
562 IEEE TRANSACTIONS ON COMPUTERS, VOL. 31, NO. 5, MAY 1988

Implementing Precise Interrupts in Pipelined
Processors

Abstract-This paper describes and evaluates solutions to the
precise interrupt problem in pipelined processors. An interrupt is
precise if the saved process state corresponds with a sequential
model of program execution where one instruction completes
before the next begins. In a pipelined processor, precise interrupts
are difficult to implement because an instruction may be initiated
before its predecessors have completed.

The precise interrupt problem is described, and five solutions
are discussed in detail. The first solution forces instructions to
complete and modify the process state in architectural order. The
other four solutions allow instructions to complete in any order,
but additional hardware is used so that a precise state can be
restored when an interrupt occurs. All the methods are discussed
in the context of a parallel pipeline structure. Simulation results
based on the CRAY-1s scalar architecture are used to show that
the first solution results in a performance degradation of at least
16 percent. The remaining four solutions offer better perform-
ance, and three of them result in as little as a 3 percent
performance loss. Several extensions, including vector architec-
tures, virtual memory, and linear pipeline structures, are briefly
discussed.

Index Terms-Performance simulation, pipelined computers,
precise interrupts, process checkpointing, process recovery, vir-
tual memory.

I. INTRODUCTION

OST computer architectures are based on a sequential M model of program execution in which an architectural
program counter sequences through instructions one-by-one,
finishing one before starting the next. In contrast, a high-
performance implementation may be pipelined, permitting
several instructions to be in some phase of execution at the
same time. The use of a sequential architecture and a pipelined
implementation clash at the time of an interrupt; pipelined
instructions may modify the process state in an order different
from that defined by the sequential architectural model. At the
time an interrupt condition is detected, the hardware may not
be in a state that is consistent with any specific program
counter value.

When an interrupt occurs, the state of an interrupted process
is typically saved by the hardware, the software, or by a
combination of the two. The process state generally consists of
the program counter, registers, and memory. If the saved
process state is consistent with the sequential architectural

Manuscript‘ received March 23, 1986. This work is supported by the
National Science Foundation under Grant ECS-8207277.

J. E. Smith is with the Department of Electrical and Computer Engineering,
University of Wisconsin, Madison, WI 53706.

A. R. Pleszkun is with the Department of Computer Sciences, University of
Wisconsin, Madison, WI 53706.

IEEE Log Number 87 17725.

model, then the interrupt is precise. To be more specific, the
saved state should reflect the following conditions.

1) All instructions preceding the instruction indicated by
the saved program counter have been executed and have
modified the process state correctly.

2) All instructions following the instruction indicated by the
saved program counter are unexecuted and have not modified
the process state.

3) If the interrupt is caused by an exception condition raised
by an instruction in the program, the saved program counter
points to the interrupted instruction. The interrupted instruc-
tion may or may not have been executed, depending on the
definition of the architecture and the cause of the interrupt.
Whichever is the case, the interrupted instruction has either
completed, or has not started execution.

If the saved process state is inconsistent with the sequential
architectural model and does not satisfy the above conditions,
then the interrupt is imprecise.

This paper describes and compares ways of implementing
precise interrupts in pipelined processors. The methods used
are designed to modify the state of an executing process in a
carefully controlled way. The simple methods force all
instructions to update the process state in the architectural
order. Other, more complex methods save portions of the
process state so that the proper state may be restored by the
hardware at the time an interrupt occurs.
A . Classifcation of Interrupts

We consider interrupts belonging to two classes.
1) Program interrupts, sometimes referred to as “traps, ”

result from exception conditions detected during fetching and
execution of specific instructions. These exceptions may be
due to software errors such as trying to execute an illegal
opcode, numerical errors such as overflow, or they may be
part of normal program execution as with page faults.

2) External interrupts are not caused by specific instruc-
tions and are often caused by sources outside the currently
executing process, sometimes completely unrelated to it. I/O
interrupts and timer interrupts are examples.

For a specific architecture, all interrupts may be defined to
be precise or only a proper subset. Virtually every architec-
ture, however, has some types of interrupts that must be
precise. There are a number of conditions under which precise
interrupts are either necessary or desirable.

1) For I/O and timer interrupts, a precise process state
makes restarting possible.

2) In virtual memory systems, precise interrupts allow a
process to be correctly restarted after a page fault has been
serviced.

OO18-9340/88/05OO-0562$01 .OO 0 1988 IEEE

SMITH AND PLESZKUN: IMPLEMENTING INTERRUPTS IN PIPELINED PROCESSORS 563

3) For software debugging, it is desirable for the saved
state to be precise. This information can be helpful in isolating
the exact instruction and circumstances that caused the
exception condition.

4) For graceful recovery from arithmetic exceptions, soft-
ware routines may be able to take steps, rescale floating point
numbers for example, to allow a process to continue. Some
end cases of modem floating point arithmetic systems might
best be handled by software, gradual underflow in the
proposed IEEE floating point standard [15], for example.

5) Unimplemented opcodes can be simulated by system
software in a way transparent to the programmer if interrupts
are precise. In this way, lower performance models of an
architecture can maintain compatibility with higher perform-
ance models using extended instruction sets.

6) Virtual machines can be implemented if privileged
instruction faults cause precise interrupts. Host software can
simulate these instructions and return to the guest operating
system in a user-transparent way.

B. Historical Survey
The precise interrupt problem is as old as the first pipelined

computers [5] . The IBM 360/91 [3] was a well-known
computer that produced imprecise interrupts under some
circumstances, floating point exceptions, for example. Impre-
cise interrupts were a break with the IBM 360 architecture
which made them even more noticeable. Subsequent IBM 360
and 370 implementations have used less aggressive pipeline
designs where instructions modify the process state in strict
program order, and interrupts are precise.’ A more complete
description of the method used in these ‘‘linear’’ pipeline
implementations is in Section VIII-D.

Most pipelined implementations of general purpose archi-
tectures are similar to those used by IBM. These pipelines
constrain all instructions to pass through the pipeline in order
with a stage at the end where exception conditions are checked
before the process state is modified. Examples include the
Amdahl 470 and 580 [l] , [2] and the Gould/SEL 32/87 [17].

The high-performance CDC 6600 [16], CDC 7600 [4], and
Cray Research [8], [14] computers allow instructions to
complete out of the architectural sequence. Consequently, they
have some exception conditions that result in imprecise
interrupts. In these machines, the advantages of precise
interrupts have been sacrificed in favor of maximum parallel-
ism and design simplicity. I/O interrupts in these machines are
precise, and they do not implement virtual memory.

The CDC STAR-100 [l l] and CYBER 200 [7] series
machines also allow instructions to complete out of order, and
they do support virtual memory. In these machines, the use of
vector instructions further complicates the problem. The
solution finally arrived at was the addition of an invisible
exchange package [7]. The invisible exchange package
resides in memory and captures machine-dependent state
information resulting from partially completed instructions. A

’ Except for the models 95 and 195 which were derived from the original
model 91 design. Also, the models 85 and 165 had imprecise interrupts for the
case of protection exceptions and addressing exceptions caused by store
operations.

related approach is used in pipelined array processors [9]
which contain instructions that permit interrupt handlers to
explicitly dump and restore the contents of certain pipeline
segments. A similar method has been suggested for MIPS [lo]
where pipeline information is dumped at the time of an
interrupt and restored to the pipeline when the process is
resumed. This solution makes a process restartable although it
is arguable whether it has all the features and advantages of an
architecturally precise interrupt. For example, it might be
necessary to have implementation-dependent software sift
through the machine-dependent state in order to provide
complete debug information.

The recently announced CDC CYBER 180/990 [6] is a
pipelined implementation of a new architecture that supports
virtual memory, and offers roughly the same performance as a
CRAY-1s. To provide precise interrupts, the CYBER 180/
990 uses a history buffer, to be described later in this paper,
where state information is saved just prior to being modified.
When an interrupt occurs, this “history” information is used
to back the system up into a precise state.

C. Paper Overview
This paper concentrates on explaining and discussing basic

methods for implementing precise interrupts in pipelined
processors. We emphasize scalar architectures (as opposed to
vector architectures) because of their applicability to a wider
range of machines. Section I1 defines the model architecture to
be used in describing precise interrupt implementations. The
model architecture is very simple so that the fundamentals of
the methods can be clearly described. Sections 111-VI contain
methods for implementing precise interrupts. Section I11
describes a simple method that is easy to implement, but which
reduces performance. Section IV describes a higher perform-
ance variation where results may be bypassed to other
instructions before the results are used to modify the process
state. Sections V and VI describe methods where instructions
are allowed to complete in any order, but where state
information is saved so that a precise state may be restored
when an interrupt occurs. Section VI1 presents simulation
results. Experimental results based on these CRAY-1 S simula-
tions are presented and discussed. Section VI11 contains a brief
discussion of 1) saving additional state information, 2)
supporting virtual memory, 3) precise interrupts when a data
cache is used, 4) linear pipeline structures, and 5) vector
instructions. Finally, Section IX discusses ways to solve the
precise interrupt problem architecturally rather than in the
implementation. These methods are based on an architectural
model that is parallel instead of sequential.

11. PRELIMINARIES
A . Model Architecture

For describing the various techniques, a model architecture
is chosen so that the basic methods are not obscured by details
and unnecessary complications brought about by a specific
architecture.

We choose a register-register architecture where all mem-
ory accesses are through registers and all functional operations
involve registers. In this respect, it bears some similarity to the

564

CDC and Cray architectures, but has only one set of registers.
The load instructions are of the form Ri = (Rj + disp). That
is, the content of register Rj plus a displacement given in the
instruction are added to form an effective address. The content
of the addressed memory location is loaded into register Ri.
Similarly, a store is of the form (Rj + disp) = Ri, where
register Ri is stored at the address found by adding the content
of register Rj and a displacement. The functional instructions
are of the form Ri = R j op Rk, where op is the operation
being performed. For unary operations, the degenerate form
Ri = op Rk is used. Conditional instructions are of the form P
= disp:Ri op R j , where P is the program counter, the disp is
the address of the branch target, and op is a relational
operator, =, >, <, etc.

The only process state in the model architecture consists of
the program counter, the general purpose registers, and main
memory. The architecture is simple, has a minimal amount of
process state, can be easily pipelined, and can be implemented
in a straightforward way with parallel functional units like the
CDC and Cray architectures.

Initially, we assume no operand cache. Similarly, condition
codes are not used. They add other problems beyond precise
interrupts when a pipelined implementation is used. Exten-
sions for operand cache and condition codes are discussed in
Section VIII.

A parallel pipeline implementation for the simple architec-
ture is shown in Fig. 1 . It uses an instruction fetch/decode
pipeline which processes instructions in order. The final stage
of the fetch/decode pipeline is an issue register where all
register interlock conditions are checked. If there are no
register conflicts, an instruction issues to one of the parallel
functional units. Here, the memory access function is imple-
mented as one of the functional units. The operand registers
are read at the time an instruction issues. There is a single
result bus that returns results to the register file. This bus may
be reserved at the time an instruction issues or when an
instruction is approaching completion. This assumes the
functional unit times are deterministic. A new instruction can
issue every clock period in the absence of register or result bus
conflicts. Unless stated otherwise, the parallel pipeline struc-
ture of Fig. I is used throughout this paper.

Example 1: To demonstrate how an imprecise process state
may occur in our model architecture, consider the following
section of code which sums the elements of arrays A and B
into array C.

Statement
0
1
2
3

5
6
7
8
9
10

4 Loop:

R2 + 0
RO + 0
R5 + 1
R7 + 100
R1 + (R2 + A)
R3 + (R2 + B)
R4 + R1 + f R 3
RO +- RO + R5
(RO + C) + R4
R2 + R2 + R5
P = L0op:RO != R7

IEEE TRANSACTIONS ON COMPUTERS, VOL. 37. NO 5 . M A Y 1988

FUNCTIONAL UNIT 1

INSTRUCTION

REGISTER +--#

FUNCTIONAL UNIT 2 I
I

MEMORY ACCESS

4m-r-v

RESULT BUS

Fig. 1. Pipelined implementation of our model architecture. Not shown is
the results shift register used to control the result bus.

Consider the instructions in statements 6 and 7 . Although the
integer add which increments the loop count will be issued
after the floating point add, it will complete before the floating
point add. The integer add will therefore change the process
state before an overflow condition is detected in the floating
point add. In the event of such an overflow, there is an
imprecise interrupt.

B. Interrupts Prior to Instruction Issue
Before proceeding with the various precise interrupt meth-

ods, we first consider iflterrupts that occur prior to instruction
issue because they are handled the same way by all the
methods.

In the pipeline implementation of Fig. 1, instructions stay in
sequence until the time they are issued. Furthermore, the
process state is not modified by an instruction before it issues.
This makes precise interrupts a simple matter when an
exception condition can be detected prior to issue. Examples
of such exceptions are privileged instruction faults and
unimplemented instructions. This class also includes external
interrupts which can be checked at the issue stage.

When such an interrupt condition is detected, instruction
issuing is halted. Then, there is a wait while all previously
issued instructions complete. After they have completed, the
process is in a precise state, with the program counter value
corresponding to the instruction being held in the issue

Comments
Init. loop index
Init. loop count
Loop inc. value
Maximum loop count
Load A (I)
Load B (I)
Floating add
Inc. loop count
Store C (I)
Inc. loop index
cond. branch not equal

Execution Time

1 1 clock periods
1 1 clock periods
6 clock periods
2 clock periods

2 clock periods

565 SMITH AND PLESZKUN: IMPLEMENTING INTERRUPTS IN PIPELINED PROCESSORS

register. The registers and main memory are in a state
consistent with this program counter value.

Because exception conditions detected prior to instruction
can be handled easily as described above, we will not consider
them any further. Rather, we will concentrate on exception
conditions detected after instruction issue.

111. IN-ORDER INSTRUCTION COMPLETION
With this method, instructions modify the process state only

when all previously issued instructions are known to be free of
exception conditions. This section describes a strategy that is
most easily implemented when pipeline delays in the parallel
functional units are fixed. That is, they do not depend on the
operands, only on the function. Thus, the result bus can be
reserved at the time of issue.

First, we consider a method commonly used to control the
pipelined organization shown in Fig. 1. This method may be
used regardless of whether precise interrupts are to be
implemented. The precise interrupt methods described in this
paper are integrated into this basic control strategy, however.
To control the result bus, a “result shift register” is used; see
Fig. 2. Here, the stages are labeled 1 through n, where n is the
length of the longest functional unit pipeline. An instruction
that takes i clock periods reserves stage i of the result shift
register at the time it issues. If the stage already contains valid
control information, then issue is held until the next clock
period, and stage i is checked once again. An issuing
instruction places control information in the result shift
register. This control information identifies the functional unit
that will be supplying the result and the destination register of
the result. This control information is also marked “valid”
with a validity bit. Each clock period, the control information
is shifted down one stage toward stage one. When it reaches
stage one. it is used during the next clock period to control the
result bus so that the functional until result is placed in the
correct result register.

Still disregarding precise interrupts, it is possible for a short
instruction to be placed in the result pipeline in stage i when
previously issued instructions are in stage j , j > i. This leads
to instructions finishing out of the original program sequence.
If the instruction at stage j eventually encounters an exception
condition, the interrupt will be imprecise because the instruc-
tion placed in stage i will complete and modify the process
state even though the sequential architecture model says i does
not begin until j completes.

Example 2: If one considers the section of code presented in
Example 1, and an initially empty result shift register (all the
entries invalid), the floating point add would be placed in stage
6 while the integer add would be placed in stage 2. The result
shift register entries shown in Fig. 2 reflect the state of the
result shift register after the integer add issues. Notice that the
floating point add entry is in stage 5 since one clock period has
passed since it issued. As described above, this situation leads
to instructions finishing out of the original program sequence.

A . Registers
To implement precise interrupts with respect to registers

using the above pipeline control structure, an issuing instruc-

I I I I I 1

DIRECTION

MOVEMENT

N I I 1 0 1

Fig. 2. Result shift register.

tion using stage j should “reserve” stages i < j as well as
stage j . That is, the stages i < j that were not previously
reserved by other instructions are reserved, and they are
loaded with null control information so that they do not affect
the process state. This guarantees that instructions modifying
registers finish in order.

There is logic on the result bus that checks for exception
conditions in instructions as they complete. If an instruction
contains a nonmasked exception condition, then control logic
“cancels” all subsequent instructions coming on the result bus
so that they do not modify the process state.

Example 3: For our sample section of code given in
Example 1, assuming the the result shift register is initially
empty, such a policy would have the floating point add
instruction reserve stages 1-6 of the result shift register.
When, on the next clock cycle, the integer add is in the issue
register, it is prohibited from issuing because stage 2 is already
reserved. Thus, the integer add must wait at the issue stage
until stage 2 of the result shift register is no longer reserved.
This would be five clock periods after the issue of the floating
point add.

A generalization of this method is to determine, if possible,
that an instruction is free of exception conditions prior to the
time it is complete. Only result shift register stages that will
finish before exceptions are detected need to be reserved (in
addition to the stage that actually controls the result).

B. Main Memory
Store instructions modify the portion of process state that

resides in main memory. To implement precise interrupts with
respect to memory, one solution is to force store instructions
to wait for the result shift register to be empty before allowing
them to issue. Alternatively, stores can issue and be held in the
load/store pipeline until all preceding instructions are known
to be exception-free. Then the store can be released to
memory.

To implement the second alternative, recall that memory
can be treated as a special functional unit. Thus, as with any
other instruction, the store can make an entry in the result shift
register. This entry is defined as a dummy store. The dummy
store does not cause a result to be placed in the register file,
but is used for controlling the memory pipeline. The dummy
store is placed in the result shift register so that it will not
reach stage one until the store is known to be exception-free.
When the dummy stores stage one, all previous instructions
have completed without exceptions, and a signal is sent to the
load/store unit to release the store to memory. If the store itself
contains an exception condition, then the store is cancelled, all
following load/store instructions are cancelled, and the store

566

HEAD+

TAIL

IEEE TRANSACTIONS ON COMPUTERS, VOL. 31, NO. 5, MAY 1988

4 0 6
0 0 7 f

unit signals the pipeline control so that all instructions issued
subsequent to the store are cancelled as they leave the result
pipeline.

C. Program Counter
To implement precise interrupts with respect to the program

counter, the result shift register is widened to include a field
for the program counter of each instruction (see Fig. 2). This
field is filled as the instruction issues. When an instruction
with an exception condition appears at the result bus, its
program counter is available and becomes part of the saved
state.

IV. THE REORDER BUFFER
The primary disadvantage of the above method is that fast

instructions may sometimes get held up at the issue register
even though they have no dependencies and would otherwise
issue. In addition, they block the issue register while slower
instructions behind them could conceivably issue.

This leads us to a more complex, but more general solution.
Instructions are allowed to finish out of order, but a special
buffer called the reorder buffer is used to reorder them before
they modify the process state.

A . Basic Method
The overall organization is shown in Fig. 3(a). The reorder

buffer, Fig. 3(b), is a circular buffer with head and tail
pointers. Entries between the head and tail are considered
valid. When an instruction issues, the next available reorder
buffer entry, pointed to by the tail pointer, is given to the
issuing instruction. The tail pointer value is used as a tag to
identify the entry in the buffer reserved for the instruction.
The tag is placed in the result shift register along with the other
control information. The tail pointer is then incremented,
modulo the buffer size. The result shift register differs from
the one used earlier because there is a field containing a
reorder tag instead of a field specifying a destination register.

When an instruction completes, both results and exception
conditions are sent to the reorder buffer. The tag from the
result shift register is used to guide them to the correct reorder
buffer entry. When the entry at the head of the reorder buffer
contains valid results (its instruction has finished), then its
exceptions are checked. If there are none, the results are
written into the registers. If an exception is detected, issue is
stopped in preparation for the interrupt, and all further writes
into the register file are inhibited.

Example 4: The entries in the reorder buffer and result shift
register shown in Fig. 3(b) reflect their state after the integer
add from Example 2 has issued. Notice that the result shift
register entries are very similar to those in the Fig. 2. The
integer add will complete execution before the floating point
add and its results will be placed in entry 5 of the reorder
buffer. These results, however, will not be written into RO
until the floating point result, found in entry 4, has been placed
in R4.

B. Main Memory
Preciseness with respect to memory is maintained in a

manner similar to that in the in-order completion scheme

SOURCE DATA
TO FUNCTIONAL UNITS

I

RESULT
SHIFT
REGISTER

I I , ‘)CONTROL

I I I I I

I TAG I STAGE FUNCTIONAL I VALID I 1 UNIT SOURCE

DIRECTION

MOVEMENT

RESULT SHIFT REGISTER

I I I I ! I

PROGRAM ENTRY DEST. RESULT $&CcNEsp- I REG. I I I ICOUNTER I
I I I I

I I I I
1 1

I

REORDER BUFFER

(b)

result shift register.
Fig. 3. (a) Reorder buffer organization. (b) Reorder buffer and associated

(Section 111-B). The simplest method holds stores in the issue
register until all previous instructions are known to be free of
exceptions. In the more complex method, a store signal is sent
to the memory pipeline as a “dummy” store is removed from
the reorder buffer. Stores are allowed to issue, and block in the
store pipeline prior to being committed to memory while they
wait for their dummy counterpart.

C. Program Counter
To maintain preciseness with respect to the program

counter, the program counter can be sent to a reserved space in
the reorder buffer at issue time [shown in Fig. 3(b)]. While the
program counter could be sent to the result shift register, it is
expected that the result shift register will contain more stages
than the reorder buffer and thus require more hardware. The
length of the result shift register must be as long as the longest
pipeline stage; as will be seen in Section VII, the number of
entries in the reorder buffer can be quite small. When an
instruction arrives at the head of the reorder buffer with an
exception condition, the program counter found in the reorder
buffer entry becomes part of the saved precise state.

SMITH AND PLESZKUN: IMPLEMENTING INTERRUPTS IN PIPELINED PROCESSORS 567

D. Bypass Paths

While an improvement over the method described in Section
111, the reorder buffer still suffers a performance penalty. A
computed result that is generated out of order is held in the
reorder buffer until previous instructions, finishing later, have
updated the register file. An instruction dependent on a result
being held in the reorder buffer cannot issue until the result has
been written into the register file.

The reorder buffer method may, however, be modified to
minimize some of the drawbacks of finishing strictly in order.
In order for results to be used early, bypass paths may be
provided from the entries in the reorder buffer to the register
file output latches, see Fig. 4. These paths allow data being
held in the reorder buffer to be used in place of register data.
The implementation of this method requires comparators for
each reorder buffer stage and operand designator. If an
operand register designator of an instruction being checked for
issue matches a register designator in the reorder buffer, then a
multiplexer is set to gate the data from the reorder buffer to the
register output latch. In the absence of other issue blockage
conditions, the instruction is allowed to issue, and the data
from the reorder data are used prior to being written into the
register file.

There may be bypass paths from some or all of the reorder
buffer entries. If multiple bypass paths exist, it is possible for
more than one destination entry in the reorder buffer to
correspond to a single register. Clearly only the latest reorder
buffer entry that corresponds to an operand designator should
generate a bypass path to the register output latch. To prevent
multiple bypassing of the same register, when an instruction is
placed in the reorder buffer, any entries with the same
destination register designator must be inhibited from match-
ing a bypass check.

When bypass paths are added, preciseness with respect to
the memory and the program counter does not change from the
previous method.

The greatest disadvantage with this method is the number of
bypass comparators needed and the amount of circuitry
required for the multiple bypass check. While this circuitry is
conceptually simple, there is a great deal of it.

V. HISTORY BUFFER
The methods presented in this section and the next are

intended to reduce or eliminate performance losses experi-
enced with a simple reorder buffer, but without all the control
logic needed for multiple bypass paths. Primarily, these
methods place computed results in a working register file, but
retain enough state information so a precise state can be
restored if an exception occurs.

Fig. 5(a) illustrates the history buffer method. The history
buffer is organized in a manner very similar to the reorder
buffer. When an instruction issues, a buffer entry is loaded
with control information, as with the reorder buffer, but the
current value of the destination register (to be overwritten by
the issuing instruction) is also read from the register file and
written into the buffer entry. Results on the result bus are
written directly into the register file when an instruction
comdetes. ExceDtion reDorts come back as an instruction

REGISTER +U SOURCE DATA
TO FUNCTIONAL UNITS 3

RESULT
SHIFT
REGISTER 7- CONTROL

I

Fig. 4. Reorder buffer method with bypasses.

SOURCE DATA REGISTER

UNITS
CONTROL

I -
DESTN.

CONTENTS
I I

HISTORY I USED ONLV
ON EXCEPTIONS BUFFER

RESULTBUS

(a)

DIRECTION

MOVEMENT

RESULT SHIFT REGISTER
h*, -

I I I 1

HEAD+

TAIL

HISTORY BUFFER

(b)

result shift register.
Fig. 5. (a) History buffer organization. (b) History buffer and associated

completes and are written into the history buffer. As with the
reorder buffer, the exception reports are guided to the proper
history buffer entry through the use of tags found in the result
shift register. When the history buffer contains an element at
the head that is known to have finished without exceptions, the
history buffer entry is no longer needed and that buffer
location can be reused (the head pointer is incremented). As
with the reorder buffer, the history buffer can be shorter than
the maximum number of pipeline stages. If all history buffer
entries are used (the buffer is too small). issue must be blocked

568

USE0_.......... ONLY

ON EXCEPTIONS

IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 5 , MAY 1988

ARCHITECTURAL REORDER

FILE pp$ BUFFER

until an entry becomes available. Hence, the buffer should be
long enough so that this seldom happens. The effect of the
history buffer on performance is determined in Section VII.

Example 5: The entries in the history buffer and result shift
register shown Fig. 5(b) correspond to our code in Example 1,
after the integer add has issued. The only differences between
this and the reorder buffer method shown in Fig. 3(b) are the
addition of an “old value” field in the history buffer and a
“destination register” field in the result shift register. The
result shift register now looks like the one shown in Fig. 2.

When an exception condition arrives at the head of the
buffer, the buffer is held, instruction issue is immediately
halted, and there is a wait until pipeline activity completes.
The active buffer entries are then emptied from tail to head,
and the history values are loaded back into their original
registers. The program counter value found in the head of the
history buffer is the precise program counter.

To make main memory precise, when a store entry emerges
from the buffer, it sends a signal that another store can be
committed to memory. Stores can either wait in the issue
register or can be blocked in the memory pipeline, as in the
previous methods.

The extra hardware required by this method is in the form of
a large buffer to contain the history information. Also the
register file must have three read ports since the destination
value as well as the source operands must be read at issue
time. There is a slight problem if the basic implementation has
a bypass of the result bus around the register file. In such a
case, the bypass must also be connected into the history buffer.

VI. FUTURE FILE
The future file method (Fig. 6) is similar to the history

buffer method; however, it uses two separate register files.
One register file reflects the state of the architectural (sequen-
tial) machine. This file will be referred to as the architectural
file. A second register file is updated as soon as instructions
finish and therefore runs ahead of the architectural file (i.e., it
reflects the future with respect to the architectural file). This
future file is the working file used for computation by the
functional units.

Instructions are issued and results are returned to the future
file in any order, just as in the original pipeline model. There
is also a reorder buffer that receives results at the same time
they are written into the future file. When the head pointer
finds a completed instruction (a valid entry), the result
associated with that entry is written in the architectural file.

Example 6: If we consider the code in Example 1 again,
there is a period of time when the architecture file and the
future file contain different entries. With this method, an
instruction may finish out of order, so when the integer add
finishes, the future file contains the new contents of RO. The
architecture file, however, does not, and the new contents of
RO are buffered in the reorder buffer entry corresponding to
the integer add. Between the time the integer add finishes and
the time the floating point add finishes, the two files are
different. Once the floating point finishes and its results are
written into R 4 of both files, RO of the architecture file is
written.

FUTURE SOURCE DATA

TO FUNCTIONAL

UNITS
-1 FILE

CONTROL

SHIFT
REQISTER

I ,
RESULT BUS FROM FUNCTIONAL UNITS

-
Fig. 6. Future file organization.

Just as with the pure reorder buffer method, program
counter values are written into the reorder buffer at issue time.
When the instruction at the head of the reorder buffer has
completed without emor, its result is placed in the architectural
file. If it completes with an error, the register designators
associated with the buffer entries between the head and tail
pointers are used to restore values in the future file from the
architectural file.*

The primary advantage of the future file method is realized
when the architecture implements interrupts via an “ex-
change” where all the registers are automatically saved in
memory and new ones are restored (as is done in CDC and
Cray architectures). In this case, the architectural file can be
stored away immediately; no restoring is necessary as in the
history buffer method. There is also no bypass problem as
with the history buffer method.

VII. PERFORMANCE EVALUATION

To evaluate the effectiveness of our precise interrupt
schemes, we use a CRAY-1s simulation system developed at
the University of Wisconsin [13 3. This trace-driven simulator
is extremely accurate, due to the highly deterministic nature of
the CRAY-lS, and gives the number of clock periods required
to execute a program.

The scalar portion of the CRAY-1s is very similar to the
model architecture described in Section 11-A. Thus, casting the
basic approaches into the CRAY-IS scalar architecture is
straightforward.

For a simulation workload, the first 14 Lawrence Liver-
more Loops [12] were used. Because we are primarily
interested in pipelined implementations of conventional scalar
architectures, the loops were compiled by the Cray Fortran
compiler with the vectorizer turned off.

In the preceding sections, five methods were described that
could be used for guaranteeing precise interrupts. To evaluate
the effect of these methods on system performance, the
methods were partitioned into three groups. The first and
second group, respectively, contain the in-order method and
the simple reorder buffer method. The third group is com-

* The restoration is performed from the architectural file since the future
file is the register file from which all execution takes place.

SMITH AND PLESZKUN: IMPLEMENTTNG INTERRUPTS IN PIPELINED PROCESSORS 569

posed of the reorder buffer with bypasses, the history buffer,
and the future file. This partitioning was performed because
the methods in the third group result in identical system
performance. This is because the future file has a reorder
buffer embedded as part of its implementation, and the history
buffer length constrains performance in the same way as a
reorder buffer: when the buffer fills, issue must stop. All the
simulation results are reported as for the reorder buffer with
bypasses. They apply equally well for the history buffer and
future file methods. The selection of a particular method
depends not only on its effect on system performance but also
the cost of implementation and the ease with which the precise
CPU state can be restored.

For each precise interrupt method, both methods for
handling stores were simulated. For those methods other than
the in-order completion method, the size of the reorder buffer
is a parameter. Sizing the buffer with too few entries degrades
performance since instructions that might issue could block at
the issue register. The blockage occurs because there is no
room for a new entry in the buffer.

Table I shows the relative performance of the in-order,
reorder buffer. and reorder buffer with bypass methods when
the stores are held until the result shift register is empty. The
results in the table indicate the relative performance of these
methods with respect to the CRAY-IS across the first 14
Lawrence Livermore Loops; real CRAY-1s performance is
1.0. A relative performance greater than 1.0 indicates a
degradation in performance. The number of entries in the
reorder buffer vanes from 3 to 10.

The simulation results for in-order completion are constant
because this method does not depend on a buffer that reorders
instructions. For all the methods, there is some performance
degradation. Initially, when the reorder buffer is small, the in-
order completion method produces the least performance
degradation. A small reorder buffer (less than three entries)
limits the number of instructions that can simultaneously be in
some stage of execution. Once the reorder buffer size is
increased beyond three entries, either of the other methods
results in better performance. As expected, the reorder buffer
with bjpasses offers superior performance when compared to
the simple reorder buffer. When the size of the buffer was
increased beyond ten entries, simulation results indicated no
further performance improvements. (Simulations were also
run for buffer sizes of 15, 16,20,25, and 60.) One can expect
at least I2 percent performance degradation when using a
reorder buffer with bypasses and the first method for handling
stores.

Table I1 indicates the relative performance when stores
issue and wait at the same memory pipeline stage as for
memon bank conflicts in the original CRAY-IS. After
issuing. stores wait for their counterpart dummy store to signal
that all previously issued register instructions have finished.
Subsequent loads and stores are blocked from issuing.

As in Table I, the in-order completion results are constant
across all entries. For the simple reorder buffer, the buffer
must have at least five entries before it results in better
performance than in-order completion. The reorder buffer
with bypasses, however, requires only four entries before it is

TABLE I
RELATIVE PERFORMANCE FOR THE FIRST 14 LAWRENCE LIVERMORE
LOOPS, WITH STORES BLOCKED UNTIL THE RESULTS PIPELINE IS EMPTY

Number of In-order Reorder Reorder with
Entries Completion Buffer Bypasses

3 1.2322 1.3315 1.3069
4 1.2322 1.2183 1.1743
5 1.2322 1.1954 1.1439
8 1.2322 1.1808 1.1208

10 1.2332 1.1808 1.1208

TABLE II

LOOPS, WITH STORES HELD IN THE MEMORY PIPELINE AFTER ISSUE
RELATIVE PERFORMANCE FOR THE FIRST 14 LAWRENCE LIVERMORE

Number of In-order Reorder Reorder with
Entries Completion Buffer Bypasses

3 1.1560 1.3058 1.2797
4 1.1560 1.1724 1.1152
5 1.1560 1.1348 1.0539
8 1.1560 1.1167 1.0279

10 1.1560 1.1167 1.0279

performing more effectively than with in-order completion.
Just as in Table I , having more than eight entries in the reorder
buffer does not result in improved performance. Comparing
Tables I and 11, the second method for handling stores offers a
clear improvement over the first method. If the second method
is used with an eight-entry reorder buffer that has bypasses, a
performance degradation of only 3 percent is experienced.

Clearly there is a tradeoff between performance degradation
and the cost of implementing a method. For very little cost, the
in-order completion method can be combined with the first
method of handling stores. Selecting this “cheap” approach
results in a 23 percent performance degradation. If this
degradation is too great, either the second store method must
be used with in-order completion or one of the more complex
methods must be used. If the reorder buffer method is used,
one should use a buffer with at least three or four entries.

It is important to note that in the performance study just
described, some indirect causes for performance degradation
were not considered. These include longer control paths that
would tend to lengthen the clock period. Also, additional logic
for supporting precise interrupts implies greater board area
which implies more wiring delays which could also lengthen
the clock period.

VIII. EXTENSIONS
In previous sections, we described methods that could be

used to guarantee precise interrupts with respect to the
registers, the main memory, and the program counter of our
simple architectural model. In the following sections, we
extend the previous methods to handle additional state
information, virtual memory, cache memory, linear pipelines,
and vectors.

A . Handling Other State Values
Most architectures have more state information than we

have assumed in the model architecture. For example, a

570 IEEE TRANSACTIONS ON COMPUTERS, VOL. 31. NO. 5 , 51.41 1-

process may have state registers that point to page and segment
tables, indicate interrupt mask conditions, etc. This additional
state information can be precisely maintained with a method
similar to that used for stores to memory. If using a reorder
buffer, an instruction that changes a state register reserves a
reorder buffer entry and proceeds to the part of the machine
where the state change will be made. The instruction then
waits there until receiving a signal to proceed from the reorder
buffer. When its entry arrives at the head of the buffer and is
removed, then the signal is sent to cause the state change.

In architectures that use condition codes, the condition
codes are state information. Although the problem condition
codes present to conditional branches is not totally unrelated to
the topic here, solutions to the branch problem are not the
primary topic of this paper. Hence, it is assumed that the
conditional branch problem has been solved in some way,
e.g., [3]. If a reorder buffer is being used, condition codes can
be placed in the reorder buffer. That is, just as for data, the
reorder buffer is made sufficiently wide to hold the condition
codes. The condition code entry is then updated when the
condition codes associated with the execution of an instruction
are computed. Just as with data in the reorder buffer, a
condition code entry is not used to change processor state until
all previous instructions have completed without error (how-
ever, condition codes can be bypassed to the instruction fetch
unit to speed up conditional branches).

Extension of the history buffer and future file methods to
handle condition codes is very similar to that of the reorder
buffer. For the history buffer, the condition code settings at
the time of instruction issue must be saved in the history
buffer. The saved condition codes can then be used to restore
the processor state when an exception is detected.

B. Virtual Memory
Virtual memory is a very important reason for supporting

precise interrupts; it must be possible to recover from page
faults. First, the address translation section of the pipeline
should be designed so that all the load/store instructions pass
through it in order. In-order memory operations have been
assumed throughout this paper. Depending on the method
being used, the load/store instructions reserve time slots in the
result pipeline and/or reorder buffer that are read no earlier
than the time at which the instructions have been checked for
exception conditions (especially page faults). For stores, these
entries are not used for data; just for exception reporting and/
or holding a program counter value.

If there is an addressing fault, then the instruction is
cancelled in the addressing pipeline, and all subsequent load/
store instructions are cancelled as they pass through the
addressing pipeline. This guarantees that no additional loads
or stores modify the process state. The mechanisms described
in the earlier sections for assuring preciseness with respect to
registers guarantee that nonload/store instructions following
the faulting load/store will not modify the process state; hence,
the interrupt is precise.

For example, if the reorder buffer method is being used, a
page fault would be sent to the reorder buffer when it is
detected. The tag assigned to the corresponding load/store

instruction guides it to the correct reorder buffer entry. l k
reorder buffer entry is removed from the buffer when it
reaches the head. The exception condition in the entry causes
all further entries of the reorder buffer to be discarded so that
the process state is modified no further (no more registers are
written). The program counter found in the reorder buffer
entry is precise with respect to the fault.

C. Cache Memory
Thus far, we have assumed systems that do not use a cache

memory. Inclusion of a cache in the memory hierarchy affects
the implementation of precise interrupts. As we have seen, an
important part of all the methods is that stores are held until all
previous instructions are known to be exception-free. With a
cache, stores may be made into the cache earlier, and for
performance reasons should be. The actual updating of main
memory, however, is still subject to the same constraints as
before.

I) Store-Through Caches: With a store-through cache, the
cache can be updated immediately, while the store-through to
main memory is handled as in previous sections. That is, all
previous instructions must first be known to be exception-free.
Load instructions are free to use the cached copy, however,
regardless of whether the store-through has taken place. This
means that main memory is always in a precise state, but the
cache contents may “run ahead” of the precise state. If an
interrupt should occur while the cache is potentially in such a
state, then the cache should be flushed. This guarantees that
prematurely updated cache locations will not be used. How-
ever, this can lead to performance problems, especially for
larger caches.

An alternative is to treat the cache in a way similar to the
register files. One could, for example, keep a history buffer
for the cache. Just as with registers, a cache location would
have to be read just prior to writing it with a new value. This
does not necessarily mean a performance penalty because the
cache must be checked for a hit prior to the write cycle. In
many high-performance cache organizations, the read cycle
for the history data could be done in parallel with the hit
check. Each store instruction makes a buffer entry indicating
the cache location it has written. The buffer entries can be used
to restore the state of the cache. As instructions complete
without exceptions, the buffer entries are discarded. The
future file can be extended in a similar way.

2) Write-Back Cache: A write-back cache is perhaps the
cache type most compatible with implementing precise inter-
rupts. This is because stores in a write-back cache are not
made directly to memory; there is a built-in delay between
updating the cache and updating main memory. Before an
actual write-back operation can be performed, however, the
reorder buffer should be emptied or should be checked for data
belonging to the line being written back. If such data should be
found, the write-back must wait until the data have been stored
in the cache. If a history buffer is used, either a cache line
must be saved in the history buffer, or the write-back must
wait until the associated instruction has made its way to the end
of the buffer. Notice that in any case, the write-back w d l
sometimes have to wait until a precise state is reached.

SMITH AND PLESZKUN: IMPLEMENTING INTERRUPTS IN PIPELINED PROCESSORS 57 1

D. Linear Pipeline Structures
An alternative to the parallel functional unit organizations

we have been discussing is a linear pipeline organization.
Refer to Fig. 7. Linear pipelines provide a more natural
implementation of register-storage architectures like the IBM
370. Here, the same instruction can access a memory operand
and perform some function on it. Hence, these linear pipelines
have an instruction fetchldecode phase, an operand fetch
phase, and an execution phase, any of which may be composed
of one or several pipeline stages.

In general, reordering instructions after execution is not as
significant an issue in such organizations because it is natural
for instructions to stay in order as they pass through the pipe.
Even if they finish early in the pipe, they proceed to the end
where exceptions are checked before modifying the process
state. Hence, the pipeline itself acts as a sort of reorder buffer.

The role of the result shift register is played by the control
information that flows down the pipeline alongside the data
path. Program counter values for preciseness may also flow
down the pipeline so that they are available should an
exception arise.

Linear pipelines often have several bypass paths connecting
intermediate pipeline stages. A complete set of bypasses is
typically not used, rather there is some critical subset selected
to maximize performance while keeping control complexity
manageable. Hence, using the terminology of this paper,
linear pipelines typically achieve precise interrupts by using a
reorder buffer method with bypasses.

E. Vectors
Implementing precise interrupts in a pipelined vector

architecture is more difficult than for a scalar architecture. In
this section, we consider extensions of our previous methods
to vectors.

When considering precise interrupts with respect to vector
instructions, preciseness must be carefully defined. Unlike the
scalar instructions described thus far, vector instructions do
not produce a single result and change the system state as they
Complete. Rather, they produce a series of results that change
the system state over the course of many clock periods. The
sequential architecture model, as applied to vectors, requires
that one vector instruction completes its last result before the
next begins producing results. Furthermore, requirement 3)
for precise interrupts implies that a vector instruction must
either complete in the presence of an exception condition, or it
must be made to look as if it has not started. This implies that
some buffering of vector results may be required in a pipelined
implementation regardless of the method used for implement-
ing precise interrupts.

There are two primary classes of vector architectures: those
with vector registers, and those with memory-to-memory
vector operations. For vector register architectures, we extend
our earlier methods for maintaining scalar registers precisely.
For memory-to-memory architectures, the second method for
handling scalar stores to memory is extended.

I) Register Architectures: In-order completion (our first
method) as extended to vectors implies that one instruction is
finished producing results before the next begins. This implies

WRITE TO MEMORY

RESULT BUS

Fig. 7. Example of a linear pipeline implementation.

no overlap of vectors with scalars, and no vector chaining.
This can be implemented in instruction issue logic by blocking
issue as long as a vector instruction is in progress.

There still remains the problem of interrupts that occur in
the middle of the execution of a vector instruction. If the
interrupt is an external interrupt, it is simply a matter of
waiting until the instruction completes. For many types of
program interrupts (e.g., page faults), however, it may not be
possible to allow the instruction to complete, so it must be
backed up. A simple solution is to buffer results and write
them into a vector register after all results are complete, but
this leads to performance problems. A vector instruction using
the results must wait for the copy from the buffer to the
register to complete. A better method is to have two copies of
each vector register. A 1-bit pointer for each register indicates
the “current” copy. When a vector operation is initiated,
vector results are placed in the “new” (noncurrent) copy.
When the vector instruction is complete, then the “current”
pointer can be changed to the new copy. If there is a fault, then
the pointer is not updated, and the register copy saved from
before the vector instruction started remains the current copy.

A reorder buffer method can be used to permit limited
overlap of scalar and vector operation. Due to the length of
many vector operations, however, the buffer would have to be
very long, or relatively little scalar operation would be
possible. Also, unless bypasses are used, all the scalar
instructions would have to be independent of each other. This
would limit the usefulness of this method even more. For
vectors, complete buffering of results would still be needed,
but without bypasses, chaining would not be possible.

A practical method based on reorder buffers is to save
scalars in the buffer as before, but save vector register
pointers, rather than the vectors themselves, in the buffer.
There would, again, be two copies of each vector register: a
current copy and a new copy. A pointer to a specific vector
register could appear in the buffer only once. This pointer
would indicate not only a vector register, but which of the pair
contains the new results. As the pointer is removed from the
buffer, the “current” pointer for the vector would be updated.
If a fault is detected, the pointer is not updated, so the old copy
of the vector register is kept. This method overlaps dependent
scalar operations with vectors, and chaining can be imple-
mented by bypassing from the new copy pointed to by vector
pointer in the buffer, rather than the current copy.

We now give an example of the method just described.

572 IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 5 . MAY 1988

Consider the following two instructions: V1 = V2 + V3; V3
= V1 x V4. Assume at the beginning of the sequence, the
current pointer for V1 is 0. After the first vector instruction is
issued, the vector designator V1 and 1 (the complement of its
current pointer) are placed in the reorder buffer, and vector
results are placed into copy 1 of V1 as they are generated. The
previous values in copy 0 of V1 are retained. The second
instruction can begin and chain to the first; here copy 1 of V1
is used for the chain. The chain is set up using the pointer
found in the reorder buffer. After the first instruction is known
to be complete without errors, the current pointer for V1 is
updated to 1. Else if there is an error, it is kept at 0. Note that
copy 0 of V1 can only be reused after the first instruction has
completed.

With the history file method, the size of buffers is again a
major problem; the file would be written as vector results are
produced; vector chaining would imply multiple results being
generated simultaneously so that the file would have to be able
to support multiple simultaneous writes. Similarly, scalar
results could be produced simultaneously with vector results
so that they would probably need their own history file with
some linkage between the two. A better method is to once
again use pairs of vector registers. When a vector instruction is
issued, it makes an entry in the history file indicating the
vector register copy to be used as a backup. If a backup is
required, the “current” pointer is adjusted to achieve the
backup. As with the other methods, using pairs of vector
registers requires that only one instruction that uses a specific
vector register can be active in the system at any given time;
one copy of the pair is used for new results, the other is used
for saving old results.

By this time it should be clear that extending the future file
method for vector registers can also easily be done with pairs
of vector registers in a manner very similar to the history file
method just described.

To summarize, the various methods for implementing
precise interrupts can be extended for vector registers, but the
cost is a doubling of the number of hardware registers plus
some additional control hardware to keep track of the
“current” pointers.

2) Memory-to-Memory Vectors: In the case of a memory-
to-memory vector architecture, it may be necessary to buffer
results in the CPU until all the operations associated with a
vector instruction are completed without exception before
allowing memory stores to begin. This is done in the most
straightforward way by extending store method 2 described
earlier, but it may require a much larger store buffer. This is
the method used in the CDC CYBER 180/990 where vectors
may contain up to 512 elements. In some architectures which
used longer vector lengths, the size of this buffer may be
prohibitive, however.

IX . ARCHITECTURAL SOLUTIONS
Thus far, we have assumed a sequential architectural model

for execution, and have attempted to work around it for
pipelined implementations. However, the root cause of the
problem is the architectural model. Hence, it seems reasonable
to solve the problem at the architectural level. That is, one

might be able to define an architectural model where an
interrupted state assumes an underlying parallel implementa-
tion. In this section, we briefly discuss a few such architectural
solutions.

One architectural solution is to “freeze” the pipeline when
an interrupt is detected, and simply “dump” the state of all the
registers in the pipeline to memory as part of a saved context.
Then, to restart the process, all the pipeline registers are
restored, and the pipeline is started. Although this leads to
processes that may be restarted, this approach has some
disadvantages. One disadvantage is that freezing a pipe is
difficult in practice due to fan-out problems. The fan-out
problem comes from the need to control overwriting every
pipeline stage. If writing all the stages is conditional on a
single signal, for example a signal indicating no interrupt
conditions, then the “no interrupt” condition must be fanned
out to all the flip flops in all the registers in the pipeline. The
large fan-out required for such a signal can lengthen the
critical path of the pipeline control. Because of the tremendous
fan-out for larger pipelined systems, this method may only be
useful for the very smallest pipelined systems [lo]. Such an
approach also means that implementation details, for example
the number of pipeline stages, become part of the architecture.
This could lead to compatibility problems.

A variation of the above method, directed at vectors, is to
define the vector architecture so that at the time of the
interrupt, the intermediate state of vector instructions is saved.
This information is primarily in the form of length counters. If
done properly, a vector instruction is stopped in &he middle,
and restarting upon returning from the interrupt is accom-
plished by reissuing the stopped vector instruction.

Another architectural solution to the precise interrupt
problem is to save a series of program counter values, ending
with a final program counter value that is much like the one in
the sequential model. Each program counter points to an
instruction, prior to the final one, that has not been executed.
To restart a process, the instructions pointed to by the series
program counters must first be executed before the machine is
in a precise state with respect to the final one.

Example 7: Again, we consider the code shown in Example
1 and the case where the floating point add overflows after the
loop increment in statement 7 has completed. Using an
architecture as defined above, in the event of floating point
overtlow in statement 6, the program counter pointing to
statement 6 could be saved along with the program counter
pointing to statement 8. A program counter for statement 7 is
not needed because it has successfully completed. The
overflow handler could “fix up” the overflow, possibly by
rescaling, and then return to the process. Then using both
saved program counters, the processor would execute state-
ment 6 before resuming regular execution with statement 8.

Finally, one could save a sequence of instructions that must
be executed before the saved program counter is precise. This
has the advantage of fetching the instruction sequence as part
of the context being restored. The program counter method
requires first fetching the program counters as part of the
restored context, then fetching the instructions themselves. In
the example just given, the floating point add instruction itself

SMITH AND PLESZKUN: IMPLEMENTING INTERRUPTS IN PIPELINED PROCESSORS 573

would be saved, not its program counter. Then, as part of the
return from the interrupt the processor would execute the
floating point add before fetching instructions beginning with
statement 8.

X. SUMMARY AND CONCLUSIONS
Five methods for implementing precise interrupts in the

pipelined processors were described. These methods were
then evaluated through simulations of a CMY-1s imple-
mented with these methods.

The first method forces in-order instruction completion, and
our simulation study indicates a performance degradation of
about 23 percent when store instructions are held in the
instruction issue register and about 16 percent when stores are
held in the memory pipeline. Performance is lost primarily
because of added instruction issue blockages not related to data
dependencies. The significant performance difference due to
the way stores are handled is noteworthy.

To improve the performance provided by the first method, a
reorder buffer is proposed to permit instructions to complete
out of order, but to reorder the results going into the register
file. For a reorder buffer of size eight, this method results in
performance loss of 18 percent or 12 percent, depending on
the way stores to memory are handled. Here performance is
lost because results cannot be used because they are being held
in the reorder buffer prior to result register update.

The third method studied adds bypass paths to the reorder
buffer permitting data to be used prior to the result register
update. With this method, performance loss is cut to 12
percent or 3 percent, again depending on the handling of
stores. These final results indicate that performance losses can
be significantly reduced, but only if stores are blocked in the
memory pipeline to wait for previous instructions to complete.

The final two methods, the history buffer and future file
methods, permit alternative implementations that give the
same performance as with the reorder buffer using bypasses.
The implementation differences among the final three methods
are relatively minor, and any final choice should be based on
technology related issues affecting implementation cost and
complexity.

There are many other interesting issues related to imple-
menting precise interrupts. These include the handling of
virtual memory faults, caches, vectors, and alternative pipe-
line structures. Although they were briefly touched on in this
paper, they deserve further research.

Finally, the basic concepts of process interruptability and
restartability should be studied extensively. We feel that
methods of saving and restoring state which do not rely on a
serial model of execution are essential to the development of
parallel general purpose systems.

ACKNOWLEDGMENT

The authors would like to thank R. G. Hintz and J. B.
Pearson of the Control Data Corporation.

REFERENCES
Amdahl Corp., Amdahl470V/8 Computing System Machine Refer-
ence Manual, pub. G1014.0-03A, Oct. 1981.
-, “580 Technical Introduction,” 1980.
D. W. Anderson, F. J. Sparacio, and F. M. Tomasulo, “The IBM
system/360 Model 91 : Machine philosophy and instruction-handling, ”
IBM J. Res. Develop., vol. 11, pp. 8-24, Jan. 1967.
P. Bonseigneur, “Description of the 7600 computer system,” Com-
puter Group News, pp. 11-15, May 1969.
W. Bucholz, Ed., Planning a Computer System. New York:
McGraw-Hill, 1962.
Control Data Corp., CDC Cyber 180 Computer System Model 990
Hardware Reference Manual, pub. 60462090, 1984.
-, CDC CYBER 200 Model 205 Computer System Hardware
Reference Manual, Arden Hills, MN, 1981.
Cray Research, Inc., CRA Y-1 Computer Systems, Hardware Refer-
ence Manual, Chippewa Falls, WI, 1979.
Floating Point Systems, FPS-100 Programmers Reference Manual,
Beaverton, OR, 1980.
J. Hennessy et al., “Hardware/software tradeoffs for increased
performance,” in Proc. Symp. Architectural Support Programming
Languages Oper. Syst., Apr. 1982, pp. 2-11.
R. G. Hintz and D. P. Tate, “Control data STAR-100 processor
design,” in Proc. COMPCON 72, IEEE Comput. Soc. Conf.
Proc., Sept. 1972, pp. 1-4.
F. H. McMahon, “FORTRAN CPU performance analysis,” Lawrence
Livermore Labs., 1972.
N. Pang and J. E. Smith, “CRAY-I simulation tools,” Tech. Rep.
ECE-83-11, Univ. Wisconsin-Madison, Dec. 1983.
R. M. Russell, “The CRAY-1 computer system,” Commun. ACM,
vol. 21, pp. 63-72, Jan. 1978.
D. Stevenson, “A proposed standard for binary floating point
arithmetic,” Compufer, vol. 14, pp. 51-62, Mar. 1981.
J. E. Thornton, Design of a Computer-The Control Data 6600.
Glenview, IL: Scott, Foreman, 1970.
W. P. Ward, “Minicomputer blasts through 4 million instructions a
second,” Electron., pp. 155-159, Jan. 13, 1982.

design of the CYBER
Wisconsin, working
design of a large scal

James E. Smith (S’74-M’76) received the B.S.,
M.S., and Ph.D. degrees from the University of
Illinois in 1972, 1974, and 1976, respectively.

Since 1976, he has been on the faculty of the
University of Wisconsin, Madison where he is an
Associate Professor in the Department of Electrical
and Computer Engineering. He spent the summer of
1978 with the IBM Thomas J. Watson Research
Center, and from September 1979 until July 1981 he
worked for the Control Data Corporation, Arden
Hills, MN. While at CDC he participated in the

180/990. He is currently on leave from the University of
for the Astronautics Corporation of America on the
e scientific computer system.

Andrew R. Pleszkun (S’82-M’82) received the
B.S. degree in electrical engineering from the
Illinois Institute of Technology, Chicago, in 1977
and the M.S. and Ph.D. degrees in electrical
engineering from the University of Illinois, Urbana,
in 1979 and 1982, respectively.

He is an Assistant Professor in Computer Sci-
ences Department at the University of Wisconsin,
Madison. His research interests include computer
architecture, with an emphasis on pipelined sys-
tems, and the impact of VLSI on computer architec-
ture.

