User Tools

Site Tools


buzzword

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
buzzword [2014/01/31 19:15]
rachata
buzzword [2015/01/14 19:45]
rachata
Line 1: Line 1:
 ====== Buzzwords ====== ====== Buzzwords ======
  
-Buzzwords are terms that are mentioned during lecture which are particularly important to understand thoroughly. ​ This page tracks the buzzwords for each of the lectures and can be used as a reference for finding gaps in your understanding of course material. +Buzzwords are terms that are mentioned during lecture which are particularly important to understand thoroughly. This page tracks the buzzwords for each of the lectures and can be used as a reference for finding gaps in your understanding of course material.
- +
-===== Lecture 1 (1/13 Mon.) =====+
  
 +===== Lecture 1 (1/12 Mon.) =====
   * Level of transformation   * Level of transformation
     * Algorithm     * Algorithm
Line 10: Line 9:
     * Compiler     * Compiler
   * Cross abstraction layers   * Cross abstraction layers
-    * Expose an interface 
   * Tradeoffs   * Tradeoffs
   * Caches   * Caches
-  ​* Multi-thread +  * DRAM/memory ​controller 
-  * Multi-core +  * DRAM banks
-  * Unfairness +
-  ​* DRAM controller/Memory ​controller +
-  * Memory hog+
   * Row buffer hit/miss   * Row buffer hit/miss
   * Row buffer locality   * Row buffer locality
-  * Streaming access/ Random ​access +  ​* Unfairness 
-  * DRAM refresh +  * Memory performance hog 
-  * Retention time +  * Shared DRAM memory system 
-  * Profiling DRAM retention ​time+  ​* Streaming access ​vs. random ​access 
 +  * Memory scheduling policies 
 +  * Scheduling priority 
 +  * Retention time of DRAM 
 +  * Process variation 
 +  * Retention ​time profile
   * Power consumption   * Power consumption
-  * Wimpy cores 
   * Bloom filter   * Bloom filter
-    ​Pros/Cons +  ​Hamming code 
-    * False Positive +  * Hamming distance 
-  * Simulation +  * DRAM row hammer
-  * Memory performance attacks +
-  * RTL design+
  
-===== Lecture 2 (1/15 Wed.) ===== +===== Lecture 2 (1/14 Wed.) =====
- +
-  * Optimizing for energy/ Optimizing for the performance +
-    * Generally you should optimize for the users +
-  * state-of-the-art +
-  * RTL Simulation +
-    * Long, slow and can be costly +
-  * High level simulation +
-    * What should be employed? +
- * Important to get the idea of how they are implemented in RTL +
- * Allows designer to filter out techniques that do not work well +
-  * Design points +
-    * Design processors to meet the design points +
-  * Software stack +
-  * Design decisions +
-  * Datacenters +
-  * MIPS R2000 +
-    * What are architectural techniques that improve the performance of a processor over MIPS 2000+
   * Moore'​s Law   * Moore'​s Law
 +  * Algorithm --> step-by-step procedure to solve a problem
   * in-order execution   * in-order execution
   * out-of-order execution   * out-of-order execution
Line 65: Line 46:
   * Scaling issue   * Scaling issue
     * Transister are getting smaller     * Transister are getting smaller
 +  * Key components of a computer
 +  * Design points
 +    * Design processors to meet the design points
 +  * Software stack
 +  * Design decisions
 +  * Datacenters
   * Reliability problems that cause errors   * Reliability problems that cause errors
   * Analogies from Kuhn's "The Structure of Scientific Revolutions"​ (Recommended book)   * Analogies from Kuhn's "The Structure of Scientific Revolutions"​ (Recommended book)
Line 73: Line 60:
     * Computation     * Computation
       * Communication       * Communication
-        ​* Storage +      ​* Storage 
-          * DRAM +        * DRAM 
-          * NVRAM (Non-volatile memory): PCM, STT-MRAM +        * NVRAM (Non-volatile memory): PCM, STT-MRAM 
-          * Storage (Flash/​Harddrive)+        * Storage (Flash/​Harddrive)
   * Von Neumann Model (Control flow model)   * Von Neumann Model (Control flow model)
     * Stored program computer     * Stored program computer
-        ​* Properties of Von Neumann Model: Stored program, sequential instruction processing +      ​* Properties of Von Neumann Model: Stored program, sequential instruction processing 
-        * Unified memory +      * Unified memory 
-          * When does an instruction is being interpreted as an instruction (as oppose to a datum)? +        * When does an instruction is being interpreted as an instruction (as oppose to a datum)? 
-        * Program counter +      * Program counter 
-        * Examples: x86, ARM, Alpha, IBM Power series, SPARC, MIPS+      * Examples: x86, ARM, Alpha, IBM Power series, SPARC, MIPS
   * Data flow model   * Data flow model
     * Data flow machine     * Data flow machine
Line 94: Line 81:
   * Tradeoffs between control-driven and data-driven   * Tradeoffs between control-driven and data-driven
     * What are easier to program?     * What are easier to program?
-    ​* Which are easy to compile? +      ​* Which are easy to compile? 
-    * What are more parallel (does that mean it is faster?) +      * What are more parallel (does that mean it is faster?) 
-    * Which machines are more complex to design?+      * Which machines are more complex to design?
     * In control flow, when a program is stop, there is a pointer to the current state (precise state).     * In control flow, when a program is stop, there is a pointer to the current state (precise state).
   * ISA vs. Microarchitecture   * ISA vs. Microarchitecture
     * Semantics in the ISA     * Semantics in the ISA
-    ​* uArch should obey the ISA +      ​* uArch should obey the ISA 
-    * Changing ISA is costly, can affect compatibility.+      * Changing ISA is costly, can affect compatibility.
   * Instruction pointers   * Instruction pointers
   * uArch techniques: common and powerful techniques break Vonn Neumann model if done at the ISA level   * uArch techniques: common and powerful techniques break Vonn Neumann model if done at the ISA level
Line 109: Line 96:
       * Out-of-order executions       * Out-of-order executions
       * etc.       * etc.
-    ​* Design techniques +        ​* Design techniques 
-      * Adder implementation (Bit serial, ripple carry, carry lookahead) +          * Adder implementation (Bit serial, ripple carry, carry lookahead) 
-      * Connection machine (an example of a machine that use bit serial to tradeoff latency for more parallelism)+          * Connection machine (an example of a machine that use bit serial to tradeoff latency for more parallelism)
   * Microprocessor:​ ISA + uArch + circuits   * Microprocessor:​ ISA + uArch + circuits
   * What are a part of the ISA? Instructions,​ memory, etc.   * What are a part of the ISA? Instructions,​ memory, etc.
Line 117: Line 104:
   * What are not a part of the ISA? (what goes inside: uArch techniques)   * What are not a part of the ISA? (what goes inside: uArch techniques)
     * Things that are not suppose to be visible to the programmer/​software but typically make the processor faster and/or consumes less power and/or less complex     * Things that are not suppose to be visible to the programmer/​software but typically make the processor faster and/or consumes less power and/or less complex
- 
-===== Lecture 3 (1/17 Fri.) ===== 
- 
-  * Design tradeoffs 
-  * Macro Architectures 
-  * Reconfiguribility vs. specialized designs 
-  * Parallelism (instructions,​ data parallel) 
-  * Uniform decode (Example: Alpha) 
-  * Steering bits (Sub-opcode) 
-  * 0,1,2,3 address machines 
-    * Stack machine 
-    * Accumulator machine 
-    * 2-operand machine 
-    * 3-operand machine 
-    * Tradeoffs between 0,1,2,3 address machines 
-  * Instructions/​Opcode/​Operade specifiers (i.e. addressing modes) 
-  * Simply vs. complex data type (and their tradeoffs) 
-  * Semantic gap 
-  * Translation layer 
-  * Addressability 
-  * Byte/bit addressable machines 
-  * Virtual memory 
-  * Big/little endian 
-  * Benefits of having registers (data locality) 
-  * Programmer visible (Architectural) state 
-    * Programmers can access this directly 
-    * What are the benefits? 
-  * Microarchitectural state 
-    * Programmers cannot access this directly 
-  * Evolution of registers (from accumulators to registers) 
-  * Different types of instructions 
-    * Control instructions 
-    * Data instructions 
-    * Operation instructions 
-  * Addressing modes 
-    * Tradeoffs (complexity,​ flexibility,​ etc.) 
-  * Orthogonal ISA 
-    * Addressing modes that are orthogonal to instructino types 
-  * Vectors vs. non vectored interrupts 
-  * Complex vs. simple instructions 
-    * Tradeoffs 
-  * RISC vs. CISC 
-    * Tradeoff 
-    * Backward compatibility 
-    * Performance 
-    * Optimization opportunity 
- 
-===== Lecture 4 (1/22 Wed.) ===== 
- 
-  * Semantic gap 
-    * Small vs. Large semantic gap (CISC vs. RISC) 
-    * Benefit of RISC vs. CISC 
-  * Micro operations/​microcode 
-    * Translate complex instructions into smaller instructions 
-  * Parallelism (motivation for RISC) 
-  * Compiler optimization 
-  * Code optimization through translation 
-  * VLIW 
-  * Fixed vs. variable length instructions 
-    * Tradeoffs 
-      * Alignment issues? (fetch/​decode) 
-      * Decoding issues? 
-      * Code size? 
-      * Adding additional instructions?​ 
-      * Memory bandwidth and cache utilization?​ 
-      * Energy? 
-    * Encoding in variable length instructions 
-  * Structure of Alpha instructions and other uniform decode instructions 
-    * Different type of instructions 
-    * Benefit of knowing what type of instructions 
-      * Speculatively operate future instructions 
-  * x86 and other non-uniform decode instructions 
-    * Tradeoff vs. uniform decode 
-  * Tradeoffs for different number of registers 
-    * Spilling into memory if the number of registers is small 
-    * Compiler optimization on how to manage which value to keep/spill 
-  * Addressing modes 
-    * Benefits? 
-    * Types? 
-    * Different uses of addressing modes? 
-  * Various ISA-level tradeoffs 
-  * Virtual memory 
-  * Unalign memory access/​aligned memory access 
-    * Cost vs. benefit of unaligned access 
-  * ISA specification 
-    * Things you have to obey/​specifie in the ISA specification 
-  * Architectural states 
-  * Microarchitecture implements how arch. state A transformed to the next arch. state A' 
-  * Single cycle machines 
-    * Critical path in the single cycle machine 
-  * Multi cycle machines 
-  * Functional units 
-  * Performance metrics 
-    * CPI/IPC 
-      * CPI of a single cycle microarchitecture 
- 
-===== Lecture 5 (1/24 Fri.) ===== 
- 
-  * Instruction processing 
-    * Fetch 
-    * Decode 
-    * Execute 
-    * Memory fetch 
-    * Writeback 
-  * Datapath & Control logic in microprocessors 
-  * Different types of instructions (I-type, R-type, etc.) 
-  * Control flow instructions 
-  * Non-control flow instructions 
-  * Delayed slot/​Delayed branch 
-  * Single cycle control logic 
-  * Lockstep 
-  * Critical path analysis 
-    * Critical path of a single cycle processor 
-  * Combinational logic & Sequential logic 
-  * Control store 
-  * Tradeoffs of a single cycle uarch 
-  * Dynamic power/​Static power 
-  * Speedup calculation 
-    * Parallelism 
-    * Serial bottleneck 
-    * Amdahl'​s bottleneck 
-  * Design principles 
-    * Common case design 
-    * Critical path design 
-    * Balanced designs 
-  * Multi cycle design 
- 
-===== Lecture 6 (1/27 Mon.) ===== 
- 
-  * Microcoded/​Microprogrammed machines 
-    * States 
-    * Microinstructions 
-    * Microsequencing 
-    * Control store - Product control signals 
-    * Microsequencer ​   
-    * Control signal 
-      * What do they have to control? ​   ​ 
-  * Instruction processing cycle 
-  * Latch signals 
-  * State machine 
-  * State variables 
-  * Condition code 
-  * Steering bits 
-  * Branch enable logic 
-  * Difference between gating and loading? (write enable vs. driving the bus) 
-  * Memory mapped I/O 
-  * Hardwired logic 
-    * What control signals come from hardwired logic? 
-  * Variable latency memory 
-  * Handling interrupts 
-  * Difference betwen interrupts and exceptions 
-  * Emulator (i.e. uCode allots minimal datapath to emulate the ISA) 
-  * Updating machine behavior 
-  * Horizontal microcode 
-  * Vertical microcode 
-  * Primitives 
- 
-===== Lecture 7 (1/29 Wed.) ===== 
- 
-  * Pipelining 
-  * Limitations of the multi-programmed design 
-    * Idle resources 
-  * Throughput of a pipelined design 
-    * What dictacts the throughput of a pipelined design? 
-  * Latency of the pipelined design 
-  * Dependency 
-  * Overhead of pipelining 
-    * Latch cost? 
-  * Data forwarding/​bypassing 
-  * What are the ideal pipeline? 
-  * External fragmentation 
-  * Issues in pipeline designs 
-    * Stalling 
-      * Dependency (Hazard) 
-        * Flow dependence 
-        * Output dependence 
-        * Anti dependence 
-        * How to handle them? 
-    * Resource contention 
-    * Keeping the pipeline full 
-    * Handling exception/​interrupts 
-    * Pipeline flush 
-    * Speculation 
-  * Interlocking 
-  * Multipath execution 
-  * Fine grain multithreading 
-  * No-op (Bubbles in the pipeline) 
-  * Valid bits in the instructions 
- 
-===== Lecture 8 (1/31 Fri.) ===== 
-  * Branch prediction 
-  * Different types of data dependence 
-  * Pipeline stalls 
-    * bubbles 
-    * How to handle stalls 
-    * Stall conditions 
-    * Stall signals 
-    * Dependences 
-      * Distant between dependences 
-    * Data forwarding/​bypassing 
-    * Maintaining the correct dataflow 
-  * Different ways to design data forwarding path/logic 
-  * Different techniques to handle interlockings 
-    * SW based 
-    * HW based 
-  * Profiling 
-    * Static profiling 
-    * Helps from the software (compiler) 
-      * Superblock optimization 
-      * Analyzing basic blocks 
-  * How to deal with branches? 
-    * Branch prediction 
-    * Delayed branching (branch delay slot) 
-    * Forward control flow/​backward control flow 
-    * Branch prediction accuracy 
-  * Profile guided code positioning 
-    * Based on the profile info. position the code based on it 
-    * Try to make the next sequential instruction be the next inst. to be executed 
-  * Trace cache 
-  * Predicate combining (combine predicate for a branch instruction) 
-  * Predicated execution (control dependence becomes data dependence) 
-  * Definition of basic blocks 
-  * Control flow graph 
buzzword.txt · Last modified: 2015/04/27 18:20 by rachata