F} is 

/, N 

Figure 1. Instruction scheduling across trace side entrances: (a) moving an instruction below a side entrance; 
(b) moving an instruction above a side entrance. 
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Figure 2. Applying copy propagation to an instruction trace: (a) before copy propagation; (b) after copy propaga- 
tion with bookkeeping code inserted. 
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Figure 3. An example of superblock formation: (a) after trace selection; (b) after tail duplication. 
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{100, 90, 10, 0, 90, 100}, respectively The count of each control transfer indicates the fre- 
quency of invoking these control transfers. In Figure 3a the count of {A ~ B, A ~ C, 
B ~ D, B ~ E ,  C ~ F, D ~ F, E ~ F, F ~ A } is {90, 10, 0, 90, 10, 0, 90, 99}, respec- 
tively. Clearly, the most frequently executed path in this example is the basic block sequence 
<A, B, E, F). There are three traces: {A, B, E, F},  {C}, and {D}. After trace selection, 
each trace is converted into a superblock. In Figure 3a we see that there are two control 
paths that enter the {A, B, E, F} trace at basic block E Therefore, we duplicate the tail 
part of the {A, B, E, F} trace starting at basic block E Each duplicated basic block forms 
a new superblock that is appended to the end of the function. The result is shown in Figure 
3b. Note that there are no longer side entrances into the most frequently traversed trace, 
<A, B, E, F); it has become a superblock. 

Superblocks are similar to the extended basic blocks. An extended basic block is defined 
as a sequence of basic blocks B 1 . . .  B~ such that for 1 < i < k, B i is the only predecessor 
of Bi+ 1 and B1 does not have a unique predecessor [Aho et al. 1986]. The difference be- 
tween superblocks and extended basic blocks lies mainly in how they are formed. Superblock 
formation is guided by profile information, and side entrances are removed to increase 
the size of the superblocks. It is possible for the first basic block in a superblock to have 
a unique predecessor. 

3. Superblock ILP Optimization and Scheduling 

Before superblock scheduling is performed, superblock ILP optimizations are applied which 
enlarge the superblock and increase instruction parallelism by removing dependences. 

3.1. Superblock Enlarging Optimizations 

The first category of superblock ILP optimizations is superblock enlarging optimizations. 
The purpose of these optimizations is to increase the size of the most frequently executed 
superblocks so that the superblock scheduler can manipulate a larger number of instruc- 
tions. It is more likely the scheduler will find independent instructions to schedule at every 
cycle in a superblock when there are more instructions to choose from. An important feature 
of superblock enlarging optimizations is that only the most frequently executed parts of 
a program are enlarged. This selective enlarging strategy keeps the overall code expansion 
under control [Chang, Mahlke, and Hwu 1991]. Three superblock enlarging optimizations 
are described as follows. 

1. Branch target expansion. Branch target expansion expands the target superblock of a 
likely-taken control transfer that ends a superblock. The target superblock is copied and 
appended to the end of the original superblock. Note that branch target expansion is 
not applied for control transfers that are loop back edges. Branch target expansion con- 
tinues to increase the size of a superblock until a predefined superblock size is reached 
or the branch ending the superblock does not favor one direction. 

2. Loop peeling. Superblock loop peeling modifies a superblock loop (a superblock that 
ends with a likely control transfer to itself) that tends to iterate only a few times for 



234 w.w. HWU ET AL. 

each loop execution. The loop body is replaced by straight-line code consisting of the 
first several iterations of the loop. 2 The original loop body is moved to the end of the 
function to handle executions that require additional iterations. After loop peeling, the 
most frequently executed preceding and succeeding superblocks can be expanded into 
the peeled loop body to create a single large superblock. 

3. Loop unrolling. Superblock loop unrolling replicates the body of a superblock loop that 
tends to iterate many times. To unroll a superblock loop N times, N - 1 copies of the 
superblock are appended to the original superblock. The loop back-edge control transfers 
in the first N - 1 loop bodies are adjusted or removed if possible to account for the 
unrolling. If the iteration count is known on loop entry, it is possible to remove these 
transfers by using a preconditioning loop to execute the first rnod N iterations. However, 
preconditioning loops are not currently inserted for unrolled loops. 

3.2. Superblock Dependence-Removing Optimizations 

The second category of superblock ILP optimizations is superblock dependence-removing 
optimizations. These optimizations eliminate data dependences between instructions within 
frequently executed superblocks, which increases the ILP available to the code scheduler. 
As a side effect some of these optimizations increase the number of executed instructions. 
However, by applying these optirnizations only to frequently executed superblocks, the code 
expansion incurred is regulated. Five superblock dependence-removing optimizations are 
described as follows: 

1. Register renaming. Reuse of registers by the compiler and variables by the programmer 
introduces artificial antidependences and output dependences and restricts the effective- 
ness of the scheduler. Many of these artificial dependences can be eliminated with register 
renaming [Kuck et al. 1981]. Register renaming assigns unique registers to different defini- 
tions of the same register and is commonly used to rename registers within individual 
loop bodies of an unrolled superblock loop. 

2. Operation migration. Operation migration moves an instruction from a superblock where 
its result is not used to a less frequently executed superblock. By migrating an instruc- 
tion, all of the data dependences associated with that instruction are eliminated from 
the original superblock. Operation migration is performed by detecting an instruction 
whose destination is not referenced in its home superblock. Based on a cost constraint 
a copy of the instruction is placed at the target of each exit of the superblock in which 
the destination of the instruction is live. Finally, the original instruction is deleted. 

3. Induction variable expansion. Induction variables are used within loops to index through 
loop iterations and through regular data structures such as arrays. When data access 
is delayed due to dependences on induction variable computation, ILP is typically limited. 
Induction variable expansion eliminates redefinitions of induction variables within an 
unrolled superblock loop. Each definition of the induction variable is given a new induc- 
tion variable, thereby eliminating all antidependences and output and flow dependences 
among the induction variable definitions. However, an additional instruction is inserted 
into the loop preheader to initialize each newly created induction variable. Also, patch 
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code is inserted if the induction variable is used outside the superblock to recover the 
proper value for the induction variable. 

4. Accumulator variable expansion. An accumulator variable accumulates a sum or product 
in each iteration of a loop. For loops of this type the accumulation operation often defmes 
the critical path within the loop. Similar to induction variable expansion, antidependences 
and output and flow dependences between instructions that accumulate a total are elimi- 
nated by replacing each definition of an accumulator variable with a new accumulator 
variable. Unlike induction variable expansion, though, the increment or decrement value 
is not required to be constant within the superblock loop. Again, initialization instruc- 
tions for these new accumulator variables must be inserted into the superblock preheader. 
Also, the new accumulator variables are summed at all superblock exit points to recover 
the value of the original accumulator variable. Note that accumulator variable expansion 
applied to floating point variables may not be safe for programs that rely on the order 
in which arithmetic operations are performed to maintain accuracy. For programs of 
this type an option is provided for the user to disable the accumulator variable expan- 
sion of floating point variables. 

5. Operation combining. Flow dependences between pairs of instructions with the same 
precedence, each with a compile-time constant source operand, can be eliminated with 
operation combining [Nakatani and Ebcioglu 1989]. Flow dependences that can be elim- 
inated with operation combining often arise between address calculation instructions 
and memory access instructions. Also, similar opportunities occur for loop variable 
increments and loop exit branches. The flow dependence is removed by substituting 
the expression of the first instruction into the second instruction and evaluating the con- 
stants at compile time. 

An example to illustrate loop unrolling, register renaming, induction variable expansion, 
and accumulator variable expansion is shown in Figure 4. This example assumes that the 
condition of the if statement within the loop is likely to be true. The resulting assembly 
code after superblock formation is shown in Figure 4b. To enlarge the superblock loop, 
loop unrolling is applied. The loop is unrolled three times in this example (Figure 4c). 
After loop unrolling, data dependences limit the amount of ILP in the superblock loop. 

The dependences among successive updates of r4 (Figure 4c) are eliminated with accumu- 
lator variable expansion. In Figure 4d three temporary accumulators, r 14, r24, and r34, 
are created within the superblock loop. After accumulator expansion, all updates to r4 
within one iteration of the unrolled loop are independent of one another. In order to main- 
tain correctness the temporary accumulators are properly initialized in the loop preheader 
(pre), and the values are summed at the loop exit point (L2). The dependences among 
the successive updates of r 1, along with the updates of r 1 and the succeeding load instruc- 
tions (Figure 4c), are eliminated with induction variable expansion. In Figure 4d three 
temporary induction variables, r l  1, r21, and r31, are created within the superblock loop. 
After induction variable expansion the chain of dependences created by the induction variable 
is eliminated within one iteration of the unrolled loop. Finally, register renaming is applied 
to the load instructions to eliminate output dependences. After all superblock ILP optimiza- 
tions are applied, the execution of the original loop bodies within the unrolled superblock 
loop may be completely overlapped by the scheduler. 
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L2 

(b) L1 

Original Loop 

if (A[i] == i] C += B[i] 
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if (i < N) goto L1 

(c) 
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goto L2 
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Loop 
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bne Jr2 i) L3 
l 

r3 = MEM(B + rl)i 

r4 = r4 + r3 
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r2 = MEM(A + rl) 

bne (r2 I) L3 
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r4 = r4 + r3 
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r3 = MEM(B + rl) 

r4 = r4 + r3 

rl = rl + 4 

blt (rl N') L1 

I 
L3 : I rl = rl + 4 

I 
blt (rl N') L1 
goto L2 
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rll = rl 

r21 - rl + 4 

r31 = rl + 8 

r14 = r4 

r24 = 0 

r34 = 0 

r12 - MEM(A + rll) 

bne (rl2 I) LI3 

r13 = MEM(B * rll) 

r14 = r14 § r13 

bge (r21 N') L2 

r22 - MEM(A + r21) 

bne (r22 i) L23 

r23 = MEM(B + r21) 

r24 = r24 + r23 

bge (r31 N') L2 

r32 = MEM(A + r31) 

bne (r32 I) L33 

r33 = MEM(B + r31) 

r34 = r34 + r33 

rll = rll + 12 

r21 = r21 + 12 

r31 = r31 + 12 

blt (rll N') L1 

r4 = r14 + r24 

r4 = r4 + r34 

~////////////////////////~ 

rll = rll + 4 

r21 = r21 + 4 

r31 = r31 + 4 

blt (rll N') L1 

oto L 2  

rll = rll + 8 

r21 = r21 + 8 

r31 = r31 + 8 

blt (rll N') L1 

oto L2 

rll = rll + 12 

r21 = r21 + 12 

r31 = r31 + 12 

blt (rll N') L1 

goto L2 

Figure 4. An application of superblock ILP optimizations: (a) original program segment; (b) assembly code after 
superblock formation; (c) assembly code after superblock loop unrolling; (d) assembly code after superblock 
dependence-removal optimizations. 

3.3. Superblock Scheduling 

After the superblock ILP optimizations are applied, superblock scheduling is performed. 
Code scheduling within a superblock consists of two steps: dependence graph construction 
tbllowed by list scheduling. A dependence graph is a data structure that represents the Con- 
trol and data dependences between instructions. A control dependence is initially assigned 
between each instruction and every preceding branch in the superblock. Some control de- 
pendences may then be removed according to the available hardware support described 
in the following section. After the appropriate control dependences have been eliminated, 
list scheduling using the dependence graph, instruction latencies, and resource constraints 
is performed on the superblock. 
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3.4. Speculative Execution Support 

Speculative execution refers to the execution of an instruction before it is known that its 
execution is required. Such an instruction will be referred to as a speculative instruction. 
Speculative execution occurs when the superblock scheduler moves an instruction J above 
a preceding conditional branch B. During run time J will be executed before B; that is, 
J is executed regardless of the branch direction of B. However, according to the original 
program order, J should be executed only if B is not taken. 3 Therefore, the execution result 
of J must not be used if B is taken, which is formally stated as follows: 

Restriction 1. The destination of J is not used before it is redefined when B is taken. 
This restriction usually has very little effect on code scheduling after superblock ILP 

optimization. For example, in Figure 4d after dependence removal in block L/, the instruc- 
tion that loads B [i] into r 13 can be executed before the direction of the preceding bne in- 
struction is known. Note that the execution result of this load instruction must not be used 
if the branch is taken. This is trivial to do because r 13 is never used before it has been 
defined if the branch is taken; the value thus loaded into r13 will be ignored in the subse- 
quent execution. 

A more serious problem with speculative execution is the prevention of premature pro- 
gram termination due to exceptions caused by speculative instructions. Exceptions caused 
by speculative instructions that would not have executed on a sequential machine must be 
ignored, which leads to the following restriction: 

Restriction 2. J will never cause an exception that may terminate program execution when 
branch B is taken. 

In Figure 4d the execution of the instruction that loads B [i] into r 13 could potentially 
cause a memory-access violation fault. If  this instruction is speculatively scheduled before 
its preceding branch and such a fault occurs during execution, the exception should be 
ignored if the branch was taken. Reporting the exception if the branch is taken would have 
incorrectly terminated the execution of the program. 

Two levels of hardware support for Restriction 2 will be examined in this paper: the 
restricted percolation model and the generalpercolation model. The restricted percolation 
model includes no support for disregarding the exceptions generated by the speculative 
instructions. For conventional processors, memory load, memory store, integer divide, 
and all floating point instructions can cause exceptions. When using the restricted percola- 
tion model, these instructions may not be moved above branches unless the compiler can 
prove that those instructions can never cause an exception when the preceding branch is 
taken. The limiting factor of the restricted percolation model is the inability to move potential 
trap-causing instructions with long latency, such as load instructions, above branches. When 
the critical path of a superblock contains many of these instructions, the performance of 
the restricted percolation model is limited. 

The general percolation model eliminates Restriction 2 by providing a nontrapping ver- 
sion of instructions that can cause exceptions [Chang et al. 1991]. Exceptions that may 
terminate program execution are avoided by converting all speculative instructions that can 
potentially cause exceptions into their nontrapping versions. For programs in which detec- 
tion of exceptions is important, the loss of exceptions can be recovered with additional 
architectural and compiler support [Mahlke et al. 1992]. However, in this paper only the 
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nontrapping execution support is used. In Section 4.5 we will show how the general per- 
colation model allows the superblock scheduler to exploit much more of the ILP exposed 
by superblock ILP optimizations than the restricted percolation model. 

4. Implementation Cost and Performance Results 

In this section we report the implications of superblock ILP optimization and scheduling 
on compiler size, compile time, and output code performance. We also examine three archi- 
tectural factors that directly affect the effectiveness of superblock ILP optimizations and 
scheduling: speculative execution support, instruction cache misses, and data cache misses. 

4.1. Compiler Size 

The IMPACT-I C compiler serves two important purposes. First, it is intended to generate 
highly optimized code for existing commercial microprocessors. We have constructed code 
generators for the MIPS R2000, SPARC, Am29000, i860, and HP PA-RISC processors. 
Second, it provides a platform for studying new code optimization techniques for instruction- 
level parallel processing. New code optimization techniques, once validated, can be imme- 
diately applied to the VLIW and superscalar implementations of existing and new commer- 
cial architectures. 

Figure 5 shows the percentage of compiler size due to each level of compiler sophistica- 
tion. The base level accounts for the C front end, traditional code optimizations, graph- 
coloring-based register allocation, basic block scheduling, and one code generator [Chaitin 
1982; Chow and Hennessy 1990]. The traditional optimizations include classical local and 
global code optimizations, function in-line expansion, instruction placement optimization, 
profile-based branch prediction, and constant preloading [Aho et al. 1986; Hwu and Chang 
1989a; Hwu and Chang 1989b]. The profile level generates dynamic execution frequency 
information and feeds this information back to the compiler. The superblock formation 
level performs trace selection, tail duplication, and superblock scheduling. The superblock 

�9 Base 

[] Profile 

[] Superblock Formation 

[] Superblock Optimization 

82*/, 
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20/* 4% 

Figure 5. Compiler code size breakdown. The entire compiler consists of approximately 92,000 lines of C code 
with one code generator. 
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ILP opt imizat ion level performs branch expansion,  loop unrol l ing,  loop peeling,  register 

renaming,  induct ion variable expansion,  accumula tor  expansion,  operat ion migrat ion,  and 
operat ion combining.  As shown in Figure  5, the compi ler  source code dedicated to the 

superblock techniques is only  about  14% of the entire IMPACT-I compiler.  

4.2. Benchmark Programs 

Table 1 shows the characteristics of the benchmark  programs to be used in our  compile  
t ime and output  code per formance  experiments.  The size co lumn indicates the sizes of the 
benchmark  programs measured  in numbers  of lines of C code excluding comments .  The 
remaining  co lumns  describe the benchmarks ,  the input  files used for profiling, and the 
input  file used for per formance  compar ison.  In  a few cases, such as lex and yacc, one of 

the profile inputs was used as the test input  due to an insuff icient  n u m b e r  of  realistic test 
cases. Most  of the benchmark  programs are sufficiently large and complex to make it virtu- 
ally impossible  to conduct  exper iments  us ing these programs without a working compiler.  

Table 1. The benchmarks. 

Benchmark 
Benchmark Size Description Profile Description Input Description 

cccp 4787 GNU C preprocessor 20 C source files (100-5000 1 C source file (4000 lines) 
lines) 

crop 141 compare files 20 similar/dissimilar files 2 similar files (4000 lines) 

compress 1514 compress files 20 C source files (100-5000 1 C source file (4000 lines) 
lines) 

eqn 2569 typeset math formulas 20 ditroff files (100-4000 1 ditroff file (17,000 lines) 
lines) 

eqntott 3461 boolean minimization 5 files of boolean equations standard SPEC 92 input 

espresso 6722 boolean minimization 20 original espresso opa 
benchmarks 

grep 464 string search 20 C source files with 1 C source file (4000 lines) 
search strings 

lex 3316 lexical analyzer 5 lexers for C, Lisp, Pascal, C lexer 
generator awk, pic 

li 7747 Lisp interpreter 5 gabriel benchmarks queens 7 

tbl 2817 format tables for troff 20 ditroff files (100--4000 1 ditroff file (5000 lines) 
lines) 

wc 120 word count 20 C source files (100-5000 1 C source file (4000 lines) 
lines) 

yacc 2303 parser generator 10 grammars for C, Pascal, C grammar 
pic, eqn 
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Table 2. Execution times of benchmarks on the DECstation3100. 

Benchmark IMPACr .o5  MIPS,04 GNU.O 

cccp 1.00 1.08 1.09 
crop 1.00 1.04 1.05 
compress 1.00 1.02 1.06 
eqn 1.00 1.09 1.10 
eqntou 1.00 1.04 1.33 
espresso 1.00 1.02 1.15 
grep 1.00 1.03 1.23 
lex 1.00 1.01 1.04 
li 1.00 1.14 1.32 
tbl 1.00 1.02 1.08 
wc 1.00 1.04 1.15 
yacc 1.00 1.00 1.11 

4.3. Base Code Calibration 

All the superblock ILP optimization and scheduling results will be reported as speedup 
over the code generated by a base compilation. For the speedup measures to be meaningful, 
it is important to show that the base compilation generates efficient code. This is done 
by comparing the execution time of our base compilation output against that produced by 
two high-quality production compilers. In Table 2 we compare the output code execution 
time against that of the MIPS C compiler (release 2.1, -04) and the GNU C compiler (release 
1.37.1, -O), on a DECstation3100 that uses a MIPS R2000 processor. In this table we pre- 
sent the normalized execution time for code generated by the MIPS and GNU C compilers 
with respect to the IMPACT base compilation output. The results show that our base com- 
piler performs slightly better than the two production compilers for all benchmark pro- 
grams. Therefore, all the speedup numbers reported in the subsequent sections are based 
on an efficient base code. 

4.4. Compile Time Cost 

Due to the prototype nature of IMPACT-I, very little effort has been spent minimizing compile 
time. During the development of the superblock ILP optimizer, compile time was given 
much less concern than correctness, output code performance, clear coding style, and ease 
of software maintenance. Therefore, the compile time results presented in this section do 
not necessarily represent the cost of future implementations of superblock ILP optimiza- 
tions and scheduling. Rather, we present the compile-time data to provide some initial in- 
sight into the compile-time cost of superblock techniques. 

Figure 6 shows the percentage of increase in compile time due to each level of compiler 
sophistication beyond base compilation on a SPARCstation-II workstation. To show the 
cost of program profiling, we separated the compile-time cost of deriving the execution 
profile. The profiling cost reported for each benchmark in Figure 6 is the cost to derive 
the execution profile for a typical input file. To acquire stable profile information, one should 
profile each program with multiple input files. 
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Figure 6. Compile-time cost of superblock ILP optimizations. 

The superblock formation part of the compile time reflects the cost of trace selection, 
tail duplication, and increased scheduling cost going from basic block scheduling to super- 
block scheduling. For our set of benchmarks the overhead of this part is between 2 % and 
23 % of the base compilation time. 

The superblock ILP optimization part of the compile time accounts for the cost of branch 
expansion, loop unrolling, loop peeling, and dependence-removing optimizations as well 
as the further increase in scheduling cost due to enlarged superblocks. Note that the overhead 
varies substantially across benchmarks. Although the average overhead is about 101% of 
the base compilation time, the overhead is as high as 522 % for cmp. After examining the 
compilation process in detail, we found that superblock enlargement created some huge 
superblocks for cmp. Because there are several O(N 2) algorithms used in ILP optimization 
and code scheduling, where N is the number of instructions in a superblock, the compile- 
time cost increased dramatically due to these huge superblocks. This problem can be solved 
by the combination of superblock size control and more efficient optimization and scheduling 
algorithms to decrease the worst-case compile time overhead. 

4. 5. Performance of Superblock ILP Optimization and Scheduling 

The compile time and base code calibration results presented in this paper have been based 
on real machine execution time. From this point on, we will report the performance of 
benchmarks based on simulations of a wide variety of superscalar processor organizations. 
All results will be reported as speedup over a scalar processor executing the base compila- 
tion output code. 4 The scalar processor is based on the MIPS R2000 instruction set with 
extensions for enhanced branch capabilities [Kane 1987]. These include squashing branches, 
additional branch opcodes such as BLT and BGT, and the ability to execute multiple branches 
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per cycle [Hwu and Chang 1992]. The underlying microarchitecture stalls for flow-dependent 
instructions, resolves output dependences with register renaming, and resolves antidepen- 
dences by fetching operands at an early stage of the pipeline. The instruction latencies 
assumed in the simulations are one cycle for integer add, subtract, comparison, shift, and 
logic operations; two cycles for load in cache; one cycle for store; two cycles for branches; 
three cycles for integer multiply; ten cycles for integer divide; three cycles for floating point 
add, subtract, multiply, comparison, and conversion; and ten cycles for floating point divide. 
The load and store latency for data cache misses will be discussed in Section 4.8. 

To derive the execution cycles for a particular level of compiler optimization and a proc- 
essor configuration, a simulation is performed for each benchmark. Although the base 
scalar processor is always simulated with the output code from the base compilation, the 
superscalar processors are simulated with varying levels of optimization. Experimental 
results presented in this section assume an ideal cache for both scalar and superscalar proc- 
essors. This allows us to focus on the effectiveness of the compiler to utilize the processor 
resources. The effect of cache misses will be addressed in Sections 4.7 and 4.8. 

In Figure 7 the performance improvement due to each additional level of compiler sophis- 
tication is shown for superscalar processors with varying instruction issue and execution 
resources. An issue K processor has the capacity to issue K instructions per cycle. In this 
experiment the processors are assumed to have uniform function units; thus there are no 
restrictions on the permissible combinations of instructions among the Ks issued in the 
same cycle. 

As shown in Figure 7, both superblock formation and superblock ILP optimization sig- 
nificantly increase the performance of superscalar processors. In fact, without these tech- 
niques the superscalar processors achieve little speedup over the base scalar processor. 
Note that for cmp, grep, and wc a 4-issue processor achieves a speedup that is more than 
four times that of the base processor. This speedup is superlinear because the 4-issue proc- 
essor executes code with superblock optimization, whereas the base processor only executes 
traditionally optimized code. For the 4-issue processor the cumulative performance improve- 
ment due to the superblock techniques ranges from 53 % to 293 % over the base compilation. 
These data clearly demonstrate the effectiveness of the superblock techniques. 
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Figure 7. Performance improvement due to superblock ILP optimization. The speedup numbers are relative to 
the scalar processor with base level compilation. 
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Figure 8. Effect of  speculative support  on superb lock  ILP optimizat ion results. 

4. 6. Effect of  Speculative Execution 

The general code percolation model is perhaps the most important architectural support 
for superblock ILP optimization and scheduling. The ability to ignore exceptions for specu- 
lative instructions allows the superblock scheduler to fully exploit the increased parallelism 
due to superblock ILP optimizations. This advantage is quantified in Figure 8. The general 
code percolation model allows the compiler to exploit from from 13 % to 143 % more 
instruction-level parallelism for issue 8. Without hardware support the scheduler can ex- 
ploit some of the parallelism exposed by superblock optimization. However, using speculative 
instructions in the general code percolation model, the scheduler is able to speed up the 
performance of the 8-issue processor by between 2.36 and 7.12 times. Furthermore, as 
the processor issue rate increases, the importance of general code percolation increases. 
For most benchmarks with restricted percolation, little speedup is obtained by going from 
a 4-issue processor to an 8-issue processor. However, when general percolation is used, 
substantial improvements are observed by going from a 4-issue processor to an 8-issue 
processor. These results confirm our qualitative analysis in Section 3.4. 

4.7. Instruction Cache Effects 

The expansion of code from superblock formation and superblock optimizations will have 
an effect on instruction cache performance. Most superblock ILP optimizations rely on 
code duplication to enlarge the scheduling scope. Some optimizations, such as accumulator 
expansion, add new instructions to maintain the correctness of execution after optimization. 
As shown in Figure 9, the superblock ILP optimizations significantly increase the code 
size. The code sizes of eqn and cmp are increased by 23 % and 355 %, respectively. Such 
code expansion can potentially degrade instruction cache performance. In addition, each 
stall cycle due to cache misses has a greater impact on the performance of superscalar 
processors than that of scalar processors. Therefore, it is important to evaluate the impact 
of instruction cache misses on the performance of superblock ILP optimizations. 
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Figure 9. Output code size expansion due to superblock ILP techniques. 
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Figure 10. Instruction cache effect on superblock ILP techniques (where A and C represent superblock formation 
and B and D, superblock optimization; A and B have a cache refill latency of 16 cycles and C and D have a cache 
refill latency of 32 cycles). 

Figure 10 shows the speedup of an 8-issue processor over the base scalar processor when 
taking an instruction cache miss penalty into account. The four bars associated with each 
benchmark correspond to four combinations of two optimization levels and two cache refill 
latencies. The two cumulative optimization levels are superblock formation (A, C) and 
superblock ILP optimization (B, D). The two cache refill latencies are 16 and 32 clock 
cycles. Each bar in Figure 10 has four sections showing the relative performance of four 
cache sizes: 1K, 4K, 16K, and ideal. The caches are direct-mapped with 32-byte blocks. 
Each instruction cache miss is assumed to cause the processors to stall for the cache refill 
latency minus the overlap cycles due to a load forwarding mechanism [Chen et al. 1991]. 
Since instruction cache misses affect the performance of both the base scalar processor 
and the superscalar processors, speedup is calculated by taking instruction cache misses 
into account for both performance measurements. 
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As shown in Figure 10, for larger caches, superblock ILP optimizations increase perfor- 
mance despite the effect of cache misses. Even for 1K caches, superblock ILP optimiza- 
tions increase performance for all but compress, grep, and wc. The performance approaches 
that of an ideal cache when the instruction cache is 16K bytes or larger for both 16- and 
32-cycle cache refill latencies. Since most modern high-performance computers have more 
than 64K bytes of instruction cache, the performance advantage of superblock ILP optimiza- 
tions is expected to be relatively unaffected by instruction misses in future high-performance 
computer systems. 

4.8. Data Cache Effects 

Because superblock optimizations do not affect the number of data memory accesses, the 
number of extra cycles due to data cache misses remains relatively constant across the opti- 
mization levels. However, since the superblock optimizations reduce the number of execu- 
tion cycles, the overhead due to data cache misses increases. Figure 11 shows the effect 
of four cache configurations on the performance of an 8-issue processor. The data cache 
organizations have the same block size and refill latencies as those used in the instruction 
cache experiments, but the cache sizes are 4K, 16K, 64K, and ideal. Note that data cache 
misses have more influence on the performance results than instruction cache misses. This 
is particularly true for the compress, eqntott, and lex benchmarks where there is a noticeable 
difference between the speedups for the 64K cache and the ideal cache. The poor cache 
performance in the case of the compress benchmark can be attributed to large internal data 
structures. The compress benchmark has two large tables, each larger than 64K bytes when 
large input files are used. The effect of the data cache on the performance of superblock 
optimizations illustrates the need to include data prefetching and other load-latency-hiding 
techniques in the compiler. 
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Figure 11. Data cache effect on superblock ILP techniques (where A and C represent superblock formation and 
B and D, superblock optimization; A and B have a cache refill latency of 16 cycles and C and D have a cache 
refill latency of 32 cycles). 
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5. Conclusion 

Control-intensive programs challenge instruction-level parallel processing compilers with 
excess constraints from many possible execution paths. In order to compile these programs 
effectively, we have designed the superblock ILP optimizations and superblock scheduling 
to systematically remove constraints due to unimportant execution paths. The IMPACT-I 
prototype proves that it is feasible to implement superblock ILP optimization and superblock 
scheduling in a real compiler. The development effort dedicated to the prototype implemen- 
tation is about 10 person-years in an academic environment. 

The implementation of the superblock techniques accounts for approximately 14 % of 
the compiler source code. Superblock techniques add an average overhead of 101% to the 
base compilation time. We would like to emphasize that the prototype is not tuned for fast 
compilation. The results here do not necessarily represent the compile time cost of commer- 
cial implementations. Rather, these numbers are reported to prove that the compile time 
overhead is acceptable in a prototypical implementation. 

Using simulation, we demonstrate that superscalar processors achieve much higher per- 
formance with superblock ILP optimization and superblock scheduling. For example, the 
improvement for a 4-issue processor ranges from 53% to 293% across the benchmark 
programs. 

Three architectural factors strongly influence the performance of superscalar and VLIW 
processors: speculative execution support, instruction cache misses, and data cache misses. 
We have shown that the general code percolation model allows the compiler to exploit from 
13 % to 143 % more instruction-level parallelism. Considering the moderate cost of specula- 
tive execution hardware, we expect that many future superscalar and VLIW systems will 
provide such support. 

Although the instruction cache misses can potentially cause severe performance degrada- 
tion, we found that the benchmark performance results remain unaffected for instruction 
caches of reasonable size. Since most workstations have more than 64K bytes of instruction 
cache, we do not expect the instruction misses to reduce the performance advantage of 
superblock ILP optimizations. Similar conclusions can be drawn for the data cache. How- 
ever, several benchmarks require more advanced data prefetching techniques to compensate 
for the effect of high cache miss rates. 

In conclusion, the IMPACT-I prototype proves that superblock ILP optimization and 
scheduling are not only feasible but also cost-effective. It also demonstrates that substantial 
speedup can be achieved by superscalar and VLIW processors over the current generation 
of high-performance RISC scalar processors. It provides one important set of data points 
to support instruction-level parallel processing as an important technology for the next gen- 
eration of high-performance processors. 
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Notes 

1. One can measure the ILP as the average number of simultaneously executable instructions per clock cycle. 
It is a function of the data and control dependences between instructions in the program as well as the instruc- 
tion latencies of the processor hardware. It is independent of all other hardware constraints. 

2. Using the profile information, the loop is peeled its expected number of iterations. 
3. Note that the blocks of a superblock are laid out sequentially by the compiler. Each instruction in the superblock 

is always on the fall-through path of its preceding conditional branch. 
4. Issue 1 processors, compiled with superblock formation and optimization, perform comparably to those using 

only traditional optimizations. Performance is better with only superblock formation [Chang, Mahlke, and 
Hwu 1991]; however, dependence removal and superblock enlargement negate the benefits of superblock for- 
mation on a single-issue processor since they are geared towards processors with higher issue rates. 
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