User Tools

Site Tools


buzzword

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
buzzword [2015/01/14 19:45]
rachata
buzzword [2015/02/04 19:23]
rachata
Line 104: Line 104:
   * What are not a part of the ISA? (what goes inside: uArch techniques)   * What are not a part of the ISA? (what goes inside: uArch techniques)
     * Things that are not suppose to be visible to the programmer/​software but typically make the processor faster and/or consumes less power and/or less complex     * Things that are not suppose to be visible to the programmer/​software but typically make the processor faster and/or consumes less power and/or less complex
 +
 +===== Lecture 3 (1/17 Fri.) =====
 +
 +   * Microarchitecture
 +   * Three major tradeoffs of computer architecture
 +   * Macro-architecture
 +   * LC-3b ISA
 +   * Unused instructions
 +   * Bit steering
 +   * Instruction processing style
 +   * 0,1,2,3 address machines
 +   * Stack machine
 +   * Accumulator machine
 +   * 2-operand machine
 +   * 3-operand machine
 +   * Tradeoffs between 0,1,2,3 address machines
 +   * Postfix notation
 +   * Instructions/​Opcode/​Operade specifiers (i.e. addressing modes)
 +   * Simply vs. complex data type (and their tradeoffs)
 +   * Semantic gap and level
 +   * Translation layer
 +   * Addressability
 +   * Byte/bit addressable machines
 +   * Virtual memory
 +   * Big/little endian
 +   * Benefits of having registers (data locality)
 +   * Programmer visible (Architectural) state
 +   * Programmers can access this directly
 +   * What are the benefits?
 +   * Microarchitectural state
 +   * Programmers cannot access this directly
 +   * Evolution of registers (from accumulators to registers)
 +   * Different types of instructions
 +   * Control instructions
 +   * Data instructions
 +   * Operation instructions
 +   * Addressing modes
 +   * Tradeoffs (complexity,​ flexibility,​ etc.)
 +   * Orthogonal ISA
 +   * Addressing modes that are orthogonal to instruction types
 +   * I/O devices
 +   * Vectored vs. non-vectored interrupts
 +   * Complex vs. simple instructions
 +   * Tradeoffs
 +   * RISC vs. CISC
 +   * Tradeoff
 +   * Backward compatibility
 +   * Performance
 +   * Optimization opportunity
 +   * Translation
 +
 +===== Lecture 4 (1/21 Wed.) =====
 +
 +  * Fixed vs. variable length instruction
 +  * Huffman encoding
 +  * Uniform vs. non-uniform decode
 +  * Registers
 +    * Tradeoffs between number of registers
 +  * Alignments
 +    * How does MIPS load words across alignment the boundary
 +
 +===== Lecture 5 (1/26 Mon.) =====
 +
 +  * Tradeoffs in ISA: Instruction length
 +    * Uniform vs. non-uniform
 +  * Design point/Use cases
 +    * What dictates the design point?
 +  * Architectural states
 +  * uArch
 +    * How to implement the ISA in the uArch
 +  * Different stages in the uArch
 +  * Clock cycles
 +  * Multi-cycle machine
 +  * Datapath and control logic
 +    * Control signals
 +  * Execution time of instructions/​program
 +    * Metrics and what do they means
 +  * Instruction processing
 +    * Fetch
 +    * Decode
 +    * Execute
 +    * Memory fetch
 +    * Writeback
 +  * Encoding and semantics
 +  * Different types of instructions (I-type, R-type, etc.)
 +  * Control flow instructions
 +  * Non-control flow instructions
 +  * Delayed slot/​Delayed branch
 +  * Single cycle control logic
 +  * Lockstep
 +  * Critical path analysis
 +    * Critical path of a single cycle processor
 +  * What is in the control signals?
 +    * Combinational logic & Sequential logic
 +  * Control store
 +  * Tradeoffs of a single cycle uarch
 +  * Design principles
 +    * Common case design
 +    * Critical path design
 +    * Balanced designs
 +    * Dynamic power/​Static power
 +      * Increases in power due to frequency
 +
 +===== Lecture 6 (1/28 Mon.) =====
 +
 +  * Design principles
 +    * Common case design
 +    * Critical path design
 +    * Balanced designs
 +  * Multi cycle design
 +  * Microcoded/​Microprogrammed machines
 +    * States
 +    * Translation from one state to another
 +    * Microinstructions
 +    * Microsequencing
 +    * Control store - Product control signals
 +    * Microsequencer ​  
 +    * Control signal
 +      * What do they have to control? ​   ​
 +  * Instruction processing cycle
 +  * Latch signals
 +  * State machine
 +  * State variables
 +  * Condition code
 +  * Steering bits
 +  * Branch enable logic
 +  * Difference between gating and loading? (write enable vs. driving the bus)
 +  * Memory mapped I/O
 +  * Hardwired logic
 +    * What control signals come from hardwired logic?
 +  * Variable latency memory
 +  * Handling interrupts
 +  * Difference betwen interrupts and exceptions
 +  * Emulator (i.e. uCode allots minimal datapath to emulate the ISA)
 +  * Updating machine behavior
 +  * Horizontal microcode
 +  * Vertical microcode
 +  * Primitives
 +  ​
 +===== Lecture 7 (1/30 Fri.) =====
 +
 +  * Emulator (i.e. uCode allots minimal datapath to emulate the ISA)
 +  * Updating machine behavior
 +  * Horizontal microcode
 +  * Vertical microcode
 +  * Primitives
 +  * nanocode and millicode
 +    * what are the differences between nano/​milli/​microcode
 +  * microprogrammed vs. hardwire control
 +  * Pipelining
 +  * Limitations of the multi-programmed design
 +    * Idle resources
 +  * Throughput of a pipelined design
 +    * What dictacts the throughput of a pipelined design?
 +  * Latency of the pipelined design
 +  * Dependency
 +  * Overhead of pipelining
 +    * Latch cost?
 +  * Data forwarding/​bypassing
 +  * What are the ideal pipeline?
 +  * External fragmentation
 +  * Issues in pipeline designs
 +    * Stalling
 +      * Dependency (Hazard)
 +        * Flow dependence
 +        * Output dependence
 +        * Anti dependence
 +        * How to handle them?
 +    * Resource contention
 +    * Keeping the pipeline full
 +    * Handling exception/​interrupts
 +    * Pipeline flush
 +    * Speculation
 +  ​
 +===== Lecture 8 (2/2 Mon.) =====  ​
 +
 +  * Interlocking
 +  * Multipath execution
 +  * Fine grain multithreading
 +  * No-op (Bubbles in the pipeline)
 +  * Valid bits in the instructions
 +  * Branch prediction
 +  * Different types of data dependence
 +  * Pipeline stalls
 +    * bubbles
 +    * How to handle stalls
 +    * Stall conditions
 +    * Stall signals
 +    * Dependences
 +      * Distant between dependences
 +    * Data forwarding/​bypassing
 +    * Maintaining the correct dataflow
 +  * Different ways to design data forwarding path/logic
 +  * Different techniques to handle interlockings
 +    * SW based
 +    * HW based
 +  * Profiling
 +    * Static profiling
 +    * Helps from the software (compiler)
 +      * Superblock optimization
 +      * Analyzing basic blocks
 +  * How to deal with branches?
 +    * Branch prediction
 +    * Delayed branching (branch delay slot)
 +    * Forward control flow/​backward control flow
 +    * Branch prediction accuracy
 +  * Profile guided code positioning
 +    * Based on the profile info. position the code based on it
 +    * Try to make the next sequential instruction be the next inst. to be executed
 +  * Predicate combining (combine predicate for a branch instruction)
 +  * Predicated execution (control dependence becomes data dependence)
 +  ​
 +    ​
 +===== Lecture 9 (2/4 Wed.) =====  ​
 +    ​
 +  * Predicate combining (combine predicate for a branch instruction)
 +  * Predicated execution (control dependence becomes data dependence)
 +  * Definition of basic blocks
 +  * Control flow graph
 +  * Delayed branching
 +    * benefit?
 +    * What does it eliminates?
 +    * downside?
 +    * Delayed branching in SPARC (with squashing)
 +    * Backward compatibility with the delayed slot
 +    * What should be filled in the delayed slot
 +    * How to ensure correctness
 +  * Fine-grained multithreading
 +    * fetch from different threads ​
 +    * What are the issues (what if the program doesn'​t have many threads)
 +    * CDC 6000
 +    * Denelcor HEP
 +    * No dependency checking
 +    * Inst. from different thread can fill-in the bubbles
 +    * Cost?
 +  * Simulteneuos multithreading
 +  * Branch prediction
 +    * Guess what to fetch next.
 +    * Misprediction penalty
 +    * Need to guess the direction and target
 +    * How to perform the performance analysis?
 +      * Given the branch prediction accuracy and penalty cost, how to compute a cost of a branch misprediction.
 +      * Given the program/​number of instructions,​ percent of branches, branch prediction accuracy and penalty cost, how to compute a cost coming from branch mispredictions.
 +        * How many extra instructions are being fetched?
 +        * What is the performance degredation?​
 +    * How to reduce the miss penalty?
 +    * Predicting the next address (non PC+4 address)
 +    * Branch target buffer (BTB)
 +      * Predicting the address of the branch
 +    * Global branch history - for directions
 +    * Can use compiler to profile and get more info
 +      * Input set dictacts the accuracy
 +      * Add time to compilation
 +    * Heuristics that are common and doesn'​t require profiling.
 +      * Might be inaccurate
 +      * Does not require profiling
 +    * Static branch prediction
 +      * Pregrammer provides pragmas, hinting the likelihood of taken/not taken branch
 +      * For example, x86 has the hint bit
 +    * Dynamic branch prediction
 +      * Last time predictor
 +      * Two bits counter based prediction
 +        * One more bit for hysteresis
 +
buzzword.txt ยท Last modified: 2015/04/27 18:20 by rachata