18-344 Recitation 8

Lab4 - Graph Processing Optimization

About Sparse Problems

Sparse Problems

What is a sparse problem? Why are they called “sparse™?

o Graph Processing Problems are Sparse Problems

o Machine Learning Problems are Sparse Problems

What makes sparse problems hard?

Protein-Protein Interaction |

Hidden layer

Hidden layer

-

FH

ReLU

&
%

| Graph Convolutional Networks I.\.

What does a graph processing program look like?

for e in EL:

Coo dstData[e.dst] =
(EdgeList) f(srcData[e.src],dstData[e.dst])
Edge
11 | | dstData
[]| srcData

stores vertex property information
if srcData == dstData, updating in-place;
often “swap” srcData & dstData from 1 iteration to the next iteration

Nobody EVER uses the adjacency matrix!

Why would the Adjacency Matrix not be used?

p————

17

Compressed Sparse Data Structures for Feasible Memory Size

Offsets Array (OA) 113 8
Neighbors Array (NA) 0/4|10[11|3 0ii:2
Compressed Sparse Row (CSR)
Edge] Outgoing Neighbors
St —=
Vertex Property Array
Po : D1 : ! : D3 . D4 i.e., srcData / dstData I-

So r 133 3

silg s | 4 fq Often we will leave the vertex property array
Src e implicitly defined when we talk about sparse

5211 IEEEEE structures, but it is always there

l Sz | 1 1
Se|2F 1% Y

Compressed Sparse Data Structures for Feasible Memory Size

OffsetsArray(OA) |0 |1 (3|6 8\‘
NeighborsArray(NA) 121014 1011131114102
EdgeList sorted by —_ Compressed Sparse Row (CSR)
Edge) SrcDs Outgoing Neighbors
St —
Dp Dy Dy Dz Dy The CSCis the transpose of the CSR
so| 1] Offsets Array (OA) [0 |3 |57 |8
S1|1: 1 l \
s, [111 (1
R e e e NeighborsArray(NA) |1 12 [(4|2|3|0(4[2|1|3
53 ! | ;
-------------------- EdgeList sorted by —_ Compressed Sparse Column (CSC) -
S4 1. 1 DstIDs Incoming Neighbors

Irreqular Accesses Lead to Poor Locality

LLC Miss Rate (%) Cycles stalled on DRAM / Total Cycles
100 1
80 08
60 » 0.6
40 04
20 02
0 0 ‘
PageRank SSSP-BF SSSP-DS BC PageRank Collaborative Breadth-First Betweenness
Filtering Search Centrality

Problem: Sparse representations make processing large graphs feasible, but Cache miss latency cannot be hidden by anything else
graph processing still entails a large working set with poor locality in the program. Each miss incurs DRAM latency!

38
Right Figure from “Optimizing Cache Performance for Graph Analytics” ArXiv v1;

CPU

(compute, flop/s)

DRAM Bandwidth
(GB/s)

DRAM

(data, GB)

The Roofline Model

Throughput
(GFLOP/S)

What does Roofline help us
understand about a program?
Tell us what limits performance
& how close to peak an app is.

Memory- Compute-

Bound@ :>Bound
. Peak FLOPS

® App2

“Ridge point” is a
property of a
particular machine

a
>

Operational Intensity
(FLOPS/Byte) 48

Propagation Blocking: Reorganize Input to Make
Memory Being Randomly Written Fit in Cache

Bad for the cache: the size of the domain of
vertex data array entries is |V|, but the
|Domain| = |V] =5 vertices cache holds only |C| << |V| entries

A
[|
C O DR w—
\ J

Y
| Cache| = 2 vertices

O|O|IN|O|-IN|IO
WA WNWINIO|IO|(—

Co0

(EdgeList) Recall: irregular accesses into

vertex data array based on
e.dst which are essentially random

Key idea in propagation blocking: Limit the domain of updates to a sub-space of vertices,
V*, so that |V*| <= |C| and do multiple sub-spaces of V*s, so that all V*s together =V

68

Propagation Blocking: Reorganize Input to Make
Memory Being Randomly Written Fit in Cache

Create “Bins” that hold input elements (edges

/ from the edge list)

0[1
20
110
02|
213
0l4
003
co0
(EdgeList)
Bin O: Bin1: Bin 2:
dst 0-1 dst 2-3 dst 4-5 dstData
Remember: dstData[e.dst] ++
Execute the kernel for one bin at a time and e.dst is random, from edge list

69

Propagation Blocking: Reorganize Input to Make
Memory Being Randomly Written Fit in Cache

coo
(EdgelList)
Bin 0: Bin 1: Bin 2:
dst 0-1 dst 2-3 dst 4-5 dstData
Remember: dstData[e.dst] ++
Execute the kernel for one bin at a time and e.dst is random, from edge list

71

Propagation Blocking: Reorganize Input to Make
Memory Being Randomly Written Fit in Cache

(o]0
(EdgeList)
Bin O: Bin 1: Bin 2:
dst 0-1 dst 2-3 dst 4-5 dstData
Remember: dstData[e.dst] ++
Execute the kernel for one bin at a time and e.dst is random, from edge list

72

Propagation Blocking: Reorganize Input to Make
Memory Being Randomly Written Fit in Cache

coo
(EdgeList)
Bin 0: Bin 1: Bin 2:
dst 0-1 dst 2-3 dst 4-5 dstData
Remember: dstData[e.dst] ++
Execute the kernel for one bin at a time and e.dst is random, from edge list

73

Propagation Blocking: Reorganize Input to Make
Memory Being Randomly Written Fit in Cache

coo
(EdgelList)
Bin 0: Bin 1: Bin 2:
dst 0-1 dst 2-3 dst 4-5 dstData
Remember: dstData[e.dst] ++
Execute the kernel for one bin at a time and e.dst is random, from edge list

74

example continues in |lecture slides

https://course.ece.cmu.edu/~ece344/course_documents/18-344%20Lecture%2016.pdf

Lab Detalls

Overview

e Task: Rewrite a Graph Processing Kernel to be more cache-friendly
e Kernel: Converting edge-list to CSR

e FEvaluation Metric: Cache metrics

o Use your lab2 cache simulator pintool to measure metrics

o If you prefer, we have provided you with a cache simulator that you can use for this lab
m memory-hierarchy.so in /afs/ece.cmu.edu/class/ece344/assign/

e Study sensitivity to bin size, graph size and cache configurations

Functions in csr.c

Edge List to CSR Conversion

CSR_EL_count_neigh()

Step1: |for e in EL:
neigh_count[e.src]++; /*e.srcx/

0/1
2|0
1|0)
02 neigh_count
2|3 CSR_cumul_neigh_count()
04
0[3]| Step2: [OA[O] =0
Ccoo for vtx in [1, MAX_VTX]:
(EdgeList) OA[vtx] = OA[vtx-1] + neigh_count[vtx-1]
Edge
Step 3: CSR_EL_neigh_pop()

for e in EL:
NA[OA[e.src]++] = e.dst

Completed Result

Your Task - Propagation Blocking

You will replace Steps 1 and 3 with a binned version
New Steps for EL2CSR conversion:

e Step 1: Traverse EL, populate bins

o choice of src/dest vtx for binning up to you

e Step 2: Generate neigh_count array, a bin at a time
e Step 3: Sequential Accumulation to generate OA

e Step 4: Generate NA, a bin at a time

Propagation Blocking: Reorganize Input to Make
Memory Being Randomly Written Fit in Cache

Create “Bins” that hold input elements (edges

/ from the edge list)

RECALL

0[1
2]0
s =
02
23]
0l4
0[3
Co0
(EdgeList) 0
Bin 0: Bin 1: Bin 2: =
dst 0-1 dst 2-3 dst 4-5 dstData
Remember: dstData[e.dst] ++
Execute the kernel for one bin at a time and e.dst is random, from edge list

69

Testing Correctness

e Step 1: Generate a graph with some edges using rand_graph, output is an
edgelist -- el _og

e Step 2: Use base implementation (provided by default) to convert edgelist to
CSR, using el2csr

e Step 3: Convert CSR back to EL using the csr2el program (this sorts the
edgelist — use this output to compare your implementation) -- el _base

e Step 4: Run your PB implementation to convert edgelist to CSR
e Step 5: Convert your CSR to EL (using csr2el) program -- el_student
e Step 6: diff el _base el student

o This should show no difference between the two EL

Testing Correctness | Flow Chart

[rand_graph }
I

el_og

without binning with binning

el2csr el2csr

Sanity check: diff flag
click image for man page

/

-s, --report-identical-files
report when two files are the same

same function

el _base el _student

[diff }i Should show no differences

https://man7.org/linux/man-pages/man1/diff.1.html

Evaluation

e You will use the Cache Simulator pintool you developed in Lab 2

o Or the pintool provided in assign folder
e Your implementation of el2csr will be the input binary to the Cache pintool.
e You will measure appropriate metrics to report cache performance.

e Test different cache configurations, bin sizes and graph sizes (#edges and/or
#vertices)

e Recommend checking out Stanford Large Network Dataset Collection

NOTE: If you want to test graphs with different vertices, you should change MAX VTX
in graph.h and rebuild everything

http://snap.stanford.edu/data/

Impromptu Office Hours

