
Synchronization with SpinLocks, Atomic Update
Primitives, and Transactional Memory

18-344: The Hardware / Software Interface

Carnegie Mellon University

In this lab you will learn how to use the advanced synchronization primitives
provided by your machine. You
will learn to go beyond using simply mutex locks
and reader/writer locks for concurrency. Instead, you will
learn how to use
spinlocks, atomic update primitives, and hardware transactional memory.

There are two parts to the assignment. The first part is to implement and
evaluate the performance of several
variants of the "Giga-Updates Per Second"
(GUPS) kernel, each of which uses different synchronization
primitives. The
second part is to implement and evalauate the performance of the Swap Within
Array Partition
Set (SWAPS) kernel.

GUPS

The GUPS kernel is a multi-threaded program that increments elements in a
key-value store. Each thread
loops for a pre-determined number of iterations,
selecting a random element, and incrementing that element
by one. The starter
code that we have provided to you is incorrect because it does not use synchronization
to
increment the key-value store element. Instead, the increment is part of a data-race.
The practical
consequence of this data-race is that sometimes different threads'
increments of the same key-value store
element interleave, losing the effects of some
increments.

Your task in this part is to implement the threads' updates using
pthread_spinlock_t, __sync_fetch_and_add,
__sync_bool_compare_and_swap, and
Intel RTM hardware transactional memory. The provided starter code
has some
rudimentary argument processing code that allows you to select which variant
of synchronization to
use. You should implement the function body of each of
the functions process_mut, process_fetchandadd,
process_compexchg, and
process_tm, which should synchronize the key-value store increments in the
way
indicated by the function name.

The command line interface to GUPS should be left alone. The arguments are
positional:

$./gups

where entries is the size of the key-value store, threads is the number of
threads to spawn, iters is the number
of iterations each thread should
execute, and variant is the synchronization strategy that the program should
use:

0 -> unsynchronized (buggy!)
1 -> spinlocks
2 -> fetch_and_add
3 -> compare_and_swap
4 -> tm

GUPS evaluation:
After implementing each of the variants of GUPS, you should run tests to
collect data
showing the relative performance of each of the variants. A
good performance metric for this lab is run time,

collected by using the
 time utility (The manpage for time explains its options and
interpretation).

Plan and run an experiment that shows how performance of a variant scales
with varying thread count. Run
the experiment for a fixed number of
iterations (a large enough number that your program runs for a few
seconds at
least), and for a fixed key-value store size (1000 is reasonable). Choose at
least 4 different thread
counts, varying from 2 up to 2x the number of
hardware threads available on the machine. Be sure to collect
multiple
experimental trials for each thread/variant pair. You should present data
that illustrate a performance
scaling trend and explain the trend in your
write up.

SWAPS

The SWAPS kernel is a multi-threaded irregular memory access kernel that
transforms sub-spaces of an
array. The program first selects a list of array
elements to include in the sub-space to transform. The program
then swaps each
element in the sub-space with the element in the sub-space with the next lowest
index in the
array, modulo the array length. After shuffling an element down,
SWAPS increments the element by one,
marking its involvement in a
transformation.

All of the swaps should be performed atomically together! If there are 10
swaps to perform, all 10 of them
should happen atomically together. The goal
is not to make each individual swap of one pair of elements
atomic. All of
the swaps should be atomic.

The key variables in a sub-space transformation are:

*array size
*sub-space size (i.e., number of swaps)
*number of threads
*number of swaps per thread

The SWAPS starter code provided includes an unsynchronized variant that will
produce incorrect results
when run with multiple threads. Your task in this
lab is to write two variants of SWAPS, one that uses
pthread_spinlock_t
synchronization and on that uses Intel RTM transactional memory
synchronization.

The command line interface to SWAPS is very similar to GUPS

$./swaps <# threads>

Variant is which sync strategy to use.

0 -> unsynchronized (buggy!)
1 -> spinlocks
2 -> tm

SWAPS evaluation:
After implementing each of the variants evaluate the performance of your
SWAPS
variants. You should plan and execute an experiment that measures how
performance of each variant
changes with thread count, sub-space size, and
array size.

You can scale contention by increasing thread count, or by increasing the
odds that threads will interact when
accessing randomly chosen elements from
your array . To increase those odds, try decreasing the vector size,
or
increasing the number of elements that each iteration accesses. Eventually,
contention for elements in the
array should be a significant part of run
time, which might be interesting to study.

When experimenting for a particular parameter, hold other parameters constant
(and reasonable -- e.g., array
size=1000, thread count=#CPUs, sub-space
size=10) to isolate the effect of the varied parameter. Show using
data
what happens to a variant's run time on average as you change different parameter's value. You should
characterize your performance results by adding code to measure transaction
commits, aborts, and any cases
of interest (e.g., fallbacks). For each
performance experiment, you should do these characterization

measurements.
Plots of the characterization data should support your conclusions about the
performance
scaling of your system.

Short Answers:

Your writeup should answer these questions and any others that you think will
be interesting in explaining the
behavior of your synchronization
implementations.

*Why are we asking you to write a version of GUPS, but not SWAPS, that uses
__sync_fetch_and_add or
__sync_bool_compare_and_swap?

*Which variant of SWAPS scales best with thread count? sub-space size? array
size? For each, why?

*How does the rate of transactional commits and aborts change as you vary
array size, sub-space size, and
thread count?

*How does your SWAPS evaluation measure the effect of contention?

*How does your SWAPS evaluation measure the amortization of synchronization
overheads?

Evaluation notes:

Getting "clean" measurements of real time on a real machine may be difficult
because of performance
interference (e.g., between your experiments and other
peoples' experiments). You will have to run repeated
trials of each of your
test conditions (e.g., each different sync primitive). You may want to plot
averages of
multiple trials and include error bars on your results that show a
confidence interval, or just the standard error
of your data.

If you are unable to collect meaningful timing data because of performance
noise, you should do as thorough
an evaluation, show the noisy data you are
able to collect, report characterization data (e.g., number of
aborts), and
speculate about what the interference-free performance results would be.

The following sections are informative.

Spinlocks

Spinlocks are a variant of mutex lock. To acquire a spinlock (using
 pthread_spin_lock), a thread runs in a
loop, checking whether a memory
location that represents a lock shows that the lock is unheld. When the
check
reports that the lock is unheld, the thread atomically updates the location to
record that the lock is again
held (by the acquiring thread). To release a
spinlock (using pthread_spin_unlock) A GNU glibc spinlock

(pthread_spinlock_t) can be cast to an int and its state be referred to
directly as the operand of a memory
access. If two such direct accesses are
concurrent, include at least one write, and are not otherwise
synchronized,
those direct accesses may constitute a data-race error; otherwise, such
accesses are safe.

Lock Ordering Matters!
You should be sure to always acquire locks in lexicographic/sorted order, if
you have
multiple locks to acquire. If you do not adhere to a locking
discipline, you will eventually reach a deadlock.

__sync_fetch_and_add(type *val, int addand)

This intrinsic invokes a fetch-and-add using a locked exchange-add, i.e.,

__sync_fetch_and_add(val, 1)

corresponds to

lock addq $0x1,(%rax,%rdx,8)

(You can prove this to your self by disassembling your code using objdump -d ./gups. Use this intrinsic,
compile, and disassemble; what do you see?)

The instruction adds 1 to the variable var , stored in memory at
(%rax,%rdx,8). The lock prefix ensures that

the fetch, addition, and store
into val happen atomically and are well-ordered (i.e., are not a data-race).

__sync_bool_compare_and_swap(...)

This intrinsic invokes an atomic compare-and-swap operation using a locked
compare-exchange instruction

The instruction compares the value in mem to oldval and if they are equal,
replaces the value in mem with
newval . The intrinsic uses the cmpxchg
instruction to implement this behavior atomically, and in a well-

ordered way
(i.e., not a data-race).

__sync_bool_compare_and_swap(mem, oldval, newval)

corresponds to

lock cmpxchg %rcx,(%rdx)

(You can prove this to your self by disassembling your code using objdump -d ./gups. Use this intrinsic,
compile, and disassemble; what do you see?)

Transactional Memory

Intel's "Reduced Transactional Memory" (RTM) is an atomicity primitive that
allows defining a transactional
region of your program that executes strongly
atomically with respect to memory locations accessed. The
RTM ISA extensions
are wrapped in C functions in the tm.h header file, which you should read and
understand. Here are the basics:

To start a transaction, you should execute:

_xbegin();

The _xbegin() wrapper is defined in tm.h and directly inlines the assembly for
the xbegin ISA extension.
_xbegin() stores the transactional status in %eax
before it returns (i.e., the function returns this value). Our
wrapper for
_xbegin() also sets the fallback instruction to be the instruction after the
_xbegin().

If _xbegin() returns zero (i.e., _XBEGIN_STARTED), a transaction has
successfully begun and the
transactional status is 0.

To end a transaction, you should execute:

_xend();

The _xend() wrapper is defined in tm.h and, like _xbegin(), directly inlines
the assembly for the xend ISA
extension.

_xend() does not return a value. If an _xend() is called from an executing
transaction and the instruction
completes its execution, then the transaction
commits successfully and the effects of the transaction are made
non-speculative and globally architecturally visible.

To manually abort an ongoing transaction, during that ongoing transaction you
should execute:

_xabort(char code);

_xabort(code) aborts an ongoing transaction, and adds code to the transactional
status.

One good reason to abort a transaction is that another thread is executing the
lock-based fallback
code for the transaction that you are running. You can
detect this condition in a transaction by
checking the value of the spinlock
that you use to implement your lock-based fallback.

The glibc spinlock implementation (e.g.,
https://code.woboq.org/userspace/glibc/sysdeps/x86_64/nptl/pthread_spin_unlock.S.html)
writes a constant 1
into the lock word to release a lock. If, in a
transaction, you read the value of a spinlock and see anything
except for a 1,
you should probably abort the transaction because another thread is
manipulating the data
protected by the lock.

Aborted Transactions:

If a transaction aborts several things happen. First, the system restores all
architectural register state to the
state at the _xbegin(). Second, the system
discards all memory updates performed in the aborting transaction.
Third, the
system updates %eax with a status code that may indicate the reason that the
transaction is
aborting. Fourth, the system sets the instruction pointer to
the fallback instruction saved by the instruction's
_xbegin().

If your code compares the result of an _xbegin() to _XBEGIN_STARTED at the
start of the transaction, then
the fallback path that executes on abort will
be that same comparison. On the fallback path of an aborting
transaction, a
comparison between the transactional status returned by _xbegin() to
_XBEGIN_STARTED will
evaluate to false. If a transaction was explicitly
aborted, the transactional status contains the constant
argument passed to
_xabort(). If a transaction aborts for another reason, the transactional
status will be set to
a condition-specific status code encoding several
conditions; these statuses are defined at the top of tm.h.

_XABORT_EXPLICIT indicates an explicitly aborted transaction.

_XABORT_RETRY indicates that it is worth retrying your transaction (i.e., it
may commit if you try again).

_XABORT_CONFLICT indicates that the abort is the result of an access
conflict.

_XABORT_CAPACITY indicates that the abort is the result of the transaction
exceeding the capacity of the
system to buffer speculatively accessed,
transactional state.

int _XABORT_CODE(status) extracts the status code passed into an explicitly
aborted transaction's
_xabort(char code) and returns that code.

_XABORT_NESTED indicates that a transaction (aborted or ongoing) was nested
inside of another
transaction. (You are unlikely to encounter this situation in the lab.)

Dealing with aborted transactions:

You should consider what your program should do in the event of different
transactional abort situations. If a
transaction repeatedly aborts, or is
very unlikely ever to commit, the logic in your fallback path should fallback
to a non-transactional alternative implementation (perhaps using locks). Be
careful: you should be sure that
the (potentially lock-based) code on your
fallback path will correctly interact with the code on your
transactional
path. It is not uncommon to have to jump to a fallback path (or to jump past a fallback path) using
a goto statement (because control flow in transactional code can get a little bit messy. For instance, in
pseudocode:

for(max transaction attempts){
/xbegin to start Tx/
/if status is _XBEGIN_STARTED/
/transaction body/
/xend
to end transaction/
/got past xend: committed! goto: success/
}
/fallback path -- you get here if you fall through
the xend w/o goto: success/

/success: jump here if tx committed to skip fallback/

If you are having a difficult time understanding your program's performance,
you should consider tracking the
number of successfully committed
transactions and any interesting cases of aborted transactions that you
think
may help you understand.

Counters & Statistics Collection

You need to be careful with how you collect statistics. If you are keeping
event counters for things like aborts
and fallback executions (for
Transactional Memory), you need to be sure to use some form of
synchronization.
You might want to use spin locks or __sync_fetch_and_add
for your counters.

Synchronization on counters will affect the parallel performance of runs that
you are timing. The performance
effect of synchronization can be significant
and you should probably not collect event counters during
executions that you
are using for comparative timing analysis.

Transactional Memory Support

Some machines support and some do not support transactional memory. The lab
includes the has-tsx
program that reads a CPU register containing
configuration information and reports (as best as possible)
whether your
system supports the Intel TSX Transactional Memory extensions.

Support for TSX on the number cluster machines is not 100%, but many of these
machines support TSX. We
recommend that you find one or two machines that
support TSX and try to use them consistently, especially
when it comes to
timing experiments. ece029-ece031 work for TSX at the time of writing.

