User Tools

Site Tools


readings

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
readings [2014/04/16 14:12]
rachata
readings [2014/05/20 04:22]
rachata
Line 287: Line 287:
   * P&H, Chapter 5.8   * P&H, Chapter 5.8
  
 +===== Lecture 30 (4/18 Fri.) =====
 +** Required: **
 +  * {{LCP.pdf|Pekhimenko et al., “Linearly Compressed Pages: A Main Memory Compression Framework with Low Complexity and Low Latency,” MICRO 2013.}}
 +  * {{bdi-compression_pact12.pdf|Pekhimenko et al., "​Base-Delta-Immediate Compression:​ Practical Data Compression for On-Chip Caches,"​ PACT 2012.}}
 +  * {{mise-predictable_memory_performance-hpca13.pdf|Subramanian et al., “MISE: Providing Performance Predictability and Improving Fairness in Shared Main Memory Systems,” HPCA 2013.}} ​
 +
 +===== Lecture 31 (4/28 Mon.) =====
 +** Required: **
 +  * {{amdahl_-_1967_-_validity_of_the_single_processor_approach_to_achieving_large_scale_computing_capabilities.pdf|Amdahl,​ G. M. (1967). Validity of the single processor approach to achieving large scale computing capabilities. Proceedings of the April 18-20, 1967, spring joint computer conference.}}
 +  * {{lamport_-_1979_-_how_to_make_a_multiprocessor_computer_that_correctly_executes_multiprocess_programs.pdf|Lamport,​ L. (1979). How to Make a Multiprocessor Computer That Correctly Executes Multiprocess Programs.}}
 +  * (CMU WebISO) [[http://​www.ece.cmu.edu/​~ece447/​cmu_only/​culler-mesi.pdf|C&​S,​ Chapters 5.1 & 5.3]]
 +  * P&H, Chapter 5.8
 +** Recommended:​ **
 +  * (CMU WebISO) [[http://​www.ece.cmu.edu/​~ece447/​cmu_only/​hill_309_314.pdf|Hill,​ Jouppi, Sohi. "​Multiprocessors and Multicomputers,"​ pp. 551-560 in Readings in Computer Architecture.]]
 +  * (CMU WebISO) [[http://​www.ece.cmu.edu/​~ece447/​cmu_only/​hill_551_560.pdf|Hill,​ Jouppi, Sohi. "​Dataflow and Multithreading,"​ pp. 309-314 in Readings in Computer Architecture.]]
 +  * {{01447203.pdf|Flynn,​ M. J. (1966). Very high-speed computing systems. Proceedings of the IEEE.}}
 +  * {{papamarcos_patel_-_1984_-_a_low-overhead_coherence_solution_for_multiprocessors_with_private_cache_memories.pdf|Papamarcos,​ M. S., & Patel, J. H. (1984). A low-overhead coherence solution for multiprocessors with private cache memories. Proceedings of the 11th annual international symposium on Computer architecture.}}
 +** Mentioned during lecture: **
 +  * {{p168-patel.pdf|Patel,​ J. H. (1979). Processor-memory interconnections for multiprocessors. Proceedings of the 6th annual symposium on Computer architecture.}}
 +  * {{p196-moscibroda.pdf|Moscibroda,​ T., & Mutlu, O. (2009). A case for bufferless routing in on-chip networks. Proceedings of the 36th annual international symposium on Computer architecture.}}
 +  * {{p27-gottlieb.pdf|Gottlieb,​ A., Grishman, R., Kruskal, C. P., McAuliffe, K. P., Rudolph, L., & Snir, M. (1982). The NYU Ultracomputer -- designing a MIMD, shared-memory parallel machine (Extended Abstract). Proceedings of the 9th annual symposium on Computer Architecture.}}
 +  * {{p22-seitz.pdf|Seitz,​ C. L. (1985). The cosmic cube. Commun. ACM.}}
 +  * {{p278-glass.pdf|Glass,​ C. J., & Ni, L. M. (1992). The turn model for adaptive routing. Proceedings of the 19th annual international symposium on Computer architecture.}}
 +
 +===== Lecture 32 (4/30 Wed.) =====
 +** Required: **
 +  * None
 +
 +** Mentioned during lecture: **
 +  * {{amdahl_-_1967_-_validity_of_the_single_processor_approach_to_achieving_large_scale_computing_capabilities.pdf|Amdahl,​ G. M. (1967). Validity of the single processor approach to achieving large scale computing capabilities. Proceedings of the April 18-20, 1967, spring joint computer conference.}}
 +  * {{grochowski_et_al._-_2004_-_best_of_both_latency_and_throughput.pdf|Grochowski,​ E., Ronen, R., Shen, J., & Wang, H. (2004). Best of Both Latency and Throughput. Proceedings of the IEEE International Conference on Computer Design (pp. 236–243).}}
 +  * {{tendler_et_al._-_2002_-_power4_system_microarchitecture.pdf|Tendler,​ J. M., Dodson, J. S., Fields, J. S., Le, H., & Sinharoy, B. (2002). POWER4 system microarchitecture. IBM J. Res. Dev.}}
 +  * {{01289290.pdf|Kalla,​ R., Sinharoy, B., & Tendler, J. M. (2004). IBM Power5 Chip: A Dual-Core Multithreaded Processor. IEEE Micro.}}
 +  * {{kongetira_aingaran_olukotun_-_2005_-_niagara_a_32-way_multithreaded_sparc_processor.pdf|Kongetira,​ P., Aingaran, K., & Olukotun, K. (2005). Niagara: A 32-Way Multithreaded Sparc Processor. IEEE Micro.}}
 +  * {{p253-suleman.pdf|Suleman,​ M. A., Mutlu, O., Qureshi, M. K., & Patt, Y. N. (2009). Accelerating critical section execution with asymmetric multi-core architectures. Proceedings of the 14th international conference on Architectural support for programming languages and operating systems.}}
 +  * {{p441-suleman.pdf|Suleman,​ M. A., Mutlu, O., Joao, J. A., Khubaib, & Patt, Y. N. (2010). Data marshaling for multi-core architectures. Proceedings of the 37th annual international symposium on Computer architecture.}}
 +  * {{p223-joao.pdf|Joao,​ J. A., Suleman, M. A., Mutlu, O., & Patt, Y. N. (2012). Bottleneck identification and scheduling in multithreaded applications. Proceedings of the seventeenth international conference on Architectural Support for Programming Languages and Operating Systems.}}
 +
 +===== Lecture 33 (5/2 Fri.) =====
 +** Required: **
 +  * None
 +
 +** Mentioned during lecture: **
 +  * {{raidr-isca12.pdf|Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.}}
 +  * {{2012_isca_salp.pdf|Kim et al., “A Case for Exploiting Subarray-Level Parallelism in DRAM,” ISCA 2012.}}
 +  * {{TLDRAM-Lee.pdf|Lee et al., “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,​” HPCA 2013.}}
 +  * {{p60-liu.pdf|Liu et al., “An Experimental Study of Data Retention Behavior in Modern DRAM Devices,” ISCA 2013.}}
 +  * {{rowclone_micro13.pdf|Seshadri et al., “RowClone:​ Fast and Efficient In-DRAM Copy and Initialization of Bulk Data,” MICRO 2013.}}
 +  * {{LCP.pdf|Pekhimenko et al., “Linearly Compressed Pages: A Main Memory Compression Framework,​” MICRO 2013.}}
 +  * {{|Chang et al., “Improving DRAM Performance by Parallelizing Refreshes with Accesses,​” HPCA 2014.}}
 +  * {{error-mitigation-for-intermittent-dram-failures_sigmetrics14.pdf|Khan et al., “The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental Study,” SIGMETRICS 2014.}}
 +  * {{luo_dsn14.pdf|Luo et al., “Characterizing Application Memory Error Vulnerability to Optimize Data Center Cost,” DSN 2014.}}
 +  * Kim et al., “Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors,” ISCA 2014.
 +  * {{meza_cal12.pdf|Meza et al., “Enabling Efficient and Scalable Hybrid Memories,​” IEEE Comp. Arch. Letters 2012.}}
 +  * {{rowbuffer-aware-caching_iccd12.pdf|Yoon et al., “Row Buffer Locality Aware Caching Policies for Hybrid Memories,​” ICCD 2012.}}
 +  * {{sttram_ispass13.pdf|Kultursay ​ et al., “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,​” ISPASS 2013. }}
 +  * {{meza_weed13.pdf|Meza ​ et al., “A Case for Efficient Hardware-Software Cooperative Management of Storage and Memory,” WEED 2013.}}
 +  * {{ISCA09.pdf|Lee ​ et al. “Architecting Phase Change Memory as a Scalable DRAM Alternative,​” ISCA 2009.}}
readings.txt · Last modified: 2015/04/13 19:31 by kevincha