18-344 Recitation 8

Lab4 - Graph Processing Optimization



About Sparse Problems



Sparse Problems

What is a sparse problem? Why are they called “sparse™?

o Graph Processing Problems are Sparse Problems

o Machine Learning Problems are Sparse Problems

What makes sparse problems hard?
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What does a graph processing program look like?

for e in EL:

Coo dstData[e.dst] =
(EdgeList) f(srcData[e.src],dstData[e.dst])
Edge
11 | | dstData
[ ]| srcData

stores vertex property information
if srcData == dstData, updating in-place;
often “swap” srcData & dstData from 1 iteration to the next iteration



Nobody EVER uses the adjacency matrix!

Why would the Adjacency Matrix not be used?
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Compressed Sparse Data Structures for Feasible Memory Size

Offsets Array (OA) 113 8
Neighbors Array (NA) 0/4|10[11|3 0ii:2
Compressed Sparse Row (CSR)
Edge ] Outgoing Neighbors
St —=
Vertex Property Array
Po : D1 : ! : D3 . D4 i.e., srcData / dstData I-

So r 133 3

silg s | 4 fq Often we will leave the vertex property array
Src e implicitly defined when we talk about sparse

5211 IEEEEE structures, but it is always there
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Compressed Sparse Data Structures for Feasible Memory Size

OffsetsArray(OA) |0 |1 (3|6 8\‘
NeighborsArray(NA) 121014 1011131114102
EdgeList sorted by —_ Compressed Sparse Row (CSR)
Edge ) SrcDs Outgoing Neighbors
St —
Dp Dy Dy Dz Dy The CSCis the transpose of the CSR
so| 1] Offsets Array (OA) [0 |3 |57 |8
S1|1: 1 l \
s, [ 111 (1
R e e e NeighborsArray(NA) |1 12 [(4|2|3|0(4[2|1|3
53 ! | ;
-------------------- EdgeList sorted by —_  Compressed Sparse Column (CSC) -
S4 1. 1 DstIDs Incoming Neighbors




Irreqular Accesses Lead to Poor Locality

LLC Miss Rate (%) Cycles stalled on DRAM / Total Cycles
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Problem: Sparse representations make processing large graphs feasible, but Cache miss latency cannot be hidden by anything else
graph processing still entails a large working set with poor locality in the program. Each miss incurs DRAM latency!
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What does Roofline help us
understand about a program?
Tell us what limits performance
& how close to peak an app is.
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Propagation Blocking: Reorganize Input to Make
Memory Being Randomly Written Fit in Cache

Bad for the cache: the size of the domain of
vertex data array entries is |V|, but the
|Domain| = |V] =5 vertices cache holds only |C| << |V| entries
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(EdgeList) Recall: irregular accesses into

vertex data array based on
e.dst which are essentially random

Key idea in propagation blocking: Limit the domain of updates to a sub-space of vertices,
V*, so that |V*| <= |C| and do multiple sub-spaces of V*s, so that all V*s together =V
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Propagation Blocking: Reorganize Input to Make
Memory Being Randomly Written Fit in Cache

Create “Bins” that hold input elements (edges

/ from the edge list)

0[1
20
110
02|
213
0l4
003
co0
(EdgeList)
Bin O: Bin1: Bin 2:
dst 0-1 dst 2-3 dst 4-5 dstData
Remember: dstData[e.dst] ++
Execute the kernel for one bin at a time and e.dst is random, from edge list
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Propagation Blocking: Reorganize Input to Make
Memory Being Randomly Written Fit in Cache

coo
(EdgelList)
Bin 0: Bin 1: Bin 2:
dst 0-1 dst 2-3 dst 4-5 dstData
Remember: dstData[e.dst] ++
Execute the kernel for one bin at a time and e.dst is random, from edge list
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Propagation Blocking: Reorganize Input to Make
Memory Being Randomly Written Fit in Cache

(o]0
(EdgeList)
Bin O: Bin 1: Bin 2:
dst 0-1 dst 2-3 dst 4-5 dstData
Remember: dstData[e.dst] ++
Execute the kernel for one bin at a time and e.dst is random, from edge list
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Propagation Blocking: Reorganize Input to Make
Memory Being Randomly Written Fit in Cache

coo
(EdgeList)
Bin 0: Bin 1: Bin 2:
dst 0-1 dst 2-3 dst 4-5 dstData
Remember: dstData[e.dst] ++
Execute the kernel for one bin at a time and e.dst is random, from edge list
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Propagation Blocking: Reorganize Input to Make
Memory Being Randomly Written Fit in Cache

coo
(EdgelList)
Bin 0: Bin 1: Bin 2:
dst 0-1 dst 2-3 dst 4-5 dstData
Remember: dstData[e.dst] ++
Execute the kernel for one bin at a time and e.dst is random, from edge list

74



example continues in |lecture slides



https://course.ece.cmu.edu/~ece344/course_documents/18-344%20Lecture%2016.pdf

Lab Detalls



Overview

e Task: Rewrite a Graph Processing Kernel to be more cache-friendly
e Kernel: Converting edge-list to CSR

e FEvaluation Metric: Cache metrics

o Use your lab2 cache simulator pintool to measure metrics

o If you prefer, we have provided you with a cache simulator that you can use for this lab
m  memory-hierarchy.so in /afs/ece.cmu.edu/class/ece344/assign/

e Study sensitivity to bin size, graph size and cache configurations



Functions in csr.c

Edge List to CSR Conversion

CSR_EL_count_neigh()

Step1: |for e in EL:
neigh_count[e.src]++; /*e.srcx/

0/1
2|0
1|0 )
02 neigh_count
2|3 CSR_cumul_neigh_count()
04
0[3]| Step2: [OA[O] =0
Ccoo for vtx in [1, MAX_VTX]:
(EdgeList) OA[ vtx ] = OA[vtx-1] + neigh_count[vtx-1]
Edge
Step 3: CSR_EL_neigh_pop()

for e in EL:
NA[ OA[e.src]++ ] = e.dst

Completed Result




Your Task - Propagation Blocking

You will replace Steps 1 and 3 with a binned version
New Steps for EL2CSR conversion:

e Step 1: Traverse EL, populate bins

o choice of src/dest vtx for binning up to you

e Step 2: Generate neigh_count array, a bin at a time
e Step 3: Sequential Accumulation to generate OA

e Step 4: Generate NA, a bin at a time



Propagation Blocking: Reorganize Input to Make
Memory Being Randomly Written Fit in Cache

Create “Bins” that hold input elements (edges

/ from the edge list)

RECALL

0[1
2]0
s =
02
23]
0l4
0[3
Co0
(EdgeList) 0
Bin 0: Bin 1: Bin 2: =
dst 0-1 dst 2-3 dst 4-5 dstData
Remember: dstData[e.dst] ++
Execute the kernel for one bin at a time and e.dst is random, from edge list
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Testing Correctness

e Step 1: Generate a graph with some edges using rand_graph, output is an
edgelist -- el _og

e Step 2: Use base implementation (provided by default) to convert edgelist to
CSR, using el2csr

e Step 3: Convert CSR back to EL using the csr2el program (this sorts the
edgelist — use this output to compare your implementation) -- el _base

e Step 4: Run your PB implementation to convert edgelist to CSR
e Step 5: Convert your CSR to EL (using csr2el) program -- el_student
e Step 6: diff el _base el student

o This should show no difference between the two EL



Testing Correctness | Flow Chart

[ rand_graph }
I

el_og

without binning with binning

el2csr el2csr

Sanity check: diff flag
*click image for man page*

/

-s, --report-identical-files
report when two files are the same

same function

el _base el _student

[ diff }i Should show no differences



https://man7.org/linux/man-pages/man1/diff.1.html

Evaluation

e You will use the Cache Simulator pintool you developed in Lab 2

o  Or the pintool provided in assign folder
e Your implementation of el2csr will be the input binary to the Cache pintool.
e You will measure appropriate metrics to report cache performance.

e Test different cache configurations, bin sizes and graph sizes (#edges and/or
#vertices)

e Recommend checking out Stanford Large Network Dataset Collection

NOTE: If you want to test graphs with different vertices, you should change MAX VTX
in graph.h and rebuild everything


http://snap.stanford.edu/data/

Impromptu Office Hours



