User Tools

Site Tools


buzzword

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
buzzword [2015/01/14 19:24]
rachata
buzzword [2015/02/02 19:23]
rachata
Line 59: Line 59:
   * Components of a computer   * Components of a computer
     * Computation     * Computation
- * Communication +      ​* Communication 
- * Storage +      * Storage 
-          * DRAM +        * DRAM 
-          * NVRAM (Non-volatile memory): PCM, STT-MRAM +        * NVRAM (Non-volatile memory): PCM, STT-MRAM 
-   ​* Storage (Flash/​Harddrive)+        * Storage (Flash/​Harddrive)
   * Von Neumann Model (Control flow model)   * Von Neumann Model (Control flow model)
     * Stored program computer     * Stored program computer
- * Properties of Von Neumann Model: Stored program, sequential instruction processing +      ​* Properties of Von Neumann Model: Stored program, sequential instruction processing 
- * Unified memory +      * Unified memory 
-   ​* When does an instruction is being interpreted as an instruction (as oppose to a datum)? +        * When does an instruction is being interpreted as an instruction (as oppose to a datum)? 
- * Program counter +      * Program counter 
- * Examples: x86, ARM, Alpha, IBM Power series, SPARC, MIPS+      * Examples: x86, ARM, Alpha, IBM Power series, SPARC, MIPS
   * Data flow model   * Data flow model
     * Data flow machine     * Data flow machine
- * Data flow graph+      ​* Data flow graph
     * Operands     * Operands
     * Live-outs/​Live-ins     * Live-outs/​Live-ins
- * DIfferent types of data flow nodes (conditional/​relational/​barrier)+      ​* DIfferent types of data flow nodes (conditional/​relational/​barrier)
     * How to do transactional transaction in dataflow?     * How to do transactional transaction in dataflow?
-      Example: bank transactions +      ​Example: bank transactions
   * Tradeoffs between control-driven and data-driven   * Tradeoffs between control-driven and data-driven
     * What are easier to program?     * What are easier to program?
- * Which are easy to compile? +      ​* Which are easy to compile? 
- * What are more parallel (does that mean it is faster?) +      * What are more parallel (does that mean it is faster?) 
- * Which machines are more complex to design?+      * Which machines are more complex to design?
     * In control flow, when a program is stop, there is a pointer to the current state (precise state).     * In control flow, when a program is stop, there is a pointer to the current state (precise state).
   * ISA vs. Microarchitecture   * ISA vs. Microarchitecture
     * Semantics in the ISA     * Semantics in the ISA
- * uArch should obey the ISA +      ​* uArch should obey the ISA 
- * Changing ISA is costly, can affect compatibility.+      * Changing ISA is costly, can affect compatibility.
   * Instruction pointers   * Instruction pointers
   * uArch techniques: common and powerful techniques break Vonn Neumann model if done at the ISA level   * uArch techniques: common and powerful techniques break Vonn Neumann model if done at the ISA level
Line 95: Line 95:
       * Multiple instructions at a time       * Multiple instructions at a time
       * Out-of-order executions       * Out-of-order executions
-   ​* etc. +      ​* etc. 
- * Design techniques +        * Design techniques 
-   ​* Adder implementation (Bit serial, ripple carry, carry lookahead) +          * Adder implementation (Bit serial, ripple carry, carry lookahead) 
-     ​* Connection machine (an example of a machine that use bit serial to tradeoff latency for more parallelism)+          * Connection machine (an example of a machine that use bit serial to tradeoff latency for more parallelism)
   * Microprocessor:​ ISA + uArch + circuits   * Microprocessor:​ ISA + uArch + circuits
   * What are a part of the ISA? Instructions,​ memory, etc.   * What are a part of the ISA? Instructions,​ memory, etc.
Line 104: Line 104:
   * What are not a part of the ISA? (what goes inside: uArch techniques)   * What are not a part of the ISA? (what goes inside: uArch techniques)
     * Things that are not suppose to be visible to the programmer/​software but typically make the processor faster and/or consumes less power and/or less complex     * Things that are not suppose to be visible to the programmer/​software but typically make the processor faster and/or consumes less power and/or less complex
 +
 +===== Lecture 3 (1/17 Fri.) =====
 +
 +   * Microarchitecture
 +   * Three major tradeoffs of computer architecture
 +   * Macro-architecture
 +   * LC-3b ISA
 +   * Unused instructions
 +   * Bit steering
 +   * Instruction processing style
 +   * 0,1,2,3 address machines
 +   * Stack machine
 +   * Accumulator machine
 +   * 2-operand machine
 +   * 3-operand machine
 +   * Tradeoffs between 0,1,2,3 address machines
 +   * Postfix notation
 +   * Instructions/​Opcode/​Operade specifiers (i.e. addressing modes)
 +   * Simply vs. complex data type (and their tradeoffs)
 +   * Semantic gap and level
 +   * Translation layer
 +   * Addressability
 +   * Byte/bit addressable machines
 +   * Virtual memory
 +   * Big/little endian
 +   * Benefits of having registers (data locality)
 +   * Programmer visible (Architectural) state
 +   * Programmers can access this directly
 +   * What are the benefits?
 +   * Microarchitectural state
 +   * Programmers cannot access this directly
 +   * Evolution of registers (from accumulators to registers)
 +   * Different types of instructions
 +   * Control instructions
 +   * Data instructions
 +   * Operation instructions
 +   * Addressing modes
 +   * Tradeoffs (complexity,​ flexibility,​ etc.)
 +   * Orthogonal ISA
 +   * Addressing modes that are orthogonal to instruction types
 +   * I/O devices
 +   * Vectored vs. non-vectored interrupts
 +   * Complex vs. simple instructions
 +   * Tradeoffs
 +   * RISC vs. CISC
 +   * Tradeoff
 +   * Backward compatibility
 +   * Performance
 +   * Optimization opportunity
 +   * Translation
 +
 +===== Lecture 4 (1/21 Wed.) =====
 +
 +  * Fixed vs. variable length instruction
 +  * Huffman encoding
 +  * Uniform vs. non-uniform decode
 +  * Registers
 +    * Tradeoffs between number of registers
 +  * Alignments
 +    * How does MIPS load words across alignment the boundary
 +
 +===== Lecture 5 (1/26 Mon.) =====
 +
 +  * Tradeoffs in ISA: Instruction length
 +    * Uniform vs. non-uniform
 +  * Design point/Use cases
 +    * What dictates the design point?
 +  * Architectural states
 +  * uArch
 +    * How to implement the ISA in the uArch
 +  * Different stages in the uArch
 +  * Clock cycles
 +  * Multi-cycle machine
 +  * Datapath and control logic
 +    * Control signals
 +  * Execution time of instructions/​program
 +    * Metrics and what do they means
 +  * Instruction processing
 +    * Fetch
 +    * Decode
 +    * Execute
 +    * Memory fetch
 +    * Writeback
 +  * Encoding and semantics
 +  * Different types of instructions (I-type, R-type, etc.)
 +  * Control flow instructions
 +  * Non-control flow instructions
 +  * Delayed slot/​Delayed branch
 +  * Single cycle control logic
 +  * Lockstep
 +  * Critical path analysis
 +    * Critical path of a single cycle processor
 +  * What is in the control signals?
 +    * Combinational logic & Sequential logic
 +  * Control store
 +  * Tradeoffs of a single cycle uarch
 +  * Design principles
 +    * Common case design
 +    * Critical path design
 +    * Balanced designs
 +    * Dynamic power/​Static power
 +      * Increases in power due to frequency
 +
 +===== Lecture 6 (1/28 Mon.) =====
 +
 +  * Design principles
 +    * Common case design
 +    * Critical path design
 +    * Balanced designs
 +  * Multi cycle design
 +  * Microcoded/​Microprogrammed machines
 +    * States
 +    * Translation from one state to another
 +    * Microinstructions
 +    * Microsequencing
 +    * Control store - Product control signals
 +    * Microsequencer ​  
 +    * Control signal
 +      * What do they have to control? ​   ​
 +  * Instruction processing cycle
 +  * Latch signals
 +  * State machine
 +  * State variables
 +  * Condition code
 +  * Steering bits
 +  * Branch enable logic
 +  * Difference between gating and loading? (write enable vs. driving the bus)
 +  * Memory mapped I/O
 +  * Hardwired logic
 +    * What control signals come from hardwired logic?
 +  * Variable latency memory
 +  * Handling interrupts
 +  * Difference betwen interrupts and exceptions
 +  * Emulator (i.e. uCode allots minimal datapath to emulate the ISA)
 +  * Updating machine behavior
 +  * Horizontal microcode
 +  * Vertical microcode
 +  * Primitives
 +  ​
 +===== Lecture 7 (1/30 Fri.) =====
 +
 +  * Emulator (i.e. uCode allots minimal datapath to emulate the ISA)
 +  * Updating machine behavior
 +  * Horizontal microcode
 +  * Vertical microcode
 +  * Primitives
 +  * nanocode and millicode
 +    * what are the differences between nano/​milli/​microcode
 +  * microprogrammed vs. hardwire control
 +  * Pipelining
 +  * Limitations of the multi-programmed design
 +    * Idle resources
 +  * Throughput of a pipelined design
 +    * What dictacts the throughput of a pipelined design?
 +  * Latency of the pipelined design
 +  * Dependency
 +  * Overhead of pipelining
 +    * Latch cost?
 +  * Data forwarding/​bypassing
 +  * What are the ideal pipeline?
 +  * External fragmentation
 +  * Issues in pipeline designs
 +    * Stalling
 +      * Dependency (Hazard)
 +        * Flow dependence
 +        * Output dependence
 +        * Anti dependence
 +        * How to handle them?
 +    * Resource contention
 +    * Keeping the pipeline full
 +    * Handling exception/​interrupts
 +    * Pipeline flush
 +    * Speculation
 +
 +  ​
 +  ​
 +===== Lecture 8 (2/2 Mon.) =====  ​
 +
 +  * Interlocking
 +  * Multipath execution
 +  * Fine grain multithreading
 +  * No-op (Bubbles in the pipeline)
 +  * Valid bits in the instructions
 +  * Branch prediction
 +  * Different types of data dependence
 +  * Pipeline stalls
 +    * bubbles
 +    * How to handle stalls
 +    * Stall conditions
 +    * Stall signals
 +    * Dependences
 +      * Distant between dependences
 +    * Data forwarding/​bypassing
 +    * Maintaining the correct dataflow
 +  * Different ways to design data forwarding path/logic
 +  * Different techniques to handle interlockings
 +    * SW based
 +    * HW based
 +  * Profiling
 +    * Static profiling
 +    * Helps from the software (compiler)
 +      * Superblock optimization
 +      * Analyzing basic blocks
 +  * How to deal with branches?
 +    * Branch prediction
 +    * Delayed branching (branch delay slot)
 +    * Forward control flow/​backward control flow
 +    * Branch prediction accuracy
 +  * Profile guided code positioning
 +    * Based on the profile info. position the code based on it
 +    * Try to make the next sequential instruction be the next inst. to be executed
 +  * Predicate combining (combine predicate for a branch instruction)
 +  * Predicated execution (control dependence becomes data dependence)
 +  ​
 +    ​
buzzword.txt · Last modified: 2015/04/27 18:20 by rachata