
18-344 Recitation 7
Lab3 - Virtual Memory

Logistical Notes

● HW 6 Released (Due Nov 2nd)

● Lab 3 Released (Due Nov 7th)

● Lab 2 Grades released

● Midterm Grades released (graded out of 61)

Virtual Memory Overview

Virtual Memory Lab

Task 1: Implement a Page Table

● Page Table should have a 4-level hierarchy like discussed in class, with 512
entries per table (similar to Intel Core i7).

● You will be responsible for implementing memory mapping, page fault
handling and TLB implementation

Task 1: Implement a Page Table

vm-student.cpp/.h: You have to implement three functions:

● vmMap(vaddr, size)
○ Update Page Table to map `size` bytes at address `vaddr`; Could span multiple pages; create Page

Tables or PTEs here if not exist

● vmTranslate(vaddr)
○ TODOs in the handout; Return the translated physical address

● vmPageFaultHandler(*pte)
○ Handle Page Faults (page not residing in memory) here; if there exist free physical pages in memory,

allocate them with bumpAllocate() function; if you run out of free pages, replace an existing page with
the replacePage() function. These functions return the PPN to store in your PTE.

*You will not be writing the allocation or replacement logic

Task 2: Implement a TLB

tlb.cpp: Implement a TLB structure, with your choice of organization (size, ways,
replacement). You will also need two functions: lookup() and update()

● lookup(vaddr, &PPN)
○ Attempt to assign cached-PPN to the argument &PPN, and return true for hits

● update(vaddr, new_PPN)
○ Update the TLB entries with this new mapping. This may evict an existing entry, your TLB

organization should account for replacement.

Reporting the results

● Page Table implementation should report #page_faults, #num_accesses and
#tlb_hits

● You will justify your TLB organization with a quantitative analysis of these
three parameters.

● Show a plot of TLB misses vs TLB configurations
● Reason about the reduction in Page Table Walks due to your TLB
● Your code should also be robust to handle exceptions*: page faults and seg.

faults (unmapped accesses).
● Turn in your code, writeup and test traces!

