User Tools

Site Tools


buzzword

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
buzzword [2014/01/17 19:20]
rachata
buzzword [2015/01/26 23:13]
kevincha [Lecture 4 (1/21 Wed.)]
Line 1: Line 1:
 ====== Buzzwords ====== ====== Buzzwords ======
  
-Buzzwords are terms that are mentioned during lecture which are particularly important to understand thoroughly. ​ This page tracks the buzzwords for each of the lectures and can be used as a reference for finding gaps in your understanding of course material. +Buzzwords are terms that are mentioned during lecture which are particularly important to understand thoroughly. This page tracks the buzzwords for each of the lectures and can be used as a reference for finding gaps in your understanding of course material.
- +
-===== Lecture 1 (1/13 Mon.) =====+
  
 +===== Lecture 1 (1/12 Mon.) =====
   * Level of transformation   * Level of transformation
     * Algorithm     * Algorithm
Line 10: Line 9:
     * Compiler     * Compiler
   * Cross abstraction layers   * Cross abstraction layers
-    * Expose an interface 
   * Tradeoffs   * Tradeoffs
   * Caches   * Caches
-  ​* Multi-thread +  * DRAM/memory ​controller 
-  * Multi-core +  * DRAM banks
-  * Unfairness +
-  ​* DRAM controller/Memory ​controller +
-  * Memory hog+
   * Row buffer hit/miss   * Row buffer hit/miss
   * Row buffer locality   * Row buffer locality
-  * Streaming access/ Random ​access +  ​* Unfairness 
-  * DRAM refresh +  * Memory performance hog 
-  * Retention time +  * Shared DRAM memory system 
-  * Profiling DRAM retention ​time+  ​* Streaming access ​vs. random ​access 
 +  * Memory scheduling policies 
 +  * Scheduling priority 
 +  * Retention time of DRAM 
 +  * Process variation 
 +  * Retention ​time profile
   * Power consumption   * Power consumption
-  * Wimpy cores 
   * Bloom filter   * Bloom filter
-    ​Pros/Cons +  ​Hamming code 
-    * False Positive +  * Hamming distance 
-  * Simulation +  * DRAM row hammer
-  * Memory performance attacks +
-  * RTL design+
  
-===== Lecture 2 (1/15 Wed.) ===== +===== Lecture 2 (1/14 Wed.) =====
- +
-  * Optimizing for energy/ Optimizing for the performance +
-    * Generally you should optimize for the users +
-  * state-of-the-art +
-  * RTL Simulation +
-    * Long, slow and can be costly +
-  * High level simulation +
-    * What should be employed? +
- * Important to get the idea of how they are implemented in RTL +
- * Allows designer to filter out techniques that do not work well +
-  * Design points +
-    * Design processors to meet the design points +
-  * Software stack +
-  * Design decisions +
-  * Datacenters +
-  * MIPS R2000 +
-    * What are architectural techniques that improve the performance of a processor over MIPS 2000+
   * Moore'​s Law   * Moore'​s Law
 +  * Algorithm --> step-by-step procedure to solve a problem
   * in-order execution   * in-order execution
   * out-of-order execution   * out-of-order execution
Line 65: Line 46:
   * Scaling issue   * Scaling issue
     * Transister are getting smaller     * Transister are getting smaller
 +  * Key components of a computer
 +  * Design points
 +    * Design processors to meet the design points
 +  * Software stack
 +  * Design decisions
 +  * Datacenters
   * Reliability problems that cause errors   * Reliability problems that cause errors
   * Analogies from Kuhn's "The Structure of Scientific Revolutions"​ (Recommended book)   * Analogies from Kuhn's "The Structure of Scientific Revolutions"​ (Recommended book)
Line 73: Line 60:
     * Computation     * Computation
       * Communication       * Communication
-        ​* Storage +      ​* Storage 
-          * DRAM +        * DRAM 
-          * NVRAM (Non-volatile memory): PCM, STT-MRAM +        * NVRAM (Non-volatile memory): PCM, STT-MRAM 
-          * Storage (Flash/​Harddrive)+        * Storage (Flash/​Harddrive)
   * Von Neumann Model (Control flow model)   * Von Neumann Model (Control flow model)
     * Stored program computer     * Stored program computer
-        ​* Properties of Von Neumann Model: Stored program, sequential instruction processing +      ​* Properties of Von Neumann Model: Stored program, sequential instruction processing 
-        * Unified memory +      * Unified memory 
-          * When does an instruction is being interpreted as an instruction (as oppose to a datum)? +        * When does an instruction is being interpreted as an instruction (as oppose to a datum)? 
-        * Program counter +      * Program counter 
-        * Examples: x86, ARM, Alpha, IBM Power series, SPARC, MIPS+      * Examples: x86, ARM, Alpha, IBM Power series, SPARC, MIPS
   * Data flow model   * Data flow model
     * Data flow machine     * Data flow machine
Line 94: Line 81:
   * Tradeoffs between control-driven and data-driven   * Tradeoffs between control-driven and data-driven
     * What are easier to program?     * What are easier to program?
-    ​* Which are easy to compile? +      ​* Which are easy to compile? 
-    * What are more parallel (does that mean it is faster?) +      * What are more parallel (does that mean it is faster?) 
-    * Which machines are more complex to design?+      * Which machines are more complex to design?
     * In control flow, when a program is stop, there is a pointer to the current state (precise state).     * In control flow, when a program is stop, there is a pointer to the current state (precise state).
   * ISA vs. Microarchitecture   * ISA vs. Microarchitecture
     * Semantics in the ISA     * Semantics in the ISA
-    ​* uArch should obey the ISA +      ​* uArch should obey the ISA 
-    * Changing ISA is costly, can affect compatibility.+      * Changing ISA is costly, can affect compatibility.
   * Instruction pointers   * Instruction pointers
   * uArch techniques: common and powerful techniques break Vonn Neumann model if done at the ISA level   * uArch techniques: common and powerful techniques break Vonn Neumann model if done at the ISA level
Line 109: Line 96:
       * Out-of-order executions       * Out-of-order executions
       * etc.       * etc.
-    ​* Design techniques +        ​* Design techniques 
-      * Adder implementation (Bit serial, ripple carry, carry lookahead) +          * Adder implementation (Bit serial, ripple carry, carry lookahead) 
-      * Connection machine (an example of a machine that use bit serial to tradeoff latency for more parallelism)+          * Connection machine (an example of a machine that use bit serial to tradeoff latency for more parallelism)
   * Microprocessor:​ ISA + uArch + circuits   * Microprocessor:​ ISA + uArch + circuits
   * What are a part of the ISA? Instructions,​ memory, etc.   * What are a part of the ISA? Instructions,​ memory, etc.
Line 120: Line 107:
 ===== Lecture 3 (1/17 Fri.) ===== ===== Lecture 3 (1/17 Fri.) =====
  
-  * Design ​tradeoffs +   * Microarchitecture 
-  * Macro Architectures +   * Three major tradeoffs ​of computer architecture 
-  Reconfiguribility vs. specialized designs +   ​* Macro-architecture 
-  Parallelism (instructions, data parallel) +   ​LC-3b ISA 
-  Uniform decode (Example: Alpha) +   ​Unused ​instructions 
-  Steering bits (Sub-opcode) +   ​Bit steering 
-  * 0,1,2,3 address machines +   ​Instruction processing style 
-    * Stack machine +   ​* 0,1,2,3 address machines 
-    * Accumulator machine +   ​* Stack machine 
-    * 2-operand machine +   ​* Accumulator machine 
-    * 3-operand machine +   ​* 2-operand machine 
-    * Tradeoffs between 0,1,2,3 address machines +   ​* 3-operand machine 
-  * Instructions/​Opcode/​Operade specifiers (i.e. addressing modes) +   ​* Tradeoffs between 0,1,2,3 address machines 
-  * Simply vs. complex data type (and their tradeoffs) +   * Postfix notation 
-  * Semantic gap +   * Instructions/​Opcode/​Operade specifiers (i.e. addressing modes) 
-  * Translation layer +   ​* Simply vs. complex data type (and their tradeoffs) 
-  * Addressability +   ​* Semantic gap and level 
-  * Byte/bit addressable machines +   ​* Translation layer 
-  * Virtual memory +   ​* Addressability 
-  * Big/little endian +   ​* Byte/bit addressable machines 
-  * Benefits of having registers (data locality) +   ​* Virtual memory 
-  * Programmer visible (Architectural) state +   ​* Big/little endian 
-    * Programmers can access this directly +   ​* Benefits of having registers (data locality) 
-    * What are the benefits? +   ​* Programmer visible (Architectural) state 
-  * Microarchitectural state +   ​* Programmers can access this directly 
-    * Programmers cannot access this directly +   ​* What are the benefits? 
-  * Evolution of registers (from accumulators to registers) +   ​* Microarchitectural state 
-  * Different types of instructions +   ​* Programmers cannot access this directly 
-    * Control instructions +   ​* Evolution of registers (from accumulators to registers) 
-    * Data instructions +   ​* Different types of instructions 
-    * Operation instructions +   ​* Control instructions 
-  * Addressing modes +   ​* Data instructions 
-    * Tradeoffs (complexity,​ flexibility,​ etc.) +   ​* Operation instructions 
-  * Orthogonal ISA +   ​* Addressing modes 
-    * Addressing modes that are orthogonal to instructino ​types +   ​* Tradeoffs (complexity,​ flexibility,​ etc.) 
-  Vectors ​vs. non vectored interrupts +   ​* Orthogonal ISA 
-  * Complex vs. simple instructions +   ​* Addressing modes that are orthogonal to instruction ​types 
-    * Tradeoffs +   ​I/O devices 
-  * RISC vs. CISC +   * Vectored ​vs. non-vectored interrupts 
-    * Tradeoff +   ​* Complex vs. simple instructions 
-    * Backward compatibility +   ​* Tradeoffs 
-    * Performance +   ​* RISC vs. CISC 
-    * Optimization opportunity+   ​* Tradeoff 
 +   ​* Backward compatibility 
 +   ​* Performance 
 +   ​* Optimization opportunity 
 +   * Translation 
 + 
 +===== Lecture 4 (1/21 Wed.) ===== 
 + 
 +  * Fixed vs. variable length instruction 
 +  * Huffman encoding 
 +  * Uniform vs. non-uniform decode 
 +  * Registers 
 +    * Tradeoffs between number of registers 
 +  * Alignments 
 +    * How does MIPS load words across alignment the boundary 
 + 
 +===== Lecture 5 (1/26 Mon.) =====
  
 +  * Tradeoffs in ISA: Instruction length
 +    * Uniform vs. non-uniform
 +  * Design point/Use cases
 +    * What dictates the design point?
 +  * Architectural states
 +  * uArch
 +    * How to implement the ISA in the uArch
 +  * Different stages in the uArch
 +  * Clock cycles
 +  * Multi-cycle machine
 +  * Datapath and control logic
 +    * Control signals
 +  * Execution time of instructions/​program
 +    * Metrics and what do they means
 +  * Instruction processing
 +    * Fetch
 +    * Decode
 +    * Execute
 +    * Memory fetch
 +    * Writeback
 +  * Encoding and semantics
 +  * Different types of instructions (I-type, R-type, etc.)
 +  * Control flow instructions
 +  * Non-control flow instructions
 +  * Delayed slot/​Delayed branch
 +  * Single cycle control logic
 +  * Lockstep
 +  * Critical path analysis
 +    * Critical path of a single cycle processor
 +  * What is in the control signals?
 +    * Combinational logic & Sequential logic
 +  * Control store
 +  * Tradeoffs of a single cycle uarch
 +  * Design principles
 +    * Common case design
 +    * Critical path design
 +    * Balanced designs
 +    * Dynamic power/​Static power
 +      * Increases in power due to frequency
 +    ​
buzzword.txt · Last modified: 2015/04/27 18:20 by rachata