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Implementing Precise Interrupts in Pipelined 
Processors 

Abstract-This paper describes and evaluates solutions to the 
precise interrupt problem in pipelined processors. An interrupt is 
precise if the saved process state corresponds with a sequential 
model of program execution where one instruction completes 
before the next begins. In a pipelined processor, precise interrupts 
are difficult to implement because an instruction may be initiated 
before its predecessors have completed. 

The precise interrupt problem is described, and five solutions 
are discussed in detail. The first solution forces instructions to 
complete and modify the process state in architectural order. The 
other four solutions allow instructions to complete in any order, 
but additional hardware is used so that a precise state can be 
restored when an interrupt occurs. All the methods are discussed 
in the context of a parallel pipeline structure. Simulation results 
based on the CRAY-1s scalar architecture are used to show that 
the first solution results in a performance degradation of at least 
16 percent. The remaining four solutions offer better perform- 
ance, and three of them result in as little as a 3 percent 
performance loss. Several extensions, including vector architec- 
tures, virtual memory, and linear pipeline structures, are briefly 
discussed. 

Index Terms-Performance simulation, pipelined computers, 
precise interrupts, process checkpointing, process recovery, vir- 
tual memory. 

I. INTRODUCTION 

OST computer architectures are based on a sequential M model of program execution in which an architectural 
program counter sequences through instructions one-by-one, 
finishing one before starting the next. In contrast, a high- 
performance implementation may be pipelined, permitting 
several instructions to be in some phase of execution at the 
same time. The use of a sequential architecture and a pipelined 
implementation clash at the time of an interrupt; pipelined 
instructions may modify the process state in an order different 
from that defined by the sequential architectural model. At the 
time an interrupt condition is detected, the hardware may not 
be in a state that is consistent with any specific program 
counter value. 

When an interrupt occurs, the state of an interrupted process 
is typically saved by the hardware, the software, or by a 
combination of the two. The process state generally consists of 
the program counter, registers, and memory. If the saved 
process state is consistent with the sequential architectural 
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model, then the interrupt is precise. To be more specific, the 
saved state should reflect the following conditions. 

1) All instructions preceding the instruction indicated by 
the saved program counter have been executed and have 
modified the process state correctly. 

2)  All instructions following the instruction indicated by the 
saved program counter are unexecuted and have not modified 
the process state. 

3) If the interrupt is caused by an exception condition raised 
by an instruction in the program, the saved program counter 
points to the interrupted instruction. The interrupted instruc- 
tion may or may not have been executed, depending on the 
definition of the architecture and the cause of the interrupt. 
Whichever is the case, the interrupted instruction has either 
completed, or has not started execution. 

If the saved process state is inconsistent with the sequential 
architectural model and does not satisfy the above conditions, 
then the interrupt is imprecise. 

This paper describes and compares ways of implementing 
precise interrupts in pipelined processors. The methods used 
are designed to modify the state of an executing process in a 
carefully controlled way. The simple methods force all 
instructions to update the process state in the architectural 
order. Other, more complex methods save portions of the 
process state so that the proper state may be restored by the 
hardware at the time an interrupt occurs. 
A .  Classifcation of Interrupts 

We consider interrupts belonging to two classes. 
1) Program interrupts, sometimes referred to as “traps, ” 

result from exception conditions detected during fetching and 
execution of specific instructions. These exceptions may be 
due to software errors such as trying to execute an illegal 
opcode, numerical errors such as overflow, or they may be 
part of normal program execution as with page faults. 

2)  External interrupts are not caused by specific instruc- 
tions and are often caused by sources outside the currently 
executing process, sometimes completely unrelated to it. I/O 
interrupts and timer interrupts are examples. 

For a specific architecture, all interrupts may be defined to 
be precise or only a proper subset. Virtually every architec- 
ture, however, has some types of interrupts that must be 
precise. There are a number of conditions under which precise 
interrupts are either necessary or desirable. 

1) For I/O and timer interrupts, a precise process state 
makes restarting possible. 

2) In virtual memory systems, precise interrupts allow a 
process to be correctly restarted after a page fault has been 
serviced. 
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3) For software debugging, it is desirable for the saved 
state to be precise. This information can be helpful in isolating 
the exact instruction and circumstances that caused the 
exception condition. 

4) For graceful recovery from arithmetic exceptions, soft- 
ware routines may be able to take steps, rescale floating point 
numbers for example, to allow a process to continue. Some 
end cases of modem floating point arithmetic systems might 
best be handled by software, gradual underflow in the 
proposed IEEE floating point standard [15], for example. 

5) Unimplemented opcodes can be simulated by system 
software in a way transparent to the programmer if interrupts 
are precise. In this way, lower performance models of an 
architecture can maintain compatibility with higher perform- 
ance models using extended instruction sets. 

6) Virtual machines can be implemented if privileged 
instruction faults cause precise interrupts. Host software can 
simulate these instructions and return to the guest operating 
system in a user-transparent way. 

B. Historical Survey 
The precise interrupt problem is as old as the first pipelined 

computers [5 ] .  The IBM 360/91 [3] was a well-known 
computer that produced imprecise interrupts under some 
circumstances, floating point exceptions, for example. Impre- 
cise interrupts were a break with the IBM 360 architecture 
which made them even more noticeable. Subsequent IBM 360 
and 370 implementations have used less aggressive pipeline 
designs where instructions modify the process state in strict 
program order, and interrupts are precise.’ A more complete 
description of the method used in these ‘‘linear’’ pipeline 
implementations is in Section VIII-D. 

Most pipelined implementations of general purpose archi- 
tectures are similar to those used by IBM. These pipelines 
constrain all instructions to pass through the pipeline in order 
with a stage at the end where exception conditions are checked 
before the process state is modified. Examples include the 
Amdahl 470 and 580 [l] ,  [2] and the Gould/SEL 32/87 [17]. 

The high-performance CDC 6600 [16], CDC 7600 [4], and 
Cray Research [8], [14] computers allow instructions to 
complete out of the architectural sequence. Consequently, they 
have some exception conditions that result in imprecise 
interrupts. In these machines, the advantages of precise 
interrupts have been sacrificed in favor of maximum parallel- 
ism and design simplicity. I/O interrupts in these machines are 
precise, and they do not implement virtual memory. 

The CDC STAR-100 [ l l ]  and CYBER 200 [7] series 
machines also allow instructions to complete out of order, and 
they do support virtual memory. In these machines, the use of 
vector instructions further complicates the problem. The 
solution finally arrived at was the addition of an invisible 
exchange package [7]. The invisible exchange package 
resides in memory and captures machine-dependent state 
information resulting from partially completed instructions. A 

’ Except for the models 95 and 195 which were derived from the original 
model 91 design. Also, the models 85 and 165 had imprecise interrupts for the 
case of protection exceptions and addressing exceptions caused by store 
operations. 

related approach is used in pipelined array processors [9] 
which contain instructions that permit interrupt handlers to 
explicitly dump and restore the contents of certain pipeline 
segments. A similar method has been suggested for MIPS [lo] 
where pipeline information is dumped at the time of an 
interrupt and restored to the pipeline when the process is 
resumed. This solution makes a process restartable although it 
is arguable whether it has all the features and advantages of an 
architecturally precise interrupt. For example, it might be 
necessary to have implementation-dependent software sift 
through the machine-dependent state in order to provide 
complete debug information. 

The recently announced CDC CYBER 180/990 [6] is a 
pipelined implementation of a new architecture that supports 
virtual memory, and offers roughly the same performance as a 
CRAY-1s. To provide precise interrupts, the CYBER 180/ 
990 uses a history buffer, to be described later in this paper, 
where state information is saved just prior to being modified. 
When an interrupt occurs, this “history” information is used 
to back the system up into a precise state. 

C. Paper Overview 
This paper concentrates on explaining and discussing basic 

methods for implementing precise interrupts in pipelined 
processors. We emphasize scalar architectures (as opposed to 
vector architectures) because of their applicability to a wider 
range of machines. Section I1 defines the model architecture to 
be used in describing precise interrupt implementations. The 
model architecture is very simple so that the fundamentals of 
the methods can be clearly described. Sections 111-VI contain 
methods for implementing precise interrupts. Section I11 
describes a simple method that is easy to implement, but which 
reduces performance. Section IV describes a higher perform- 
ance variation where results may be bypassed to other 
instructions before the results are used to modify the process 
state. Sections V and VI describe methods where instructions 
are allowed to complete in any order, but where state 
information is saved so that a precise state may be restored 
when an interrupt occurs. Section VI1 presents simulation 
results. Experimental results based on these CRAY-1 S simula- 
tions are presented and discussed. Section VI11 contains a brief 
discussion of 1) saving additional state information, 2) 
supporting virtual memory, 3) precise interrupts when a data 
cache is used, 4) linear pipeline structures, and 5) vector 
instructions. Finally, Section IX discusses ways to solve the 
precise interrupt problem architecturally rather than in the 
implementation. These methods are based on an architectural 
model that is parallel instead of sequential. 

11. PRELIMINARIES 
A .  Model Architecture 

For describing the various techniques, a model architecture 
is chosen so that the basic methods are not obscured by details 
and unnecessary complications brought about by a specific 
architecture. 

We choose a register-register architecture where all mem- 
ory accesses are through registers and all functional operations 
involve registers. In this respect, it bears some similarity to the 
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CDC and Cray architectures, but has only one set of registers. 
The load instructions are of the form Ri = (Rj  + disp). That 
is, the content of register Rj plus a displacement given in the 
instruction are added to form an effective address. The content 
of the addressed memory location is loaded into register Ri. 
Similarly, a store is of the form (Rj + disp) = Ri, where 
register Ri is stored at the address found by adding the content 
of register Rj and a displacement. The functional instructions 
are of the form Ri = R j  op Rk,  where op is the operation 
being performed. For unary operations, the degenerate form 
Ri = op Rk is used. Conditional instructions are of the form P 
= disp:Ri op R j ,  where P is the program counter, the disp is 
the address of the branch target, and op is a relational 
operator, =, >, <, etc. 

The only process state in the model architecture consists of 
the program counter, the general purpose registers, and main 
memory. The architecture is simple, has a minimal amount of 
process state, can be easily pipelined, and can be implemented 
in a straightforward way with parallel functional units like the 
CDC and Cray architectures. 

Initially, we assume no operand cache. Similarly, condition 
codes are not used. They add other problems beyond precise 
interrupts when a pipelined implementation is used. Exten- 
sions for operand cache and condition codes are discussed in 
Section VIII. 

A parallel pipeline implementation for the simple architec- 
ture is shown in Fig. 1 .  It uses an instruction fetch/decode 
pipeline which processes instructions in order. The final stage 
of the fetch/decode pipeline is an issue register where all 
register interlock conditions are checked. If there are no 
register conflicts, an instruction issues to one of the parallel 
functional units. Here, the memory access function is imple- 
mented as one of the functional units. The operand registers 
are read at the time an instruction issues. There is a single 
result bus that returns results to the register file. This bus may 
be reserved at the time an instruction issues or when an 
instruction is approaching completion. This assumes the 
functional unit times are deterministic. A new instruction can 
issue every clock period in the absence of register or result bus 
conflicts. Unless stated otherwise, the parallel pipeline struc- 
ture of Fig. I is used throughout this paper. 

Example 1: To demonstrate how an imprecise process state 
may occur in our model architecture, consider the following 
section of code which sums the elements of arrays A and B 
into array C. 

Statement 
0 
1 
2 
3 

5 
6 
7 
8 
9 
10 

4 Loop: 

R2 + 0 
RO + 0 
R5 + 1 
R7 + 100 
R1 + (R2  + A )  
R3 + (R2 + B )  
R4 + R1 + f R 3  
RO +- RO + R5 
(RO + C )  + R4 
R2 + R2 + R5 
P = L0op:RO != R7 
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FUNCTIONAL UNIT 1 

INSTRUCTION 

REGISTER +--# 

FUNCTIONAL UNIT 2 I 
I 

MEMORY ACCESS 

4m-r-v 

RESULT BUS 

Fig. 1.  Pipelined implementation of our model architecture. Not shown is 
the results shift register used to control the result bus. 

Consider the instructions in statements 6 and 7 .  Although the 
integer add which increments the loop count will be issued 
after the floating point add, it will complete before the floating 
point add. The integer add will therefore change the process 
state before an overflow condition is detected in the floating 
point add. In the event of such an overflow, there is an 
imprecise interrupt. 

B. Interrupts Prior to Instruction Issue 
Before proceeding with the various precise interrupt meth- 

ods, we first consider iflterrupts that occur prior to instruction 
issue because they are handled the same way by all the 
methods. 

In the pipeline implementation of Fig. 1, instructions stay in 
sequence until the time they are issued. Furthermore, the 
process state is not modified by an instruction before it issues. 
This makes precise interrupts a simple matter when an 
exception condition can be detected prior to issue. Examples 
of such exceptions are privileged instruction faults and 
unimplemented instructions. This class also includes external 
interrupts which can be checked at the issue stage. 

When such an interrupt condition is detected, instruction 
issuing is halted. Then, there is a wait while all previously 
issued instructions complete. After they have completed, the 
process is in a precise state, with the program counter value 
corresponding to the instruction being held in the issue 

Comments 
Init. loop index 
Init. loop count 
Loop inc. value 
Maximum loop count 
Load A (I) 
Load B ( I )  
Floating add 
Inc. loop count 
Store C ( I )  
Inc. loop index 
cond. branch not equal 

Execution Time 

1 1  clock periods 
1 1  clock periods 
6 clock periods 
2 clock periods 

2 clock periods 
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register. The registers and main memory are in a state 
consistent with this program counter value. 

Because exception conditions detected prior to instruction 
can be handled easily as described above, we will not consider 
them any further. Rather, we will concentrate on exception 
conditions detected after instruction issue. 

111. IN-ORDER INSTRUCTION COMPLETION 
With this method, instructions modify the process state only 

when all previously issued instructions are known to be free of 
exception conditions. This section describes a strategy that is 
most easily implemented when pipeline delays in the parallel 
functional units are fixed. That is, they do not depend on the 
operands, only on the function. Thus, the result bus can be 
reserved at the time of issue. 

First, we consider a method commonly used to control the 
pipelined organization shown in Fig. 1. This method may be 
used regardless of whether precise interrupts are to be 
implemented. The precise interrupt methods described in this 
paper are integrated into this basic control strategy, however. 
To control the result bus, a “result shift register” is used; see 
Fig. 2. Here, the stages are labeled 1 through n, where n is the 
length of the longest functional unit pipeline. An instruction 
that takes i clock periods reserves stage i of the result shift 
register at the time it issues. If the stage already contains valid 
control information, then issue is held until the next clock 
period, and stage i is checked once again. An issuing 
instruction places control information in the result shift 
register. This control information identifies the functional unit 
that will be supplying the result and the destination register of 
the result. This control information is also marked “valid” 
with a validity bit. Each clock period, the control information 
is shifted down one stage toward stage one. When it reaches 
stage one. it is used during the next clock period to control the 
result bus so that the functional until result is placed in the 
correct result register. 

Still disregarding precise interrupts, it is possible for a short 
instruction to be placed in the result pipeline in stage i when 
previously issued instructions are in stage j ,  j > i. This leads 
to instructions finishing out of the original program sequence. 
If the instruction at stage j eventually encounters an exception 
condition, the interrupt will be imprecise because the instruc- 
tion placed in stage i will complete and modify the process 
state even though the sequential architecture model says i does 
not begin until j completes. 

Example 2: If one considers the section of code presented in 
Example 1, and an initially empty result shift register (all the 
entries invalid), the floating point add would be placed in stage 
6 while the integer add would be placed in stage 2. The result 
shift register entries shown in Fig. 2 reflect the state of the 
result shift register after the integer add issues. Notice that the 
floating point add entry is in stage 5 since one clock period has 
passed since it issued. As described above, this situation leads 
to instructions finishing out of the original program sequence. 

A .  Registers 
To implement precise interrupts with respect to registers 

using the above pipeline control structure, an issuing instruc- 

I I I I I 1 

DIRECTION 

MOVEMENT 

N I  I 1 0 1  

Fig. 2. Result shift register. 

tion using stage j should “reserve” stages i < j as well as 
stage j .  That is, the stages i < j that were not previously 
reserved by other instructions are reserved, and they are 
loaded with null control information so that they do not affect 
the process state. This guarantees that instructions modifying 
registers finish in order. 

There is logic on the result bus that checks for exception 
conditions in instructions as they complete. If an instruction 
contains a nonmasked exception condition, then control logic 
“cancels” all subsequent instructions coming on the result bus 
so that they do not modify the process state. 

Example 3: For our sample section of code given in 
Example 1, assuming the the result shift register is initially 
empty, such a policy would have the floating point add 
instruction reserve stages 1-6 of the result shift register. 
When, on the next clock cycle, the integer add is in the issue 
register, it is prohibited from issuing because stage 2 is already 
reserved. Thus, the integer add must wait at the issue stage 
until stage 2 of the result shift register is no longer reserved. 
This would be five clock periods after the issue of the floating 
point add. 

A generalization of this method is to determine, if possible, 
that an instruction is free of exception conditions prior to the 
time it is complete. Only result shift register stages that will 
finish before exceptions are detected need to be reserved (in 
addition to the stage that actually controls the result). 

B. Main Memory 
Store instructions modify the portion of process state that 

resides in main memory. To implement precise interrupts with 
respect to memory, one solution is to force store instructions 
to wait for the result shift register to be empty before allowing 
them to issue. Alternatively, stores can issue and be held in the 
load/store pipeline until all preceding instructions are known 
to be exception-free. Then the store can be released to 
memory. 

To implement the second alternative, recall that memory 
can be treated as a special functional unit. Thus, as with any 
other instruction, the store can make an entry in the result shift 
register. This entry is defined as a dummy store. The dummy 
store does not cause a result to be placed in the register file, 
but is used for controlling the memory pipeline. The dummy 
store is placed in the result shift register so that it will not 
reach stage one until the store is known to be exception-free. 
When the dummy stores stage one, all previous instructions 
have completed without exceptions, and a signal is sent to the 
load/store unit to release the store to memory. If the store itself 
contains an exception condition, then the store is cancelled, all 
following load/store instructions are cancelled, and the store 
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unit signals the pipeline control so that all instructions issued 
subsequent to the store are cancelled as they leave the result 
pipeline. 

C. Program Counter 
To implement precise interrupts with respect to the program 

counter, the result shift register is widened to include a field 
for the program counter of each instruction (see Fig. 2). This 
field is filled as the instruction issues. When an instruction 
with an exception condition appears at the result bus, its 
program counter is available and becomes part of the saved 
state. 

IV. THE REORDER BUFFER 
The primary disadvantage of the above method is that fast 

instructions may sometimes get held up at the issue register 
even though they have no dependencies and would otherwise 
issue. In addition, they block the issue register while slower 
instructions behind them could conceivably issue. 

This leads us to a more complex, but more general solution. 
Instructions are allowed to finish out of order, but a special 
buffer called the reorder buffer is used to reorder them before 
they modify the process state. 

A .  Basic Method 
The overall organization is shown in Fig. 3(a). The reorder 

buffer, Fig. 3(b), is a circular buffer with head and tail 
pointers. Entries between the head and tail are considered 
valid. When an instruction issues, the next available reorder 
buffer entry, pointed to by the tail pointer, is given to the 
issuing instruction. The tail pointer value is used as a tag to 
identify the entry in the buffer reserved for the instruction. 
The tag is placed in the result shift register along with the other 
control information. The tail pointer is then incremented, 
modulo the buffer size. The result shift register differs from 
the one used earlier because there is a field containing a 
reorder tag instead of a field specifying a destination register. 

When an instruction completes, both results and exception 
conditions are sent to the reorder buffer. The tag from the 
result shift register is used to guide them to the correct reorder 
buffer entry. When the entry at the head of the reorder buffer 
contains valid results (its instruction has finished), then its 
exceptions are checked. If there are none, the results are 
written into the registers. If an exception is detected, issue is 
stopped in preparation for the interrupt, and all further writes 
into the register file are inhibited. 

Example 4: The entries in the reorder buffer and result shift 
register shown in Fig. 3(b) reflect their state after the integer 
add from Example 2 has issued. Notice that the result shift 
register entries are very similar to those in the Fig. 2. The 
integer add will complete execution before the floating point 
add and its results will be placed in entry 5 of the reorder 
buffer. These results, however, will not be written into RO 
until the floating point result, found in entry 4, has been placed 
in R4.  

B. Main Memory 
Preciseness with respect to memory is maintained in a 

manner similar to that in the in-order completion scheme 

SOURCE DATA 
TO FUNCTIONAL UNITS 

I 

RESULT 
SHIFT 
REGISTER 

I I , ‘)CONTROL 

I I I I I 

I TAG I STAGE FUNCTIONAL I VALID I 1 UNIT SOURCE 

DIRECTION 

MOVEMENT 

RESULT SHIFT REGISTER 

I I I I ! I 

PROGRAM ENTRY DEST. RESULT $&CcNEsp- I REG. I I I ICOUNTER I 
I I I I 

I I I I 
1 1  

I 

REORDER BUFFER 

(b) 

result shift register. 
Fig. 3. (a) Reorder buffer organization. (b) Reorder buffer and associated 

(Section 111-B). The simplest method holds stores in the issue 
register until all previous instructions are known to be free of 
exceptions. In the more complex method, a store signal is sent 
to the memory pipeline as a “dummy” store is removed from 
the reorder buffer. Stores are allowed to issue, and block in the 
store pipeline prior to being committed to memory while they 
wait for their dummy counterpart. 

C. Program Counter 
To maintain preciseness with respect to the program 

counter, the program counter can be sent to a reserved space in 
the reorder buffer at issue time [shown in Fig. 3(b)]. While the 
program counter could be sent to the result shift register, it is 
expected that the result shift register will contain more stages 
than the reorder buffer and thus require more hardware. The 
length of the result shift register must be as long as the longest 
pipeline stage; as will be seen in Section VII, the number of 
entries in the reorder buffer can be quite small. When an 
instruction arrives at the head of the reorder buffer with an 
exception condition, the program counter found in the reorder 
buffer entry becomes part of the saved precise state. 
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D. Bypass Paths 

While an improvement over the method described in Section 
111, the reorder buffer still suffers a performance penalty. A 
computed result that is generated out of order is held in the 
reorder buffer until previous instructions, finishing later, have 
updated the register file. An instruction dependent on a result 
being held in the reorder buffer cannot issue until the result has 
been written into the register file. 

The reorder buffer method may, however, be modified to 
minimize some of the drawbacks of finishing strictly in order. 
In order for results to be used early, bypass paths may be 
provided from the entries in the reorder buffer to the register 
file output latches, see Fig. 4. These paths allow data being 
held in the reorder buffer to be used in place of register data. 
The implementation of this method requires comparators for 
each reorder buffer stage and operand designator. If an 
operand register designator of an instruction being checked for 
issue matches a register designator in the reorder buffer, then a 
multiplexer is set to gate the data from the reorder buffer to the 
register output latch. In the absence of other issue blockage 
conditions, the instruction is allowed to issue, and the data 
from the reorder data are used prior to being written into the 
register file. 

There may be bypass paths from some or all of the reorder 
buffer entries. If multiple bypass paths exist, it is possible for 
more than one destination entry in the reorder buffer to 
correspond to a single register. Clearly only the latest reorder 
buffer entry that corresponds to an operand designator should 
generate a bypass path to the register output latch. To prevent 
multiple bypassing of the same register, when an instruction is 
placed in the reorder buffer, any entries with the same 
destination register designator must be inhibited from match- 
ing a bypass check. 

When bypass paths are added, preciseness with respect to 
the memory and the program counter does not change from the 
previous method. 

The greatest disadvantage with this method is the number of 
bypass comparators needed and the amount of circuitry 
required for the multiple bypass check. While this circuitry is 
conceptually simple, there is a great deal of it. 

V. HISTORY BUFFER 
The methods presented in this section and the next are 

intended to reduce or eliminate performance losses experi- 
enced with a simple reorder buffer, but without all the control 
logic needed for multiple bypass paths. Primarily, these 
methods place computed results in a working register file, but 
retain enough state information so a precise state can be 
restored if an exception occurs. 

Fig. 5(a) illustrates the history buffer method. The history 
buffer is organized in a manner very similar to the reorder 
buffer. When an instruction issues, a buffer entry is loaded 
with control information, as with the reorder buffer, but the 
current value of the destination register (to be overwritten by 
the issuing instruction) is also read from the register file and 
written into the buffer entry. Results on the result bus are 
written directly into the register file when an instruction 
comdetes. ExceDtion reDorts come back as an instruction 

REGISTER +U SOURCE DATA 
TO FUNCTIONAL UNITS 3 

RESULT 
SHIFT 
REGISTER 7- CONTROL 

I 

Fig. 4. Reorder buffer method with bypasses. 

SOURCE DATA REGISTER 

UNITS 
CONTROL 

I -  
DESTN. 

CONTENTS 
I I 

HISTORY I USED ONLV 
ON EXCEPTIONS BUFFER 

RESULTBUS 

(a) 

DIRECTION 

MOVEMENT 

RESULT SHIFT REGISTER 
h*, - 

I I I 1 

HEAD+ 

TAIL 

HISTORY BUFFER 

(b) 

result shift register. 
Fig. 5. (a) History buffer organization. (b) History buffer and associated 

completes and are written into the history buffer. As with the 
reorder buffer, the exception reports are guided to the proper 
history buffer entry through the use of tags found in the result 
shift register. When the history buffer contains an element at 
the head that is known to have finished without exceptions, the 
history buffer entry is no longer needed and that buffer 
location can be reused (the head pointer is incremented). As 
with the reorder buffer, the history buffer can be shorter than 
the maximum number of pipeline stages. If all history buffer 
entries are used (the buffer is too small). issue must be blocked 
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until an entry becomes available. Hence, the buffer should be 
long enough so that this seldom happens. The effect of the 
history buffer on performance is determined in Section VII. 

Example 5: The entries in the history buffer and result shift 
register shown Fig. 5(b) correspond to our code in Example 1, 
after the integer add has issued. The only differences between 
this and the reorder buffer method shown in Fig. 3(b) are the 
addition of an “old value” field in the history buffer and a 
“destination register” field in the result shift register. The 
result shift register now looks like the one shown in Fig. 2. 

When an exception condition arrives at the head of the 
buffer, the buffer is held, instruction issue is immediately 
halted, and there is a wait until pipeline activity completes. 
The active buffer entries are then emptied from tail to head, 
and the history values are loaded back into their original 
registers. The program counter value found in the head of the 
history buffer is the precise program counter. 

To make main memory precise, when a store entry emerges 
from the buffer, it sends a signal that another store can be 
committed to memory. Stores can either wait in the issue 
register or can be blocked in the memory pipeline, as in the 
previous methods. 

The extra hardware required by this method is in the form of 
a large buffer to contain the history information. Also the 
register file must have three read ports since the destination 
value as well as the source operands must be read at issue 
time. There is a slight problem if the basic implementation has 
a bypass of the result bus around the register file. In such a 
case, the bypass must also be connected into the history buffer. 

VI. FUTURE FILE 
The future file method (Fig. 6) is similar to the history 

buffer method; however, it uses two separate register files. 
One register file reflects the state of the architectural (sequen- 
tial) machine. This file will be referred to as the architectural 
file. A second register file is updated as soon as instructions 
finish and therefore runs ahead of the architectural file (i.e., it 
reflects the future with respect to the architectural file). This 
future file is the working file used for computation by the 
functional units. 

Instructions are issued and results are returned to the future 
file in any order, just as in the original pipeline model. There 
is also a reorder buffer that receives results at the same time 
they are written into the future file. When the head pointer 
finds a completed instruction (a valid entry), the result 
associated with that entry is written in the architectural file. 

Example 6: If we consider the code in Example 1 again, 
there is a period of time when the architecture file and the 
future file contain different entries. With this method, an 
instruction may finish out of order, so when the integer add 
finishes, the future file contains the new contents of RO. The 
architecture file, however, does not, and the new contents of 
RO are buffered in the reorder buffer entry corresponding to 
the integer add. Between the time the integer add finishes and 
the time the floating point add finishes, the two files are 
different. Once the floating point finishes and its results are 
written into R 4  of both files, RO of the architecture file is 
written. 

FUTURE SOURCE DATA 

TO FUNCTIONAL 

UNITS 
-1 FILE 

CONTROL 

SHIFT 
REQISTER 

I , 
RESULT BUS FROM FUNCTIONAL UNITS 

- 
Fig. 6. Future file organization. 

Just as with the pure reorder buffer method, program 
counter values are written into the reorder buffer at issue time. 
When the instruction at the head of the reorder buffer has 
completed without emor, its result is placed in the architectural 
file. If it completes with an error, the register designators 
associated with the buffer entries between the head and tail 
pointers are used to restore values in the future file from the 
architectural file.* 

The primary advantage of the future file method is realized 
when the architecture implements interrupts via an “ex- 
change” where all the registers are automatically saved in 
memory and new ones are restored (as is done in CDC and 
Cray architectures). In this case, the architectural file can be 
stored away immediately; no restoring is necessary as in the 
history buffer method. There is also no bypass problem as 
with the history buffer method. 

VII. PERFORMANCE EVALUATION 

To evaluate the effectiveness of our precise interrupt 
schemes, we use a CRAY-1s simulation system developed at 
the University of Wisconsin [ 13 3. This trace-driven simulator 
is extremely accurate, due to the highly deterministic nature of 
the CRAY-lS, and gives the number of clock periods required 
to execute a program. 

The scalar portion of the CRAY-1s is very similar to the 
model architecture described in Section 11-A. Thus, casting the 
basic approaches into the CRAY-IS scalar architecture is 
straightforward. 

For a simulation workload, the first 14 Lawrence Liver- 
more Loops [12] were used. Because we are primarily 
interested in pipelined implementations of conventional scalar 
architectures, the loops were compiled by the Cray Fortran 
compiler with the vectorizer turned off. 

In the preceding sections, five methods were described that 
could be used for guaranteeing precise interrupts. To evaluate 
the effect of these methods on system performance, the 
methods were partitioned into three groups. The first and 
second group, respectively, contain the in-order method and 
the simple reorder buffer method. The third group is com- 

* The restoration is performed from the architectural file since the future 
file is the register file from which all execution takes place. 



SMITH AND PLESZKUN: IMPLEMENTTNG INTERRUPTS IN PIPELINED PROCESSORS 569 

posed of the reorder buffer with bypasses, the history buffer, 
and the future file. This partitioning was performed because 
the methods in the third group result in identical system 
performance. This is because the future file has a reorder 
buffer embedded as part of its implementation, and the history 
buffer length constrains performance in the same way as a 
reorder buffer: when the buffer fills, issue must stop. All the 
simulation results are reported as for the reorder buffer with 
bypasses. They apply equally well for the history buffer and 
future file methods. The selection of a particular method 
depends not only on its effect on system performance but also 
the cost of implementation and the ease with which the precise 
CPU state can be restored. 

For each precise interrupt method, both methods for 
handling stores were simulated. For those methods other than 
the in-order completion method, the size of the reorder buffer 
is a parameter. Sizing the buffer with too few entries degrades 
performance since instructions that might issue could block at 
the issue register. The blockage occurs because there is no 
room for a new entry in the buffer. 

Table I shows the relative performance of the in-order, 
reorder buffer. and reorder buffer with bypass methods when 
the stores are held until the result shift register is empty. The 
results in the table indicate the relative performance of these 
methods with respect to the CRAY-IS across the first 14 
Lawrence Livermore Loops; real CRAY-1s performance is 
1.0. A relative performance greater than 1.0 indicates a 
degradation in performance. The number of entries in the 
reorder buffer vanes from 3 to 10. 

The simulation results for in-order completion are constant 
because this method does not depend on a buffer that reorders 
instructions. For all the methods, there is some performance 
degradation. Initially, when the reorder buffer is small, the in- 
order completion method produces the least performance 
degradation. A small reorder buffer (less than three entries) 
limits the number of instructions that can simultaneously be in 
some stage of execution. Once the reorder buffer size is 
increased beyond three entries, either of the other methods 
results in better performance. As expected, the reorder buffer 
with bjpasses offers superior performance when compared to 
the simple reorder buffer. When the size of the buffer was 
increased beyond ten entries, simulation results indicated no 
further performance improvements. (Simulations were also 
run for buffer sizes of 15, 16,20,25, and 60.) One can expect 
at least I2  percent performance degradation when using a 
reorder buffer with bypasses and the first method for handling 
stores. 

Table I1 indicates the relative performance when stores 
issue and wait at the same memory pipeline stage as for 
memon bank conflicts in the original CRAY-IS. After 
issuing. stores wait for their counterpart dummy store to signal 
that all previously issued register instructions have finished. 
Subsequent loads and stores are blocked from issuing. 

As in Table I, the in-order completion results are constant 
across all entries. For the simple reorder buffer, the buffer 
must have at least five entries before it results in better 
performance than in-order completion. The reorder buffer 
with bypasses, however, requires only four entries before it is 

TABLE I 
RELATIVE PERFORMANCE FOR THE FIRST 14 LAWRENCE LIVERMORE 
LOOPS, WITH STORES BLOCKED UNTIL THE RESULTS PIPELINE IS EMPTY 

Number of In-order Reorder Reorder with 
Entries Completion Buffer Bypasses 

3 1.2322 1.3315 1.3069 
4 1.2322 1.2183 1.1743 
5 1.2322 1.1954 1.1439 
8 1.2322 1.1808 1.1208 

10 1.2332 1.1808 1.1208 

TABLE II 

LOOPS, WITH STORES HELD IN THE MEMORY PIPELINE AFTER ISSUE 
RELATIVE PERFORMANCE FOR THE FIRST 14 LAWRENCE LIVERMORE 

Number of In-order Reorder Reorder with 
Entries Completion Buffer Bypasses 

3 1.1560 1.3058 1.2797 
4 1.1560 1.1724 1.1152 
5 1.1560 1.1348 1.0539 
8 1.1560 1.1167 1.0279 

10 1.1560 1.1167 1.0279 

performing more effectively than with in-order completion. 
Just as in Table I ,  having more than eight entries in the reorder 
buffer does not result in improved performance. Comparing 
Tables I and 11, the second method for handling stores offers a 
clear improvement over the first method. If the second method 
is used with an eight-entry reorder buffer that has bypasses, a 
performance degradation of only 3 percent is experienced. 

Clearly there is a tradeoff between performance degradation 
and the cost of implementing a method. For very little cost, the 
in-order completion method can be combined with the first 
method of handling stores. Selecting this “cheap” approach 
results in a 23 percent performance degradation. If this 
degradation is too great, either the second store method must 
be used with in-order completion or one of the more complex 
methods must be used. If the reorder buffer method is used, 
one should use a buffer with at least three or four entries. 

It is important to note that in the performance study just 
described, some indirect causes for performance degradation 
were not considered. These include longer control paths that 
would tend to lengthen the clock period. Also, additional logic 
for supporting precise interrupts implies greater board area 
which implies more wiring delays which could also lengthen 
the clock period. 

VIII. EXTENSIONS 
In previous sections, we described methods that could be 

used to guarantee precise interrupts with respect to the 
registers, the main memory, and the program counter of our 
simple architectural model. In the following sections, we 
extend the previous methods to handle additional state 
information, virtual memory, cache memory, linear pipelines, 
and vectors. 

A .  Handling Other State Values 
Most architectures have more state information than we 

have assumed in the model architecture. For example, a 
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process may have state registers that point to page and segment 
tables, indicate interrupt mask conditions, etc. This additional 
state information can be precisely maintained with a method 
similar to that used for stores to memory. If using a reorder 
buffer, an instruction that changes a state register reserves a 
reorder buffer entry and proceeds to the part of the machine 
where the state change will be made. The instruction then 
waits there until receiving a signal to proceed from the reorder 
buffer. When its entry arrives at the head of the buffer and is 
removed, then the signal is sent to cause the state change. 

In architectures that use condition codes, the condition 
codes are state information. Although the problem condition 
codes present to conditional branches is not totally unrelated to 
the topic here, solutions to the branch problem are not the 
primary topic of this paper. Hence, it is assumed that the 
conditional branch problem has been solved in some way, 
e.g., [3]. If a reorder buffer is being used, condition codes can 
be placed in the reorder buffer. That is, just as for data, the 
reorder buffer is made sufficiently wide to hold the condition 
codes. The condition code entry is then updated when the 
condition codes associated with the execution of an instruction 
are computed. Just as with data in the reorder buffer, a 
condition code entry is not used to change processor state until 
all previous instructions have completed without error (how- 
ever, condition codes can be bypassed to the instruction fetch 
unit to speed up conditional branches). 

Extension of the history buffer and future file methods to 
handle condition codes is very similar to that of the reorder 
buffer. For the history buffer, the condition code settings at 
the time of instruction issue must be saved in the history 
buffer. The saved condition codes can then be used to restore 
the processor state when an exception is detected. 

B. Virtual Memory 
Virtual memory is a very important reason for supporting 

precise interrupts; it must be possible to recover from page 
faults. First, the address translation section of the pipeline 
should be designed so that all the load/store instructions pass 
through it in order. In-order memory operations have been 
assumed throughout this paper. Depending on the method 
being used, the load/store instructions reserve time slots in the 
result pipeline and/or reorder buffer that are read no earlier 
than the time at which the instructions have been checked for 
exception conditions (especially page faults). For stores, these 
entries are not used for data; just for exception reporting and/ 
or holding a program counter value. 

If there is an addressing fault, then the instruction is 
cancelled in the addressing pipeline, and all subsequent load/ 
store instructions are cancelled as they pass through the 
addressing pipeline. This guarantees that no additional loads 
or stores modify the process state. The mechanisms described 
in the earlier sections for assuring preciseness with respect to 
registers guarantee that nonload/store instructions following 
the faulting load/store will not modify the process state; hence, 
the interrupt is precise. 

For example, if the reorder buffer method is being used, a 
page fault would be sent to the reorder buffer when it is 
detected. The tag assigned to the corresponding load/store 

instruction guides it to the correct reorder buffer entry. l k  
reorder buffer entry is removed from the buffer when it 
reaches the head. The exception condition in the entry causes 
all further entries of the reorder buffer to be discarded so that 
the process state is modified no further (no more registers are 
written). The program counter found in the reorder buffer 
entry is precise with respect to the fault. 

C. Cache Memory 
Thus far, we have assumed systems that do not use a cache 

memory. Inclusion of a cache in the memory hierarchy affects 
the implementation of precise interrupts. As we have seen, an 
important part of all the methods is that stores are held until all 
previous instructions are known to be exception-free. With a 
cache, stores may be made into the cache earlier, and for 
performance reasons should be. The actual updating of main 
memory, however, is still subject to the same constraints as 
before. 

I) Store-Through Caches: With a store-through cache, the 
cache can be updated immediately, while the store-through to 
main memory is handled as in previous sections. That is, all 
previous instructions must first be known to be exception-free. 
Load instructions are free to use the cached copy, however, 
regardless of whether the store-through has taken place. This 
means that main memory is always in a precise state, but the 
cache contents may “run ahead” of the precise state. If an 
interrupt should occur while the cache is potentially in such a 
state, then the cache should be flushed. This guarantees that 
prematurely updated cache locations will not be used. How- 
ever, this can lead to performance problems, especially for 
larger caches. 

An alternative is to treat the cache in a way similar to the 
register files. One could, for example, keep a history buffer 
for the cache. Just as with registers, a cache location would 
have to be read just prior to writing it with a new value. This 
does not necessarily mean a performance penalty because the 
cache must be checked for a hit prior to the write cycle. In 
many high-performance cache organizations, the read cycle 
for the history data could be done in parallel with the hit 
check. Each store instruction makes a buffer entry indicating 
the cache location it has written. The buffer entries can be used 
to restore the state of the cache. As instructions complete 
without exceptions, the buffer entries are discarded. The 
future file can be extended in a similar way. 

2) Write-Back Cache: A write-back cache is perhaps the 
cache type most compatible with implementing precise inter- 
rupts. This is because stores in a write-back cache are not 
made directly to memory; there is a built-in delay between 
updating the cache and updating main memory. Before an 
actual write-back operation can be performed, however, the 
reorder buffer should be emptied or should be checked for data 
belonging to the line being written back. If such data should be 
found, the write-back must wait until the data have been stored 
in the cache. If a history buffer is used, either a cache line 
must be saved in the history buffer, or the write-back must 
wait until the associated instruction has made its way to the end 
of the buffer. Notice that in any case, the write-back w d l  
sometimes have to wait until a precise state is reached. 
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D. Linear Pipeline Structures 
An alternative to the parallel functional unit organizations 

we have been discussing is a linear pipeline organization. 
Refer to Fig. 7. Linear pipelines provide a more natural 
implementation of register-storage architectures like the IBM 
370. Here, the same instruction can access a memory operand 
and perform some function on it. Hence, these linear pipelines 
have an instruction fetchldecode phase, an operand fetch 
phase, and an execution phase, any of which may be composed 
of one or several pipeline stages. 

In general, reordering instructions after execution is not as 
significant an issue in such organizations because it is natural 
for instructions to stay in order as they pass through the pipe. 
Even if they finish early in the pipe, they proceed to the end 
where exceptions are checked before modifying the process 
state. Hence, the pipeline itself acts as a sort of reorder buffer. 

The role of the result shift register is played by the control 
information that flows down the pipeline alongside the data 
path. Program counter values for preciseness may also flow 
down the pipeline so that they are available should an 
exception arise. 

Linear pipelines often have several bypass paths connecting 
intermediate pipeline stages. A complete set of bypasses is 
typically not used, rather there is some critical subset selected 
to maximize performance while keeping control complexity 
manageable. Hence, using the terminology of this paper, 
linear pipelines typically achieve precise interrupts by using a 
reorder buffer method with bypasses. 

E. Vectors 
Implementing precise interrupts in a pipelined vector 

architecture is more difficult than for a scalar architecture. In 
this section, we consider extensions of our previous methods 
to vectors. 

When considering precise interrupts with respect to vector 
instructions, preciseness must be carefully defined. Unlike the 
scalar instructions described thus far, vector instructions do 
not produce a single result and change the system state as they 
Complete. Rather, they produce a series of results that change 
the system state over the course of many clock periods. The 
sequential architecture model, as applied to vectors, requires 
that one vector instruction completes its last result before the 
next begins producing results. Furthermore, requirement 3) 
for precise interrupts implies that a vector instruction must 
either complete in the presence of an exception condition, or it 
must be made to look as if it has not started. This implies that 
some buffering of vector results may be required in a pipelined 
implementation regardless of the method used for implement- 
ing precise interrupts. 

There are two primary classes of vector architectures: those 
with vector registers, and those with memory-to-memory 
vector operations. For vector register architectures, we extend 
our earlier methods for maintaining scalar registers precisely. 
For memory-to-memory architectures, the second method for 
handling scalar stores to memory is extended. 

I )  Register Architectures: In-order completion (our first 
method) as extended to vectors implies that one instruction is 
finished producing results before the next begins. This implies 

WRITE TO MEMORY 

RESULT BUS 

Fig. 7. Example of a linear pipeline implementation. 

no overlap of vectors with scalars, and no vector chaining. 
This can be implemented in instruction issue logic by blocking 
issue as long as a vector instruction is in progress. 

There still remains the problem of interrupts that occur in 
the middle of the execution of a vector instruction. If the 
interrupt is an external interrupt, it is simply a matter of 
waiting until the instruction completes. For many types of 
program interrupts (e.g., page faults), however, it may not be 
possible to allow the instruction to complete, so it must be 
backed up. A simple solution is to buffer results and write 
them into a vector register after all results are complete, but 
this leads to performance problems. A vector instruction using 
the results must wait for the copy from the buffer to the 
register to complete. A better method is to have two copies of 
each vector register. A 1-bit pointer for each register indicates 
the “current” copy. When a vector operation is initiated, 
vector results are placed in the “new” (noncurrent) copy. 
When the vector instruction is complete, then the “current” 
pointer can be changed to the new copy. If there is a fault, then 
the pointer is not updated, and the register copy saved from 
before the vector instruction started remains the current copy. 

A reorder buffer method can be used to permit limited 
overlap of scalar and vector operation. Due to the length of 
many vector operations, however, the buffer would have to be 
very long, or relatively little scalar operation would be 
possible. Also, unless bypasses are used, all the scalar 
instructions would have to be independent of each other. This 
would limit the usefulness of this method even more. For 
vectors, complete buffering of results would still be needed, 
but without bypasses, chaining would not be possible. 

A practical method based on reorder buffers is to save 
scalars in the buffer as before, but save vector register 
pointers, rather than the vectors themselves, in the buffer. 
There would, again, be two copies of each vector register: a 
current copy and a new copy. A pointer to a specific vector 
register could appear in the buffer only once. This pointer 
would indicate not only a vector register, but which of the pair 
contains the new results. As the pointer is removed from the 
buffer, the “current” pointer for the vector would be updated. 
If a fault is detected, the pointer is not updated, so the old copy 
of the vector register is kept. This method overlaps dependent 
scalar operations with vectors, and chaining can be imple- 
mented by bypassing from the new copy pointed to by vector 
pointer in the buffer, rather than the current copy. 

We now give an example of the method just described. 
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Consider the following two instructions: V1 = V2 + V3; V3 
= V1 x V4. Assume at the beginning of the sequence, the 
current pointer for V1 is 0. After the first vector instruction is 
issued, the vector designator V1 and 1 (the complement of its 
current pointer) are placed in the reorder buffer, and vector 
results are placed into copy 1 of V1 as they are generated. The 
previous values in copy 0 of V1 are retained. The second 
instruction can begin and chain to the first; here copy 1 of V1 
is used for the chain. The chain is set up using the pointer 
found in the reorder buffer. After the first instruction is known 
to be complete without errors, the current pointer for V1 is 
updated to 1. Else if there is an error, it is kept at 0. Note that 
copy 0 of V1 can only be reused after the first instruction has 
completed. 

With the history file method, the size of buffers is again a 
major problem; the file would be written as vector results are 
produced; vector chaining would imply multiple results being 
generated simultaneously so that the file would have to be able 
to support multiple simultaneous writes. Similarly, scalar 
results could be produced simultaneously with vector results 
so that they would probably need their own history file with 
some linkage between the two. A better method is to once 
again use pairs of vector registers. When a vector instruction is 
issued, it makes an entry in the history file indicating the 
vector register copy to be used as a backup. If a backup is 
required, the “current” pointer is adjusted to achieve the 
backup. As with the other methods, using pairs of vector 
registers requires that only one instruction that uses a specific 
vector register can be active in the system at any given time; 
one copy of the pair is used for new results, the other is used 
for saving old results. 

By this time it should be clear that extending the future file 
method for vector registers can also easily be done with pairs 
of vector registers in a manner very similar to the history file 
method just described. 

To summarize, the various methods for implementing 
precise interrupts can be extended for vector registers, but the 
cost is a doubling of the number of hardware registers plus 
some additional control hardware to keep track of the 
“current” pointers. 

2) Memory-to-Memory Vectors: In the case of a memory- 
to-memory vector architecture, it may be necessary to buffer 
results in the CPU until all the operations associated with a 
vector instruction are completed without exception before 
allowing memory stores to begin. This is done in the most 
straightforward way by extending store method 2 described 
earlier, but it may require a much larger store buffer. This is 
the method used in the CDC CYBER 180/990 where vectors 
may contain up to 512 elements. In some architectures which 
used longer vector lengths, the size of this buffer may be 
prohibitive, however. 

IX . ARCHITECTURAL SOLUTIONS 
Thus far, we have assumed a sequential architectural model 

for execution, and have attempted to work around it for 
pipelined implementations. However, the root cause of the 
problem is the architectural model. Hence, it seems reasonable 
to solve the problem at the architectural level. That is, one 

might be able to define an architectural model where an 
interrupted state assumes an underlying parallel implementa- 
tion. In this section, we briefly discuss a few such architectural 
solutions. 

One architectural solution is to “freeze” the pipeline when 
an interrupt is detected, and simply “dump” the state of all the 
registers in the pipeline to memory as part of a saved context. 
Then, to restart the process, all the pipeline registers are 
restored, and the pipeline is started. Although this leads to 
processes that may be restarted, this approach has some 
disadvantages. One disadvantage is that freezing a pipe is 
difficult in practice due to fan-out problems. The fan-out 
problem comes from the need to control overwriting every 
pipeline stage. If writing all the stages is conditional on a 
single signal, for example a signal indicating no interrupt 
conditions, then the “no interrupt” condition must be fanned 
out to all the flip flops in all the registers in the pipeline. The 
large fan-out required for such a signal can lengthen the 
critical path of the pipeline control. Because of the tremendous 
fan-out for larger pipelined systems, this method may only be 
useful for the very smallest pipelined systems [lo]. Such an 
approach also means that implementation details, for example 
the number of pipeline stages, become part of the architecture. 
This could lead to compatibility problems. 

A variation of the above method, directed at vectors, is to 
define the vector architecture so that at the time of the 
interrupt, the intermediate state of vector instructions is saved. 
This information is primarily in the form of length counters. If 
done properly, a vector instruction is stopped in &he middle, 
and restarting upon returning from the interrupt is accom- 
plished by reissuing the stopped vector instruction. 

Another architectural solution to the precise interrupt 
problem is to save a series of program counter values, ending 
with a final program counter value that is much like the one in 
the sequential model. Each program counter points to an 
instruction, prior to the final one, that has not been executed. 
To restart a process, the instructions pointed to by the series 
program counters must first be executed before the machine is 
in a precise state with respect to the final one. 

Example 7: Again, we consider the code shown in Example 
1 and the case where the floating point add overflows after the 
loop increment in statement 7 has completed. Using an 
architecture as defined above, in the event of floating point 
overtlow in statement 6, the program counter pointing to 
statement 6 could be saved along with the program counter 
pointing to statement 8. A program counter for statement 7 is 
not needed because it has successfully completed. The 
overflow handler could “fix up” the overflow, possibly by 
rescaling, and then return to the process. Then using both 
saved program counters, the processor would execute state- 
ment 6 before resuming regular execution with statement 8. 

Finally, one could save a sequence of instructions that must 
be executed before the saved program counter is precise. This 
has the advantage of fetching the instruction sequence as part 
of the context being restored. The program counter method 
requires first fetching the program counters as part of the 
restored context, then fetching the instructions themselves. In 
the example just given, the floating point add instruction itself 
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would be saved, not its program counter. Then, as part of the 
return from the interrupt the processor would execute the 
floating point add before fetching instructions beginning with 
statement 8. 

X.  SUMMARY AND CONCLUSIONS 
Five methods for implementing precise interrupts in the 

pipelined processors were described. These methods were 
then evaluated through simulations of a CMY-1s  imple- 
mented with these methods. 

The first method forces in-order instruction completion, and 
our simulation study indicates a performance degradation of 
about 23 percent when store instructions are held in the 
instruction issue register and about 16 percent when stores are 
held in the memory pipeline. Performance is lost primarily 
because of added instruction issue blockages not related to data 
dependencies. The significant performance difference due to 
the way stores are handled is noteworthy. 

To improve the performance provided by the first method, a 
reorder buffer is proposed to permit instructions to complete 
out of order, but to reorder the results going into the register 
file. For a reorder buffer of size eight, this method results in 
performance loss of 18 percent or 12 percent, depending on 
the way stores to memory are handled. Here performance is 
lost because results cannot be used because they are being held 
in the reorder buffer prior to result register update. 

The third method studied adds bypass paths to the reorder 
buffer permitting data to be used prior to the result register 
update. With this method, performance loss is cut to 12 
percent or 3 percent, again depending on the handling of 
stores. These final results indicate that performance losses can 
be significantly reduced, but only if stores are blocked in the 
memory pipeline to wait for previous instructions to complete. 

The final two methods, the history buffer and future file 
methods, permit alternative implementations that give the 
same performance as with the reorder buffer using bypasses. 
The implementation differences among the final three methods 
are relatively minor, and any final choice should be based on 
technology related issues affecting implementation cost and 
complexity. 

There are many other interesting issues related to imple- 
menting precise interrupts. These include the handling of 
virtual memory faults, caches, vectors, and alternative pipe- 
line structures. Although they were briefly touched on in this 
paper, they deserve further research. 

Finally, the basic concepts of process interruptability and 
restartability should be studied extensively. We feel that 
methods of saving and restoring state which do not rely on a 
serial model of execution are essential to the development of 
parallel general purpose systems. 
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