
Wish Branches: Combining Conditional Branching and Predication for
Adaptive Predicated Execution

Hyesoon Kim § Onur Mutlu § Jared Stark ‡ Yale N. Patt §
§Department of Electrical and Computer Engineering

University of Texas at Austin
{hyesoon,onur,patt}@ece.utexas.edu

‡Oregon Microarchitecture Lab
Intel Corporation

jared.w.stark@intel.com

Abstract

Predicated execution has been used to reduce the number
of branch mispredictions by eliminating hard-to-predict branches.
However, the additional instruction overhead and additional data
dependencies due to predicated execution sometimes offset the per-
formance advantage of having fewer mispredictions.

We propose a mechanism in which the compiler generates code
that can be executed either as predicated code or non-predicated
code (i.e., code with normal conditional branches). The hardware
decides whether the predicated code or the non-predicated code is
executed based on a run-time confidence estimation of the branch’s
prediction. The code generated by the compiler is the same as pred-
icated code, except the predicated conditional branches are NOT
removed—they are left intact in the program code. These conditional
branches are called wish branches. The goal of wish branches is to
use predicated execution for hard-to-predict dynamic branches and
branch prediction for easy-to-predict dynamic branches, thereby ob-
taining the best of both worlds. We also introduce a class of wish
branches, called wish loops, which utilize predication to reduce the
misprediction penalty for hard-to-predict backward (loop) branches.

We describe the semantics, types, and operation of wish branches
along with the software and hardware support required to generate
and utilize them. Our results show that wish branches decrease the
average execution time of a subset of SPEC INT 2000 benchmarks by
14.2% compared to traditional conditional branches and by 13.3%
compared to the best-performing predicated code binary.

1. Introduction
Predicated execution has been used to eliminate hard-to-predict

branches by converting control dependencies into data dependen-
cies [1]. Traditional predicated execution is not adaptive to run-time
(dynamic) branch behavior. The compiler decides to keep a branch as
a conditional branch or to predicate it based on compile-time profile
information. If the run-time behavior of the branch differs from the
compile-time profile behavior, the hardware does not have the ability
to override the choice made by the compiler. A predicated branch re-
mains predicated for all its dynamic instances even if it turns out to be
very easy-to-predict at run time. Despite the fact that such a branch
is rarely mispredicted, the hardware needs to fetch, decode, and exe-
cute instructions from both control-flow paths. Hence, predicated ex-
ecution sometimes results in a performance loss because it requires
the processing overhead of additional instructions–sometimes with-
out providing any performance benefit.

Figure 1 shows the performance of predicated code on a real sys-
tem. The results show the execution time of predicated code binaries
with different inputs. The data is measured on an Itanium-II machine
and binaries are compiled with the ORC-2.0 compiler [22]. Data is
normalized to the execution time of a non-predicated code binary for

each input. The results show that predicated code binaries generally
provide performance benefit over the non-predicated code binaries.
But, they sometimes perform worse. For example, for mcf, pred-
icated code provides a 9% performance improvement for input-C,
but causes a 4% performance loss for input-A. For bzip2, predicated
code only provides a 1% improvement for input-C, but causes a 16%
loss for input-A. Hence, the performance of predicated execution is
highly dependent on the run-time input set of the program.

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

 E
xe

cu
ti

on
 t

im
e

no
rm

al
iz

ed
 t

o
no

 p
re

di
ca

ti
on input-A

input-B
input-C

gzip vpr gcc mcf crafty parser perlbmk gap vortex bzip2 twolf

Figure 1. Relative execution time normalized to a non-predicated
binary on a real Itanium-II processor.

We would like to eliminate the performance loss due to the over-
head of predicated execution by providing a choice to the hardware:
the choice of whether or not to use predicated execution for a branch.
The compiler is not good at deciding which branches are hard-to-
predict because it does not have access to run-time information. In
contrast, the hardware has access to accurate run-time information
about each branch.

We propose a mechanism in which the compiler generates code
that can be executed either as predicated code or non-predicated code
(i.e., code with normal conditional branches). The hardware decides
whether the predicated code or the non-predicated code is executed
based on a run-time confidence estimation of the branch’s prediction.
The code generated by the compiler is the same as predicated code,
except the predicated conditional branches are NOT removed—they
are left intact in the program code. These conditional branches are
called wish branches. When the hardware fetches a wish branch, it
estimates whether or not the branch is hard-to-predict using a confi-
dence estimator. If the wish branch is hard-to-predict, the hardware
executes the predicated code in order to eliminate a possible branch
misprediction. If the wish branch is easy-to-predict, the hardware
uses the branch predictor to predict the direction of the wish branch
and ignores the predicate information. Hence, wish branches provide
the hardware with a way to dynamically choose between conditional
branch prediction and predicated execution depending on accurate
run-time information about the branch’s behavior.

Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05)
0-7695-2440-0/05 $20.00 © 2005 IEEE

This paper describes the semantics, types, and operation of wish
branches. We show that wish branches can eliminate the negative ef-
fects of predicated execution and attain better performance than both
branch prediction and predicated execution. In Section 2, we pro-
vide background information on predicated execution and analyze
its overhead. In Section 3, we describe wish branches and their dif-
ferences from normal branches and predicated execution. Section 4
describes our experimental methodology, and Section 5 presents our
experimental results. Section 6 compares our work to related re-
search in the areas of predication, control-flow independence, and
multi-path execution.

2. Background and Motivation

Although predicated execution has been implemented in in-order
processors [24, 12], as earlier researchers have suggested, the tech-
nique can be used in out-of-order processors as well [28, 3, 31, 20,
7, 9]. Since our research aims to reduce the branch misprediction
penalty in aggressive high-performance processors, we model predi-
cated execution in an out-of-order processor.1 This section provides
background on the microarchitecture support needed to use predi-
cated execution in an out-of-order processor. We also analyze the
overhead of predicated execution in an out-of-order processor to pro-
vide motivation for wish branches.

2.1. Microarchitectural Support for Predicated Ex-
ecution in Out-of-order Execution Processors

In an out-of-order processor, predication complicates register re-
naming because a predicated instruction may or may not write into
its destination register depending on the value of the predicate [28,
23]. Several solutions have been proposed to handle this problem:
converting predicated instructions into C-style conditional expres-
sions [28], breaking predicated instructions into two µops [8], the
select-µop mechanism [31], and predicate prediction [7]. We briefly
describe the baseline mechanism, C-style conditional expressions,
we use in this paper. We have also evaluated wish branches on a pro-
cessor that implements the select-µop mechanism and found similar
results, which are described in Section 5.3.3.

Converting a predicated instruction into a C-style conditional
expression: In our baseline mechanism, a predicated instruction is
transformed into another instruction similar to a C-style conditional
expression. For example, (p1)r1=r2+r3 instruction is converted
to the µop r1=p1?(r2+r3):r1. If the predicate is TRUE, the
instruction performs the computation and stores the result into the
destination register. If the predicate is FALSE, the instruction sim-
ply moves the old value of the destination register into its destination
register, which is architecturally a NOP operation. Hence, regardless
of the predicate value, the instruction always writes into the desti-
nation register, allowing the dependent instructions to be renamed
correctly. This mechanism requires four register sources (the old
destination register value, the source predicate register, and the two
source registers).

2.2. The Overhead of Predicated Execution

Predicated execution reduces the number of branch mispre-
dictions by eliminating hard-to-predict branches. Hard-to-predict

1Note that the mechanism we propose is applicable to any processor that
implements predicated execution, regardless of whether it implements in-
order or out-of-order scheduling.

branches are eliminated by converting control dependencies into data
dependencies using if-conversion [1]. Instructions that are control-
dependent on the branch become data-dependent on the branch’s
predicate (condition) after the branch is eliminated. Because it con-
verts control dependencies into data dependencies, predicated execu-
tion introduces two major sources of overhead on the dynamic execu-
tion of a program compared to conditional branch prediction. First,
the processor needs to fetch additional instructions that are guaran-
teed to be useless since their predicates will be FALSE. These in-
structions waste fetch and possibly execution bandwidth and occupy
processor resources that can otherwise be utilized by useful instruc-
tions. Second, an instruction that is dependent on a predicate value
cannot be executed until the predicate value it depends on is ready.
This introduces additional delay into the execution of predicated in-
structions and their dependents, and hence may increase the execu-
tion time of the program. We analyze the performance impact of
these two sources of overhead on an out-of-order processor model
that implements predicated execution. Our simulation methodology
and the baseline machine are described in Section 4.

Figure 2 shows the performance improvement achievable if the
sources of overhead in predicated execution are ideally eliminated.
Data is normalized to the execution time of the non-predicated code
binary. For each benchmark, four bars are shown from left to right:
(1) BASE-MAX shows the execution time of the predicated code
binary produced by the ORC compiler - with all overheads of pred-
icated execution faithfully modeled. (2) NO-DEPEND shows the
execution time of the predicated code binary when the dependencies
due to predication are ideally (using oracle information) removed.
(3) NO-DEPEND + NO-FETCH shows the execution time of the
predicated code binary when both sources of overhead in predicated
execution are ideally eliminated: in addition to predicate dependen-
cies, the instructions whose predicates are FALSE are ideally elim-
inated so that they do not consume fetch and execution bandwidth,
(4) PERFECT-CBP shows the execution time of the non-predicated
code binary when all conditional branches are perfectly predicted
using oracle information. This figure shows that predicated execu-
tion helps many benchmarks, but it does not improve the average
execution time over a non-predicated code binary when its overhead
is faithfully modeled.2 However, if the sources of overhead associ-
ated with it are completely eliminated, predicated execution would
improve the average execution time by 16.4% over no predication.
When the overhead of predicated execution is eliminated, the pred-
icated code binary outperforms the non-predicated code binary by
more than 2% on all benchmarks, even on those where predicated
execution normally loses performance (i.e., mcf and bzip2). Note
that a significant performance difference still exists between NO-
DEPEND + NO-FETCH and PERF-CBP (Perfect conditional branch
prediction improves the average execution time by 37.4%). This is
due to the fact that not all branches can be eliminated using pred-
ication. For example, backward (loop) branches, which constitute
a significant proportion of all branches, cannot be eliminated using
predicated execution [1, 5].

2The execution time of mcf skews the average normalized execution time,
because mcf performs very poorly with predicated execution. Hence, we re-
port two average execution time numbers on our graphs. The set of bars
labeled AVG shows the average execution time with mcf included. The set
of bars labeled AVGnomcf shows the average execution time with mcf ex-
cluded. Since the goal of our mechanism is to reduce the negative effects of
predicated execution, we feel that mcf is an important benchmark that needs
to be considered in our evaluations.

Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05)
0-7695-2440-0/05 $20.00 © 2005 IEEE

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

E
xe

cu
ti

on
 t

im
e

no
rm

al
iz

ed
 t

o
no

 p
re

di
ca

ti
on

BASE-MAX
NO-DEPEND
NO-DEPEND + NO-FETCH
PERFECT-CBP

2.02

gzip vpr mcf crafty parser gap vortex bzip2 twolf AVG AVGnomcf

Figure 2. Execution time when sources of overhead in predicated
execution are ideally eliminated.

Our goal in this paper is to design a technique that (1) dynam-
ically reduces the sources of overhead in predicated execution and
(2) makes predicated execution applicable to backward branches,
thereby increasing the viability and effectiveness of predicated ex-
ecution in high-performance, out-of-order execution processors. To
this end, we propose wish branches. There are three types of wish
branches: wish jumps, wish joins, and wish loops. Wish jumps
and wish joins are used for forward conditional branches and wish
loops are used for backward conditional branches. The goal of wish
jumps/joins is to reduce the overhead of predicated execution. The
goal of wish loops is to increase the effectiveness of predicated ex-
ecution by making it applicable to backward branches to reduce the
misprediction penalty caused by hard-to-predict loop branches. The
next section describes the semantics and operation of wish branches.

3. Wish Branches

3.1. Wish Jumps and Wish Joins

Figure 3 shows a simple source code example and the correspond-
ing control flow graphs and assembly code for: (a) a normal branch,
(b) predicated execution, and (c) a wish jump/join. The main differ-
ence between the wish jump/join code and the normal branch code
is that the instructions in basic blocks B and C are predicated in the
wish jump/join code (Figure 3c), but they are not predicated in the
normal branch code (Figure 3a). The first conditional branch in the
normal branch code is converted to a wish jump instruction and the
following control-dependent unconditional branch is converted to a
wish join instruction in the wish jump/join code. The difference be-
tween the wish jump/join code and the predicated code (Figure 3b)
is that the wish jump/join code has branches (i.e., the wish jump and
the wish join), but the predicated code does not.

Wish jump/join code can be executed in two different modes
(high-confidence-mode and low-confidence-mode) at run-time. The
mode is determined by the confidence of the wish jump prediction.
When the processor fetches the wish jump instruction, it generates
a prediction for the direction of the wish jump using a branch pre-
dictor, just like it does for a normal conditional branch. A hardware
confidence estimator provides a confidence estimation for this pre-
diction. If the prediction has high confidence, the processor enters
high-confidence-mode. If it has low confidence, the processor enters
low-confidence-mode.

High-confidence-mode is the same as using normal conditional
branch prediction. To achieve this, the wish jump instruction is pre-
dicted using the branch predictor. The source predicate value (p1 in

if (cond) {

}
else {

}

 b = 0;

 b= 1;

A

D

A

B

C

B C

mov b, 1

not−taken taken

branch p1, TARGET
p1 = (cond)

branch.uncond JOIN

(a)

D JOIN:

TARGET:
mov b, 0

A

C

D

B

(!p1) mov b, 1
(p1) mov b,0

A

B

C

p1 = (cond)

(b)

B

A

C

A

C

D

wish jump

B
wish join

 wish.jump p1, TARGET
 p1 = (cond)

(p1) mov b, 0
TARGET:

(!p1) mov b, 1
 wish.join !p1, JOIN

JOIN:

(c)

D

(code)

Figure 3. Source code and the corresponding control flow graphs
and assembly code for (a) normal branch code (b) predicated code
(c) wish jump/join code.

Figure 3c) of the wish jump instruction is predicted based on the pre-
dicted branch direction so that the instructions in basic block B or C
can be executed before the predicate value is ready. When the wish
jump is predicted to be taken, the predicate value is predicted to be
TRUE (and block B, which contains the wish join, is not fetched).
When the wish jump is predicted to be not taken, the predicate value
is predicted to be FALSE and the wish join is predicted to be taken.3

Low-confidence-mode is the same as using predicated execution,
except it has additional wish branch instructions. In this mode, the
wish jump and the following wish join are always predicted to be
not taken. The source predicate value of the wish jump instruction is
not predicted and the instructions that are dependent on the predicate
only execute when the predicate value is ready.4

When the confidence estimation for the wish jump is accurate,
either the overhead of predicated execution is avoided (high con-
fidence) or a branch misprediction is eliminated (low confidence).
When the wish jump is mispredicted in high-confidence-mode, the
processor needs to flush the pipeline just like in the case of a nor-
mal branch misprediction. However, in low-confidence-mode, the
processor never needs to flush the pipeline, even when the branch
prediction is incorrect. Like predicated code, the instructions that
are not on the correct control flow path will become NOPs since all
instructions control-dependent on the branch are predicated.

3.2. Wish Loops

A wish branch can also be used for a backward branch. We call
this a wish loop instruction. Figure 4 contains the source code for a
simple loop body and the corresponding control-flow graphs and as-
sembly code for: (a) a normal backward branch and (b) a wish loop.
We compare wish loops only with normal branches since backward
branches cannot be directly eliminated using predication [1]. A wish
loop uses predication to reduce the branch misprediction penalty of
a backward branch without eliminating the branch.

The main difference between the normal branch code (Figure 4a)
and the wish loop code (Figure 4b) is that in the wish loop code

3Wish join is predicted to be taken because the condition of the wish join is
the complement of the wish jump condition in this simple hammock example.

4Depending on the microarchitecture design, the predicated instructions
could be executed, but the instructions that source the results of the predicated
instructions need to wait until the predicate value is ready.

Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05)
0-7695-2440-0/05 $20.00 © 2005 IEEE

the instructions in block X (i.e., the loop body) are predicated with
the loop branch condition. Wish loop code also contains an extra
instruction in the loop header to initialize the predicate to 1 (TRUE).
To simplify the explanation of the wish loops, we use a do-while
loop example in Figure 4. A while loop can also utilize a wish
loop instruction as shown in Figure 5. Similarly, a for loop can also
utilize a wish loop instruction.

Y Y

X
mov p1,1H

i++;
a++;

X X

H

wish loop

taken

not−taken

taken

X

do {

} while (i<N)

LOOP:
LOOP:

(p1) add a, a, 1
(p1) add i, i, 1
(p1) p1 = (i<N)
wish.loop p1, LOOP

(b)(a)(code)

EXIT:

EXIT:

Y
Y

not−taken

add a, a,1
add i, i, 1
p1 = (i<N)
branch p1, LOOP

Figure 4. do-while loop source code and the corresponding
control flow graphs and assembly code for (a) normal backward
branch code (b) wish loop code.

i++;
a++;

}

while (i<N) {

(code) (b)(a)

LOOP: (p1) add a, a,1
(p1) add i, i, 1
(p1) p1 = (i<N)

wish.loop p1, LOOPbranch.uncond LOOP

EXIT:

branch !p1, EXIT
p1 = (i<N)LOOP:

add a, a,1

add i, i, 1

p1 = (i<N)

Figure 5. while loop source code and assembly code for (a)
normal backward branch code (b) wish loop code.

When the wish loop instruction is first encountered, the proces-
sor enters either high-confidence-mode or low-confidence-mode, de-
pending on the confidence of the wish loop prediction.

In high-confidence-mode, the processor predicts the direction of
the wish loop according to the loop/branch predictor. If the wish
loop is predicted to be taken, the predicate value (p1 in Figure 4b) is
predicted to be TRUE, so the instructions in the loop body can be ex-
ecuted without waiting for the predicate to become ready. If the wish
loop is mispredicted in high-confidence-mode, the processor flushes
the pipeline, just like in the case of a normal branch misprediction.

If the processor enters low-confidence-mode, it stays in this mode
until the loop is exited. In low-confidence-mode, the processor still
predicts the wish loop according to the loop/branch predictor. How-
ever, it does not predict the predicate value. Hence, the iterations of
the loop are predicated (i.e., fetched but not executed until the pred-
icate value is known) during low-confidence-mode. There are three
misprediction cases in this mode: (1) early-exit: the loop is iterated
fewer times than it should be, (2) late-exit: the loop is iterated only
a few more times by the processor front end than it should be and
the front end has already exited when the wish loop misprediction is
signalled, and (3) no-exit: the loop is still being iterated by the pro-
cessor front end when the wish loop misprediction is signalled (as in

the late-exit case, it is iterated more times than needed).
For example, consider a loop that iterates 3 times. The correct

loop branch directions are TTN (taken, taken, not-taken) for the three
iterations, and the front end needs to fetch blocks X1X2X3Y, where
Xi is the ith iteration of the loop body. An example for each of the
three misprediction cases is as follows: In the early-exit case, the
predictions for the loop branch are TN, so the processor front end
fetches blocks X1X2Y. One example of the late-exit case is when
the predictions for the loop branch are TTTTN so the front end
fetches blocks X1X2X3X4X5Y. For the no-exit case, the predictions
for the loop branch are TTTTT...T so the front end fetches blocks
X1X2X3X4X5...XN .

In the early-exit case, the processor needs to execute X at least
one more time (in the example above, exactly one more time; i.e.,
block X3), so it flushes the pipeline just like in the case of a normal
mispredicted branch.

In the late-exit case, the fall-through block Y has been fetched
before the predicate for the first extra block X4 has been resolved.
Therefore it is more efficient to simply allow X4 and subsequent ex-
tra block X5 to flow through the data path as NOPs (with predicate
value p1 = FALSE) than to flush the pipeline. In this case, the wish
loop performs better than a normal backward branch because it re-
duces the branch misprediction penalty. The smaller the number of
extra loop iterations fetched, the larger the reduction in the branch
misprediction penalty.

In the no-exit case, the front end has not fetched block Y at the
time the predicate for the first extra block X4 has been resolved.
Therefore, it makes more sense to flush X4 and any subsequent
fetched extra blocks, and then fetch block Y, similar to the action
taken for a normal mispredicted branch. We could let X4X5...XN

become NOPs as in the late-exit case, but that would increase energy
consumption without improving performance.

We expect wish loops to do well in integer benchmarks where
loops iterate a small but variable number of times in an unpredictable
manner [10]; e.g., loops that cannot be captured by a loop branch
predictor [27]. As wish loops reduce the misprediction penalty for
the late-exit case, a specialized wish loop predictor can be designed
to predict wish loop instructions. This predictor does not have to
exactly predict the iteration count of a loop. It can be biased to over-
estimate the iteration count of a loop to make the late-exit case more
common than the early-exit case for a hard-to-predict wish loop.

3.3. Wish Branches in Complex Control Flow

Wish branches are not only used for simple control flow. They
can also be used in complex control flow where there are multiple
branches, some of which are control-dependent on others. Figure 6
shows a code example with complex control flow and the control
flow graphs of the normal branch code, predicated code, and the wish
branch code corresponding to it.

When there are multiple wish branches in a given region5, the
first wish branch is a wish jump and the following wish branches are
wish joins. We define a wish join instruction to be a wish branch
instruction that is control-flow dependent on another wish branch in-
struction. Hence, the prediction for a wish join is dependent on the
confidence estimations made for the previous wish jump, any previ-
ous wish joins, and the current wish join itself. If the previous wish
jump, any of the previous wish joins, or the current wish join is low-
confidence, the current wish join is predicted to be not-taken. Oth-

5A region is a single basic block or a set of basic blocks [17].

Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05)
0-7695-2440-0/05 $20.00 © 2005 IEEE

A

B

D

C

E

taken

not−taken

not−taken

(a) normal branch code

taken C

A

A

D

B

E

block Cblock A

 (code)

 // block B
}
else {

}
 // block D

if (cond1 || cond2) {

D

C

B

E

wish jump

wish join

wish join

(c) wish branch code(b) predicated code

Figure 6. Control flow graph examples with wish branches.

erwise, the current wish join is predicted using the branch predictor.
An example of the predictions made for each of the wish branches in
Figure 6c is shown in Table 1.6

Table 1. The prediction of multiple wish branches in Figure 6c.
confidence prediction

jump (A) join (C) join (D) jump (A) join (C) join (D)
high high high predictor predictor predictor
high high low predictor predictor not-taken
high low - predictor not-taken not-taken
low - - not-taken not-taken not-taken

3.4. ISA Support for Wish Branches

We assume that the baseline ISA to which wish branches are to be
added supports predicated execution. If the current ISA already has
unused hint bits for the conditional branch instruction, like the IA-
64 [12], wish branches can be implemented using the hint bit fields
without modifying the ISA. Figure 7 shows a possible instruction for-
mat for the wish branch. A wish branch can use the same opcode as a
normal conditional branch, but its encoding has two additional fields:
btype and wtype. If the processor does not implement the hardware
support required for wish branches, it can simply treat a wish branch
as a normal branch (i.e., ignore the hint bits). New binaries contain-
ing wish branches will run correctly on existing processors without
wish branch support.

p

p: predicate register identifier

btype: branch type (0:normal branch 1:wish branch)
wtype: wish branch type (0:jump 1:loop 2:join)

wtypebtypeOPCODE target offset

Figure 7. A possible instruction format for the wish branch.

3.5. Hardware Support for Wish Branches

Aside from the hardware to support predicated execution, wish
branches require the hardware support described below.

3.5.1. Instruction fetch and decode hardware Instruction
decode logic needs to be modified so that wish branch instructions
can be decoded. A BTB entry is extended to indicate whether or not
the branch is a wish branch and the type of the wish branch. The
fetch logic requires one additional mux to override the result of the
branch predictor for a wish jump or a wish join in low-confidence-
mode (since a wish jump or join is always predicted not-taken in
low-confidence-mode regardless of the branch predictor outcome).

6Note that the high-high-low case should not happen with a good
confidence estimator in this given example. Since the branch condition of
join C is the complement of the condition of join D, a good confidence esti-
mator will estimate join D to be high confidence if join C is estimated high
confidence.

3.5.2. Wish branch state machine hardware Figure 8 shows
the front-end state machine that manages the various modes of a pro-
cessor implementing wish branches. There are three modes: normal-
mode (00), low-confidence-mode (10), and high-confidence-
mode (01). The state diagram summarizes the mode transitions
that occur in the front-end of a processor supporting wish branches,
based on the information provided in Sections 3.1 and 3.2.

0 0
mode

NormalHigh−conf

0 1
mode

Low−conf

1 0
mode

wish br. misprediction signal
target fetched/wish loop is exited/

wish br. low−confidence

wish br. high−confidence

wish br. misprediction signal

wish br. high−confidence
wish join/loop high−confidence/

wish br. low−confidence

wish join/loop low−confidence

Figure 8. State diagram showing mode transitions in a processor
that supports wish branches. “target fetched” means that the target of
the wish jump/join that caused entry into low-confidence-mode is fetched.

3.5.3. Predicate dependency elimination module As we
described in Sections 3.1 and 3.2, the predicate of the wish branch is
predicted during high-confidence-mode to eliminate the delay in the
execution of predicated instructions. To support this, when the pro-
cessor enters high-confidence-mode, the predicate register number of
the wish branch instruction is stored in a special buffer. Each follow-
ing instruction compares its source predicate register number with
the register number in the special buffer. If both predicate register
numbers are the same, the source predicate register of the instruction
is assumed to be ready, with a TRUE value when the wish branch is
predicted to be taken and with a FALSE value when the wish branch
is predicted to be not taken. The special buffer is reset if there is
a branch misprediction or if an instruction that writes to the same
predicate register is decoded.

3.5.4. Branch misprediction detection/recovery module
When a wish branch misprediction is detected, the processor needs
to decide whether or not a pipeline flush is necessary. If the wish
branch is mispredicted during high-confidence-mode,7 the processor
always flushes the pipeline. If the wish branch is mispredicted during
low-confidence-mode and the wish branch is a wish jump or a wish
join, then the processor does not flush the pipeline.

If a wish loop is mispredicted during low-confidence-mode, the
processor needs to distinguish between early-exit, late-exit, and no-
exit. To support this, the processor uses a small buffer in the front
end that stores the last prediction made for each static wish loop in-
struction that is fetched but not yet retired. When a wish loop is
predicted, the predicted direction is stored into the entry correspond-
ing to the static wish loop instruction. When a wish loop is found to
be mispredicted and the actual direction is taken, then it is an early-
exit case. So, the processor flushes the pipeline. When a wish loop
is mispredicted and the actual direction is not-taken, the branch mis-
prediction recovery module checks the latest prediction made for the
same static wish loop instruction by reading the buffer in the front
end. If the last stored prediction is not taken, it is a late-exit case, be-
cause the front end must have already exited the loop, so no pipeline
flush is required. If the last stored prediction is taken, it is a no-exit
case because the front-end must still be fetching the loop body, and

7The mode that is checked when a wish branch is mispredicted is the mode
of the front-end when that branch was fetched, not the mode of the front-end
at the time the misprediction is detected.

Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05)
0-7695-2440-0/05 $20.00 © 2005 IEEE

the processor flushes the pipeline.8 To keep the hardware simple we
do not support nested wish loops.

3.5.5. Confidence estimator An accurate confidence estimator
is essential to maximize the benefits of wish branches. An inaccu-
rate confidence estimation for a wish branch can be harmful in two
different ways. First, if the wish branch prediction is estimated to be
low confidence even though the prediction is correct, the processor
suffers from the overhead of predicated execution without any per-
formance benefit. Second, if the wish branch prediction is estimated
to be high confidence when the branch is actually mispredicted, the
processor loses the opportunity to eliminate a pipeline flush.

Previously proposed confidence estimators, such as the JRS con-
fidence estimator [13], can be used to estimate the confidence of wish
branch predictions. In our evaluations, we used a modified JRS esti-
mator. Since the confidence estimator is dedicated to wish branches,
its size is small. If the baseline processor already employs a confi-
dence estimator for normal conditional branches, this estimator can
also be utilized to estimate the confidence of wish branch predictions.

3.6. Compiler Support for Wish Branch Generation

A wish branch binary is an object file consisting of a mixture
of wish branches, traditional predicated code, and normal branches.
The compiler decides which branches are predicated, which are con-
verted to wish branches, and which stay as normal branches based
on estimated branch misprediction rates and compile-time heuristics.
The compile-time decisions need to take into account the following:

1. The size and the execution time of the basic blocks that are
considered for predication/wish branch code.

2. Input data set dependence/independence of the branch.
3. The estimated branch misprediction penalty.
4. The extra instruction overhead associated with predicated exe-

cution or wish branches.

For example, it may be better to convert a short forward branch
which has only one or two control-dependent instructions into pred-
icated code rather than wish branch code because wish branch code
has the overhead of at least one extra instruction (i.e., the wish jump
instruction). If the misprediction rate of a branch is strongly de-
pendent on the input data set, the compiler is more apt to convert
the code into wish branch code. Otherwise, the compiler is more
apt to use a normal branch or convert the code into predicated code.
The compiler can determine whether or not the misprediction rate is
dependent on the input data with heuristics. The compiler heuris-
tics used to decide which branches should be converted into wish
branches is an important research area that we intend to investigate
in future work. The heuristics we used for our initial performance
evaluations are described in Section 4.2.

We note that wish branches provide the compiler with more flexi-
bility in generating predicated code. With wish branches, if the com-
piler makes a “bad decision” at compile time, the hardware has the
ability to “correct” that decision at run time. Hence, the compiler can
generate predicated code more aggressively and the heuristics used
to generate predicated code can be less complicated.

8If the processor exited the loop and then re-entered it, this case will be
incorrectly identified as a no-exit case, when it is actually a late-exit case.
Hence, the processor unnecessarily flushes the pipeline, but it still functions
correctly. We did not see this case happen in the benchmarks we simulated.

3.7. Advantages/Disadvantages of Wish Branches

In summary, the advantages of wish branches are as follows:

1. Wish branches provide a way to reduce the negative effects of
predicated code. The performance of the wish branch code
could be the best of normal branch (non-predicated) code and
predicated code, regardless of variations in the input set of a
program.

2. Wish branches increase the benefits of predicated code, be-
cause they allow the compiler to generate more aggressively
predicated code. For example, the compiler can generate pred-
icated code (with wish branches) for larger blocks because the
overhead of predication can be avoided dynamically if the wish
branch turns out to be easy-to-predict.

3. Unlike traditional predicated execution, wish branches provide
a mechanism to exploit predication to reduce the branch mis-
prediction penalty for backward branches.

The disadvantages of wish branches compared to predication are:

1. Wish branches require extra branch instructions. These instruc-
tions would take up machine resources and instruction cache
space. However, the larger the predicated code block, the less
significant this becomes.

2. The extra wish branch instructions increase the contention for
branch predictor table entries. This may increase negative in-
terference in the pattern history tables. We found that perfor-
mance loss due to this effect is negligible.

3. Wish branches reduce the size of the basic blocks by adding
control dependencies into the code. Larger basic blocks can
provide better opportunity for compiler optimizations, such as
instruction scheduling. If the compiler used to generate wish
branch binaries is unable to perform aggressive code optimiza-
tions across basic blocks, the presence of wish branches may
constrain the compiler’s scope for code optimization.

4. Methodology

Figure 9 illustrates our simulation infrastructure. We chose the
IA-64 ISA to evaluate the wish branch mechanism, because of its full
support for predication, but we converted the IA-64 instructions to
micro-operations (µops) to execute on our out-of-order superscalar
processor model. We modified the ORC compiler [22] to generate
the IA-64 binaries (with and without wish branches). The binaries
were then run on an Itanium II machine using the Pin binary instru-
mentation tool [18] to generate traces. These IA-64 traces were later
converted to µops. The µops were fed into a cycle-accurate simulator
to obtain performance results.

Trace
generation

module
Compiler
 (ORC)

IA−64 Binary

Translator Simulator

IA−64 TraceSource Code IA−64 uop uopuops

(Pin)

Figure 9. Simulation infrastructure

4.1. µop Translator and Simulator

We developed an IA-64 translator which converts the disassem-
bled IA-64 instructions into our simulator’s native µops. We model
µops to be close to a generic RISC ISA. Our translator handles cor-
rectly all the issues related to IA-64 specific features such as rotating
registers. All NOPs are eliminated during µop translation.

Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05)
0-7695-2440-0/05 $20.00 © 2005 IEEE

µops are fed into our cycle-accurate simulator. Our baseline pro-
cessor is an aggressive superscalar, out-of-order processor. Table 2
describes our baseline micro-architecture. Because a less accurate
branch predictor would provide more opportunity for wish branches,
a very large and accurate hybrid branch predictor is used in our ex-
periments to avoid inflating the impact of wish branches.

Table 2. Baseline processor configuration

64KB, 4-way, 2-cycle I-cache; 8-wide fetch/decode/rename
Front End Fetches up to 3 cond. br. but fetch ends at the first taken br.

I-cache stores IA-64 instructions; decoder/ROM produces µops
64K-entry gshare [21]/PAs [32] hybrid, 64K-entry selector

Branch Predictors 4K-entry BTB; 64-entry RAS; 64K-entry indirect target cache
minimum branch misprediction penalty is 30 cycles

Execution Core 512-entry reorder buffer; 8-wide execute/retire
L1 data cache: 64KB, 4-way, and 2-cycle latency

On-chip Caches L2 unified cache: 1MB, 8-way, 8 banks, 6-cycle latency
All caches use LRU replacement and have 64B line size

Buses and Memory 300-cycle minimum memory latency; 32 memory banks
32B-wide core-to-memory bus at 4:1 frequency ratio

Predication support Converted into C-style conditional expressions [28]
Confidence estimator 1KB, tagged (4-way), 16-bit history JRS estimator [13]

4.2. Compilation

All benchmarks were compiled for the IA-64 ISA with the -O2
optimization by the ORC compiler. Software pipelining, speculative
loads, and other IA-64 specific optimizations were turned off to re-
duce the effects of features that are specific to the IA-64 ISA and
that are less relevant on an out-of-order microarchitecture. Software
pipelining was shown to provide less than 1% performance benefit
on the SPEC CPU2000 INT benchmarks [5] and we removed this
optimization to simplify our analysis. Wish branch code generation
is also performed with -O2 optimization. To compare wish branches
to normal branches and predication, we generated five different bi-
naries for each benchmark, which are described in Table 3. Unless
otherwise noted, all execution time results reported in this paper are
normalized to the execution time of the normal branch binaries. Sec-
tion 4.2.1 and 4.2.2 briefly describe the compilation algorithms we
use in our experiments.

4.2.1. Predicated code binary generation algorithm To
generate predicated code, the ORC compiler first checks whether or
not the control-flow graph is suitable for if-conversion in a region
boundary. The ORC compiler performs if-conversion within a region
boundary. When the control-flow graph is suitable for if-conversion,
the compiler calculates the following equations. Each probability in
these equations is determined using compiler heuristics. Execution
times are estimated with dependency height and resource usage anal-
ysis. We set the branch misprediction penalty to 30 cycles. In the
BASE-DEF binary, branches which satisfy Equation (4.3) are con-
verted to predicated code. In the BASE-MAX binary, all branches
that are suitable for if-conversion are converted to predicated code.
Hence, the BASE-MAX binary contains more aggressively predi-
cated code. We use two predicated code binaries as our baselines be-
cause neither binary performs the best for all benchmarks: for some
benchmarks BASE-DEF performs better and for others BASE-MAX
performs better.

Execution time of normal branch code = exec T ∗P (T)+exec N ∗
P (N) + misp penalty ∗ P (misprediction) (Equation 4.1)

Execution time of predicated code = exec pred (Equation 4.2)
Exec. time of predicated code < Exec. time of normal br. code

(Equation 4.3)

exec T : Exec. time of the code when the br. under consideration is taken
exec N : Exec. time of the code when the br. under consideration is not taken
P (case): The probability of the case; e.g., P(T) is the prob. that the br. is taken

misp penalty: Machine-specific branch misprediction penalty
exec pred: Execution time of the predicated code

4.2.2. Wish branch binary generation algorithm If a
branch is suitable for if-conversion, we treat that branch as a wish
branch candidate. If the number of instructions in the fall-through
block of a branch is greater than N (we set N to 5), the candidate
branch is converted to a wish jump and the necessary wish joins are
inserted. Otherwise, the wish branch candidate is converted to predi-
cated code. We use a threshold of 5 instructions because we estimate
that very short forward branches are better off being predicated. A
loop branch is converted into a wish loop if the number of instruc-
tions in the loop body is less than L (we set L to 30). We have not
tuned the thresholds N and L used in these heuristics. Since our base-
line compiler is not optimized to build large predicated code blocks,
we inserted some of the wish branches using a binary instrumenta-
tion tool when the control flow is suitable to be converted to wish
branch code.

4.3. Trace Generation and Benchmarks

IA-64 traces were generated with the Pin instrumentation
tool [18]. Because modeling wrong-path instructions is important
in studying the performance impact of wish branches, we generated
traces that contain wrong-path information by forking a wrong-path
trace generation thread. We forked a thread at every wish branch
down the mispredicted path. The spawned thread executed until the
number of executed wrong-path instructions exceeded the instruc-
tion window size. The trace contains the PC, predicate register, reg-
ister value, memory address, binary encoding, and the current frame
marker information for each instruction.

All experiments were performed using the SPEC INT 2000
benchmarks. The benchmarks were run with a reduced input set [16]
to simulate until the end of the program. Table 4 shows infor-
mation about the simulated benchmarks for the normal branch bi-
naries and the wish jump/join/loop binaries.9 Branch information
displayed is collected only for conditional branches. For the wish
jump/join/loop binaries, we show the total number of static and dy-
namic wish branches and the percentage of wish loops among all
wish branches.

5. Simulation Results and Analysis

5.1. Wish Jumps/Joins

We first evaluate how using wish jumps/joins performs com-
pared to normal branches and predicated code. Figure 10 shows
the normalized execution time of four different configurations for
each benchmark: (1) BASE-DEF binary, (2) BASE-MAX binary,
(3) wish jump/join binary with a real JRS confidence estimator, and
(4) wish jump/join binary with a perfect confidence estimator. With
a real confidence estimator, the wish jump/join binaries improve the
average execution time by 11.5% over the normal branch binaries
and by 10.7% over the best-performing (on average) predicated code
binaries (BASE-DEF). The wish jump/join binaries perform better
than the normal branch binaries for all the benchmarks, except mcf.
Moreover, they perform better than both of the predicated code bina-
ries for gzip, vpr, mcf, gap, and, twolf. For vpr, mcf, and twolf - three
benchmarks where the overhead of predicated execution is very high,

9Due to problems encountered during trace generation using Pin, gcc,
perlbmk and eon benchmarks were excluded. NOPs are included in the dy-
namic IA-64 instruction count, but they are not included in the µop count.

Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05)
0-7695-2440-0/05 $20.00 © 2005 IEEE

Table 3. Description of binaries compiled to evaluate the performance of different combinations of wish branches
Binary name Branches that can be predicated with the ORC algorithm [17, 22, 20] ... Backward branches ...

normal branch binary remain as normal branches remain as normal branches
predicated code binary: BASE-DEF are predicated based on the compile-time cost-benefit analysis remain as normal branches
predicated code binary: BASE-MAX are predicated remain as normal branches
wish jump/join binary are converted to wish jumps/joins or are predicated remain as normal branches
wish jump/join/loop binary are converted to wish jumps/joins or are predicated are converted to wish loops or remain as normal branches

Table 4. Simulated benchmarks
Normal branch binary Wish jump/join/loop binary

Benchmark Dynamic instructions Static branches Dynamic branches Mispredicted branches IPC/µPC Static wish branches Dynamic wish branches
IA64 instructions / µops (per 1000 µops) (% of wish loops) (% of wish loops)

164.gzip 303M / 211M 1271 31M 8.3 2.25/ 1.53 93 (80%) 9.5M (61%)
175.vpr 161M / 106M 4078 13M 7.8 2.38/ 1.60 206 (83%) 4.3M (35%)
181.mcf 189M / 135M 1288 28M 4.7 1.52/ 1.46 31 (54%) 5.1M (20%)
186.crafty 316M / 227M 4334 30M 4.7 1.68/ 1.01 271 (65%) 3.7M (49%)
197.parser 428M / 311M 2879 72M 9.6 1.21/ 0.87 214 (88%) 14.2M (63%)
254.gap 611M / 423M 4163 50M 1.0 1.22/ 0.80 167 (74%) 6.1M (75%)
255.vortex 113M / 87M 7803 12M 0.8 1.06/ 0.84 104 (33%) 1.7M (62%)
256.bzip2 429M / 308M 1236 40M 8.6 1.38/ 1.37 130 (81%) 8.7M (90%)
300.twolf 171M / 114M 4306 10M 6.8 1.81/ 1.16 356 (71%) 3.1M (57%)

as was shown in Figure 2 - the wish jump/join binaries improve the
execution time by more than 10% over the predicated code binaries.

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

E
xe

c
ti

m
e

no
rm

al
iz

ed
 t

o
no

rm
al

 b
ra

nc
h

bi
na

ry BASE-DEF
BASE-MAX
wish jump/join (real-conf)
wish jump/join (perf-conf)

gzip vpr mcf crafty parser gap vortex bzip2 twolf AVG AVGnomcf

2.02

Figure 10. Performance of wish jump/join binaries

Figure 10 also shows that the wish jump/join binaries reduce the
overhead which causes the predicated code binaries to perform worse
than the normal branch binaries. For example, the BASE-DEF bina-
ries perform worse than the normal branch binaries for gzip, mcf,
crafty, and gap. Similarly, the BASE-MAX binaries perform worse
than the normal branch binaries on mcf and bzip2. In fact, aggres-
sive predication (BASE-MAX) increases the execution time of mcf
by 102% because of the additional delay caused by predicated in-
structions. In mcf, the execution of many critical load instructions
that would cause cache misses are delayed because their source pred-
icates are dependent on other critical loads which incur cache misses.
Hence, predicated execution results in the serialization of many criti-
cal load instructions that would otherwise be serviced in parallel had
branch prediction been used, leading to a large performance degrada-
tion. The wish jump/join binaries eliminate the performance loss due
to predicated execution on benchmarks where predicated execution
reduces performance. Hence, wish branches are effective at reducing
the negative effects of predicated execution.

The wish jump/join binary performs worse than both of the pred-
icated code binaries only for one benchmark, vortex. This is due to
the reduced size of the basic blocks in the wish jump/join binary for
vortex. The compiler is able to optimize the code better and more
aggressively in the predicated code binaries that have larger basic
blocks. Note that the compiler heuristics we used to insert wish
branches are very simple. Better heuristics that take into account

more information, as explained in Section 3.6, can eliminate the dis-
advantages caused by wish branches in vortex.

Figure 11 shows the dynamic number of wish branches per 1
million retired µops. The left bar for each benchmark shows the
number of wish branches predicted to have low-confidence and how
many of those were mispredicted. The right bar shows the number of
wish branches predicted to have high-confidence and how many of
those were mispredicted. Ideally, we would like two conditions to be
true. First, only the actually mispredicted wish branches should be
estimated as low-confidence. Second, no mispredicted wish branch
should be estimated as high-confidence. Figure 11 shows that the
second condition is much closer to being satisfied than the first on all
benchmarks. Very few of the high-confidence branches are actually
mispredicted. However, the first condition is far from being satisfied,
especially in gzip, vpr, mcf, crafty, and twolf. In these benchmarks, a
significant number of wish branches are estimated as low-confidence
even though they are not mispredicted. Therefore, a better confi-
dence estimator would improve the performance of wish branches
on these benchmarks, as shown in the rightmost bars in Figure 10.

0

2500

5000

7500

10000

12500

15000

17500

20000

22500

25000

D
yn

am
ic

 n
um

be
r

of
 w

is
h

br
an

ch
es

 p
er

 1
M

 u
op

s

low-confidence (mispred)
low-confidence (correct-pred)
high-confidence (mispred)
high-confidence (correct-pred)

gzip vpr mcf crafty parser gap vortex bzip2 twolf

Figure 11. Dynamic number of wish branches per 1M retired µops.
Left bars: low-confidence, right bars: high-confidence.

Figure 11 also provides insight into why wish branches improve
the performance of predicated execution significantly in some bench-
marks. For example, in mcf most of the branches that are converted
to wish branches are correctly predicted. These branches are predi-
cated in the BASE-MAX binary. However, predicating them reduces

Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05)
0-7695-2440-0/05 $20.00 © 2005 IEEE

the performance with the reduced input set, because those branches
are almost always correctly predicted. Converting them into wish
branches rather than predicating them allows the hardware to dynam-
ically decide whether or not they should be predicated. As shown in
Figure 11, the hardware confidence estimator does well on mcf and
correctly identifies most of the correctly-predicted wish branches as
high-confidence. Hence, for those wish branches, the overhead of
predicated execution is avoided and the wish branch binary performs
as well as the normal branch binary. Similarly in gzip, vpr, and gap,
many of the wish branches are correctly predicted and also estimated
as high confidence, resulting in significant savings in the overhead of
predicated execution, which is reflected in the performance of the
wish jump/join binaries for these three benchmarks in Figure 10.
Most wish branches are correctly predicted and identified as high-
confidence also in parser and vortex. However, the performance of
parser and vortex is not improved with wish branches compared to
the predicated code binaries, because the overhead of predicated ex-
ecution is very low for these two benchmarks as shown in Figure 2.

5.2. Wish Jumps/Joins and Wish Loops

Figure 12 shows the performance of wish branches when wish
loops are also used in addition to wish jumps/joins. With a real con-
fidence estimator, the wish jump/join/loop binaries improve the av-
erage execution time by 14.2% compared to the normal branch bi-
naries and by 13.3% compared to the best-performing (on average)
predicated code binaries (BASE-DEF). An improved confidence es-
timator has the potential to increase the performance improvement
up to 16.2% compared to the normal branch binaries. Even if mcf
is excluded from the calculation of the average execution time, the
wish jump/join/loop binaries improve the average execution time by
16.1% compared to the normal branch binaries and by 6.4% com-
pared to the best-performing predicated binaries (BASE-MAX), with
a real confidence estimator.

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

E
xe

c
ti

m
e

no
rm

al
iz

ed
 t

o
no

rm
al

 b
ra

nc
h

bi
na

ry

BASE-DEF
BASE-MAX
wish jump/join (real-conf)
wish jump/join/loop (real-conf)
wish jump/join/loop (perf-conf)

gzip vpr mcf crafty parser gap vortex bzip2 twolf AVG AVGnomcf

2.02

Figure 12. Performance of wish jump/join/loop binaries

Using wish loops in addition to wish jumps/joins improves the
execution time of vpr, parser, and bzip2 by more than 3%. The rea-
son for the performance improvement on these three benchmarks can
be seen in Figure 13. This figure shows the dynamic number of wish
loops per 1 million µops and classifies them based on their confi-
dence estimation and misprediction status. Remember that the late-
exit misprediction case is the only case where a wish loop improves
performance compared to a normal loop branch, as described in Sec-
tion 3.2. In vpr, parser, and bzip2 there is a significant number of
wish loop instructions that are predicted to be low-confidence and
are actually mispredicted as late-exit. Therefore, we see significant
performance improvements due to wish loops for these benchmarks.

We also compare the performance of wish branches to the best-

0

2500

5000

7500

10000

12500

15000

17500

20000

22500

25000

D
yn

am
ic

 n
um

be
r

of
 w

is
h

lo
op

s
pe

r
1M

 u
op

s low-confidence (no-exit)
low-confidence (late-exit)
low-confidence (early-exit)
low-confidence (correct-pred)
high-confidence (mispred)
high-confidence(correct-pred)

gzip vpr mcf crafty parser gap vortex bzip2 twolf

Figure 13. Dynamic number of wish loops per 1M retired µops.
Left bars: low-confidence, right bars: high-confidence.

performing binary for each benchmark. To do so, we selected
the best-performing binary for each benchmark among the normal
branch binary, BASE-DEF predicated code binary, and BASE-MAX
predicated code binary based on the execution times of these three
binaries, which are obtained via simulation. Note that this com-
parison is unrealistic, because it assumes that the compiler can, at
compile-time, predict which binary would perform the best for the
benchmark at run-time. This assumption is not correct, because the
compiler does not know the run-time behavior of the branches in the
program. Even worse, the run-time behavior of the program can also
vary from one run to another. Hence, depending on the input set to
the program, a different binary could be the best-performing binary,
as we have already shown in Figure 1.

Table 5 shows, for each benchmark, the reduction in execution
time achieved with the wish jump/join/loop binary compared to the
normal branch binary (row 1), the best-performing predicated code
binary for the benchmark (row 2), and the best-performing binary
(that does not contain wish branches) for the benchmark (row 3).
Even if the compiler were able to choose and generate the best-
performing binary for each benchmark, the wish jump/join/loop bi-
nary outperforms the best-performing binary for each benchmark by
5.1% on average, as shown in the third row.

5.3. Sensitivity to Microarchitectural Parameters

5.3.1. Effect of the Instruction Window Size Figure 14
shows the normalized execution time of the wish jump/join/loop bi-
naries on three different machines with 128, 256, and 512-entry in-
struction windows. The data shown in the left graph is averaged over
all the benchmarks examined. The data in the right graph is aver-
aged over all benchmarks except mcf. The execution time of each
binary is normalized to the execution time of the normal branch bi-
nary on the machine with the corresponding instruction window size.
Compared to the normal branch binaries, the wish jump/join/loop bi-
naries improve the execution time by 11.4%, 13.0%, and 14.2% re-
spectively on a 128, 256, and 512-entry window processor. Wish
branches provide larger performance improvements on processors
with larger instruction windows. This is due to the increased cost of
branch mispredictions (due to the increased time to fill the instruc-
tion window after the pipeline is flushed) on machines with larger
instruction windows. Wish loops are also more effective on larger
windows, because, with a larger window, it is more likely that the
front-end of the processor has already exited the loop when a mis-
predicted wish loop branch is resolved. This increases the likelihood
of the late-exit case.

Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05)
0-7695-2440-0/05 $20.00 © 2005 IEEE

Table 5. Execution time reduction of the wish jump/join/loop binaries over the best-performing binaries on a per-benchmark basis
(using the real confidence mechanism). DEF, MAX, BR (normal branch) indicate which binary is the best performing binary for a given benchmark.

gzip vpr mcf crafty parser gap vortex bzip2 twolf AVG

1 % exec time reduction vs. normal branch binary 12.5% 36.3% -1.5% 16.8% 23.1% 4.9% 3.2% 3.5% 29.8% 14.2%
2 % exec time reduction vs. the best 3.8% 23.9% 13.3% 0.4% 8.3% 2.5% -4.3% -1.2% 13.8% 6.7%

predicated code binary for the benchmark MAX MAX DEF MAX MAX MAX DEF DEF MAX
3 % exec time reduction vs. the best 3.8% 23.9% -1.5% 0.4% 8.3% 2.5% -4.3% -1.2% 13.8% 5.1%

non-wish-branch binary for the benchmark MAX MAX BR MAX MAX MAX DEF DEF MAX

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

N
or

m
al

iz
ed

 e
xe

c
ti

m
e

BASE-DEF
BASE-MAX
wish jump/join/loop binary (real-conf)
wish jump/join/loop binary (perf-conf)

128 256 512
0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

N
or

m
al

iz
ed

 e
xe

c
ti

m
e

BASE-DEF
BASE-MAX
wish jump/join/loop binary (real-conf)
wish jump/join/loop binary (perf-conf)

128 256 512

MCF EXCLUDED

Figure 14. Effect of instruction window size on wish branch per-
formance. The left graph shows the average execution time over all bench-
marks, the right graph shows the average execution time over all benchmarks
except mcf.

5.3.2. Effect of the Pipeline Depth Figure 15 shows the nor-
malized execution time of the five binaries on three different 256-
entry window processors with 10, 20, and 30 pipeline stages. Com-
pared to the normal branch binaries, the wish jump/join/loop binaries
improve the execution time by 8.0%, 11.0%, and 13.0% respectively
on processors with 10, 20, and 30 pipeline stages. The performance
benefits of wish branches increase as the pipeline depth increases,
since the branch misprediction penalty is higher on processors with
deeper pipelines. The wish jump/join/loop binaries always signif-
icantly outperform the normal branch and predicated code binaries
for all pipeline depths and instruction window sizes examined.

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

N
or

m
al

iz
ed

 e
xe

c
ti

m
e

BASE-DEF
BASE-MAX
wish jump/join/loop binary (real-conf)
wish jump/join/loop binary (perf-conf)

10 20 30
0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

N
or

m
al

iz
ed

 e
xe

c
ti

m
e

BASE-DEF
BASE-MAX
wish jump/join/loop binary (real-conf)
wish jump/join/loop binary (perf-conf)

10 20 30

MCF EXCLUDED

Figure 15. Effect of pipeline depth on wish branch performance.

5.3.3. Effect of the Mechanism Used to Support Pred-
icated Execution Our baseline out-of-order processor uses C-
style conditional expressions to handle predicated instructions as de-
scribed in Section 2.1. We also implemented the select-µop mech-
anism proposed by Wang et al. [31] to quantify the benefits of wish
branches on an out-of-order microarchitecture that uses a different
technique to support predicated execution.

The advantage of the select-µop mechanism over the C-style con-
ditional expressions is that it does not require the extra register read
port and the extra input in the data-path to read and carry the old des-
tination register value. Hence, the implementation cost of predicated
execution is lower on a processor that supports predicated instruc-
tions using the select-µop mechanism. The select-µop also enables
the execution of a predicated instruction before its source predicate
value is ready, but the dependents of the predicated instruction still
cannot be executed until the source predicate is resolved. Since de-

pendent instructions cannot be executed, we found that a significant
portion of the overhead of predicated execution still remains on a
processor implementing the select-µop mechanism.

The disadvantage of the select-µop mechanism is that it requires
additional µops to handle the processing of predicated instructions.
Note that this is not the case in a processor that supports predicated
instructions using C-style conditional expressions. Due to this ad-
ditional µop overhead, the performance benefits of predicated code
are lower on a processor that uses the select-µop mechanism than on
a processor that uses C-style conditional expressions.

Figure 16 shows the normalized execution time of the predicated
code, wish jump/join, and wish jump/join/loop binaries on a proces-
sor that supports predicated execution using the select-µop mech-
anism. With a real confidence estimator, the wish jump/join/loop
binaries improve the average execution time by 11.0% compared
to the normal branch binaries and by 14.0% compared to the best-
performing (on average) predicated code binaries (BASE-DEF). On
the processor that uses the select-µop mechanism, the overall perfor-
mance improvement of wish branches over conditional branch pre-
diction (11.0%) is smaller than it is on the processor that uses C-style
conditional expressions (14.2%). This is due to the higher instruction
overhead of the select-µop mechanism to support the predicated in-
structions. On the other hand, the overall performance improvement
of wish branches over predicated execution (14.0%) is larger than it
is on the processor that uses C-style conditional expressions (13.3%).
Hence, the performance benefit of wish branches over predicated ex-
ecution is larger when predicated execution has higher overhead.

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

E
xe

cu
ti

on
 t

im
e

no
rm

al
iz

ed
 t

o
no

 p
re

di
ca

ti
on

BASE-DEF
BASE-MAX
wish jump/join (real-conf)
wish jump/join/loop (real-conf)
wish jump/join/loop (perf-conf)

gzip vpr mcf crafty parser gap vortex bzip2 twolf AVG AVGnomcf

2.12

Figure 16. Performance of wish branches on an out-of-order pro-
cessor that implements the select-µop mechanism

6. Related Work

6.1. Related Work on Predicated Execution

Several papers examined the impact of predicated execution on
branch prediction and instruction-level parallelism. Pnevmatikatos

Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05)
0-7695-2440-0/05 $20.00 © 2005 IEEE

and Sohi [23] showed that predicated execution can significantly
increase a processor’s ability to extract parallelism, but they also
showed that predication results in the fetch and decode of a signifi-
cant number of useless instructions. Mahlke et al. [19], Tyson [29],
and Chang et al. [3] showed that predicated execution can eliminate
a significant number of branch mispredictions and can therefore re-
duce the program execution time.

Choi et al. [5] examined the performance advantages and disad-
vantages of predicated execution on a real IA-64 implementation.
They showed that even though predication can potentially remove
29% of the branch mispredictions in the SPEC CPU2000 INT bench-
mark suite, it results in only a 2% improvement in average execu-
tion time. For some benchmarks, a significant performance loss is
observed with predicated execution. The performance loss in some
benchmarks and the small performance gain in others are due to the
overhead of predicated execution. Wish branches aim to reduce the
overhead of predication by dynamically eliminating the useless pred-
icated instructions.

Klauser et al. [14] proposed dynamic hammock predication
(DHP), which is a purely hardware mechanism that dynamically
predicates hammock branches. Like wish branches, DHP enables the
hardware to dynamically decide whether or not to use predication for
a hammock branch. In contrast to wish branches, DHP is a purely
hardware-based mechanism. DHP allows only simple control-flow
graphs to be converted into predicated code. With wish branches, the
compiler, which has a larger scope and more resources than the hard-
ware, generates predicated code with a better understanding of the
control-flow graph. Therefore, complex control-flow graphs as well
as simple control-flow graphs can take advantage of wish branches.
In summary, wish branches divide the work between the hardware
and the compiler based on what each of them is better at: the com-
piler is better at analyzing the control flow comprehensively and the
hardware is better at making decisions based on run-time behavior.

Chuang and Calder [7] proposed a hardware mechanism to pre-
dict all predicate values in order to overcome the register renam-
ing problem in an out-of-order processor that implements predi-
cated execution. Although they did not mention it, their mecha-
nism can reduce the extra instruction overhead of predicated ex-
ecution. With predicate prediction, instructions whose predicates
are predicted false do not need to be executed, thus reducing the
overhead of predicated execution—provided the prediction is cor-
rect. However, the processor still needs to fetch and decode all the
predicated instructions. Wish branches can eliminate the fetch and
decode of predicated instructions, as well as their execution. Also,
every predicate is predicted with predicate prediction, which can re-
sult in performance loss for hard-to-predict predicates. Furthermore,
wish branches can eliminate the misprediction penalty for backward
(loop) branches, whereas conventional predication augmented with
predicate prediction cannot.

6.2. Related Work on Control Flow Independence

Several hardware mechanisms have been proposed to exploit con-
trol flow independence [26] by reducing the branch misprediction
penalty or improving parallelism [26, 6, 4]. These techniques aim to
avoid flushing the processor pipeline when the processor is known
to be at a control-independent point in the program at the time a
branch misprediction is signalled. In contrast to wish branches,
these mechanisms require a significant amount of hardware to ex-
ploit control flow independence [26]. Hardware is required to detect

the reconvergent point dynamically, to remove the wrong-path in-
structions from the processor, to form correct data dependences for
control-independent instructions, and to selectively re-schedule and
re-execute the data-dependent instructions. Wish branches do not
require such complicated hardware because they utilize predication.

6.3. Related Work on Multipath Execution

Several mechanisms were proposed to reduce the branch penalty
by fetching and/or executing instructions from the multiple paths of
the control flow. Eager execution [25] was proposed by Riseman and
Foster. Dual-path fetch in IBM 360/91 [2] was a simple form of eager
execution. Selective dual path execution [11], disjoint eager execu-
tion [30], and the PolyPath architecture [15] refined eager execution
to reduce its implementation cost. These mechanisms are, in some
respects, similar to the wish branch mechanism because they fetch
and execute instructions from both paths of the control flow. How-
ever, in wish branch code, both control-flow paths after a conditional
branch are already combined into one single path by predicating the
code. No hardware support is needed to fetch from multiple paths.
The hardware needs only to decide whether to fetch instructions from
the taken path or from the not-taken path. In contrast, multipath ex-
ecution requires extra hardware resources to fetch and execute from
multiple control-flow paths.

7. Conclusions and Future Work

This paper proposes a new control-flow mechanism, called wish
branches, to reduce the negative effects of predicated code and to
obtain the best performance of predicated execution and branch pre-
diction. We introduced and described the operation of three types of
wish branches: wish jumps, wish joins, and wish loops. The major
contributions of wish branches to the research in predicated execu-
tion and branch misprediction penalty reduction are:

1. Wish jumps and joins provide a mechanism to dynamically
eliminate the overhead of predicated execution. These instruc-
tions allow the hardware to dynamically choose between using
predicated execution versus conditional branch prediction for
each dynamic instance of a branch based on the run-time con-
fidence estimation of the branch’s prediction.

2. Wish jumps and joins also allow the compiler to generate pred-
icated code more aggressively and using simpler heuristics,
since the “bad compile-time decisions” can be corrected at run-
time. In previous research, a static branch instruction either
remained as a conditional branch or was predicated for all its
dynamic instances, based on less accurate compile-time infor-
mation - if the compiler made a bad decision to predicate, there
was no way to dynamically eliminate the overhead of the bad
decision.

3. Wish loops provide a mechanism to exploit predicated execu-
tion to reduce the branch misprediction penalty for backward
(loop) branches. In previous research, it was not possible to
reduce the branch misprediction penalty for a backward branch
by solely utilizing predicated execution.

Our results show that using wish branches improves the aver-
age execution time of nine SPEC INT 2000 benchmarks on an ag-
gressive out-of-order superscalar processor by 14.2% compared to
conditional branch prediction and by 13.3% compared to the best-
performing predicated code binary.

Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05)
0-7695-2440-0/05 $20.00 © 2005 IEEE

We believe that the wish branch mechanism opens up opportuni-
ties that can make predicated execution more viable and effective in
high performance processors. Since wish branches provide the hard-
ware with the ability to dynamically eliminate the overhead of pred-
icated execution, the compiler can generate predicated code more
aggressively. Future work on wish branches can explore compiler
algorithms and heuristics that can take advantage of wish branches.
More accurate confidence estimation mechanisms are also interest-
ing to investigate since they would increase the performance benefits
of wish branches.

Acknowledgments

Special thanks to David Armstrong for the initial simulator work
and Robert Cohn for supporting PIN. We thank Hsien-Hsin S. Lee
and Georgia Tech College of Computing and HP TestDrive for pro-
viding the use of IA-64 machines. We thank Roy Ju, Derek Chiou,
Santhosh Srinath, Francis Tseng, Mary Brown, David Thompson,
Chang Joo Lee and other members of the HPS research group and the
anonymous reviewers for their comments and suggestions. We grate-
fully acknowledge the commitment of the Cockrell Foundation, In-
tel Corporation and The Advanced Technology Program of the Texas
Higher Education Coordinating Board for supporting our research at
The University of Texas at Austin.

References
[1] J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren. Conver-

sion of control dependence to data dependence. In POPL-10,
1983.

[2] D. Anderson, F. Sparacio, and R. Tomasulo. The IBM sys-
tem/360 model 91: Machine philosophy and instruction-
handling. IBM Journal of Research and Development, 11(1):8–
24, Jan. 1967.

[3] P.-Y. Chang, E. Hao, T.-Y. Yeh, and Y. N. Patt. Using predi-
cated execution to improve the performance of a dynamically-
scheduled machine with speculative execution. In PACT-1995,
1995.

[4] C.-Y. Cher and T. N. Vijaykumar. Skipper: a microarchitecture
for exploiting control-flow independence. In MICRO-34, 2001.

[5] Y. Choi, A. Knies, L. Gerke, and T.-F. Ngai. The impact of if-
conversion and branch prediction on program execution on the
Intel Itanium processor. In MICRO-34, 2001.

[6] Y. Chou, J. Fung, and J. P. Shen. Reducing branch mispredic-
tion penalties via dynamic control independence detection. In
ICS-99, 1999.

[7] W. Chuang and B. Calder. Predicate prediction for efficient out-
of-order execution. In ICS-03, 2003.

[8] Compaq Computer Corporation. Alpha 21264 Microprocessor
Hardware Reference Manual, 1999.

[9] A. Darsch and A. Seznec. IATO, The IAOO Toolkit. IRISA.
http://www.irisa.fr/caps/projects/ArchiCompil/iato/.

[10] M. R. de Alba and D. R. Kaeli. Runtime predictability of loops.
In IEEE 4th Annual Workshop on Workload Characterization,
2001.

[11] T. Heil and J. E. Smith. Selective dual path execution. Technical
report, University of Wisconsin-Madison, Nov. 1996.

[12] Intel Corporation. IA-64 Intel Itanium Architecture Software
Developer’s Manual Volume 3: Instruction Set Reference,
2002.

[13] E. Jacobsen, E. Rotenberg, and J. E. Smith. Assigning confi-
dence to conditional branch predictions. In MICRO-29, 1996.

[14] A. Klauser, T. Austin, D. Grunwald, and B. Calder. Dynamic
hammock predication for non-predicated instruction set archi-
tectures. In PACT-1998, 1998.

[15] A. Klauser, A. Paithankar, and D. Grunwald. Selective eager
execution on the polypath architecture. In ISCA-25, 1998.

[16] A. KleinOsowski and D. J. Lilja. Minnespec: A new SPEC
benchmark workload for simulation-based computer architec-
ture research. Computer Architecture Letters, 1, June 2002.

[17] Y. Liu, Z. Zhang, R. Qiao, and R. Ju. A region-based compila-
tion infrastructure. In INTERACT-7, 2003.

[18] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: Building cus-
tomized program analysis tools with dynamic instrumentation.
In PLDI, 2005.

[19] S. A. Mahlke, R. E. Hank, R. A. Bringmann, J. C. Gyllenhaal,
D. M. Gallagher, and W. W. Hwu. Characterizing the impact
of predicated execution on branch prediction. In MICRO-27,
1994.

[20] S. Mantripragada and A. Nicolau. Using profiling to reduce
branch misprediction costs on a dynamically scheduled proces-
sor. In ICS-2000, 2000.

[21] S. McFarling. Combining branch predictors. Technical Report
TN-36, Digital Western Research Laboratory, June 1993.

[22] ORC. Open research compiler for Itanium processor family.
http://ipf-orc.sourceforge.net/.

[23] D. N. Pnevmatikatos and G. S. Sohi. Guarded execution and
dynamic branch prediction in dynamic ILP processors. In
ISCA-21, 1994.

[24] B. R. Rau, D. W. L. Yen, W. Yen, and R. A. Towle. The Cydra
5 departmental supercomputer. IEEE Computer, 22:12–35, Jan.
1989.

[25] E. M. Riseman and C. C. Foster. The inhibition of potential
parallelism by conditional jumps. IEEE Transactions on Com-
puters, C-21(12):1405–1411, 1972.

[26] E. Rotenberg, Q. Jacobson, and J. E. Smith. A study of control
independence in superscalar processors. In HPCA-5, 1999.

[27] T. Sherwood and B. Calder. Loop termination prediction. In
HiPC-3, 2000.

[28] E. Sprangle and Y. Patt. Facilitating superscalar processing
via a combined static/dynamic register renaming scheme. In
MICRO-27, 1994.

[29] G. S. Tyson. The effects of predication on branch prediction. In
MICRO-27, 1994.

[30] A. Uht and V. Sindagi. Disjoint eager execution: An optimal
form of speculative execution. In ISCA-22, 1995.

[31] P. H. Wang, H. Wang, R. M. Kling, K. Ramakrishnan, and J. P.
Shen. Register renaming and scheduling for dynamic execution
of predicated code. In HPCA-7, 2001.

[32] T.-Y. Yeh and Y. N. Patt. Alternative implementations of two-
level adaptive branch prediction. In ISCA-19, 1992.

Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05)
0-7695-2440-0/05 $20.00 © 2005 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

