18-344 Recitation 2

Learning the Tool Chain

Logistics

e HW 1 released via gradescope due Sept 14, BEFORE CLASS

o Correction: Q2The latency of specific instructions

e Lab0 was due Sept 5.
e Lab1 releases Sept 14, Due Sept 21.

Recitation 1 Corrections

Spec2017 Failing Benches:

e deepsjeng, perlbench, specrandom
e X264
e No fails

Review

Amdahl’s Law

100% of execution time

45% - Memory Accesses 20% - Control Flow17.5% - Integer 12.5% - Fetch /

Amdahl’s Law:

optimized time=[1-pxtime /1.0] + [p x time / speedup] s
Or equivalently: E';itti”g
speedup=1/[(1-p)/1.0 + p/speedup]

Another view of the world: Gustafson’s Law

85% - Memory
Accesses

Gustafson’s Law for overall speedup with speedup factor of N:
(assume) Optimized time=T=1

Unoptimized time =T’ = (1-p)T + pT*N = (1-p) + pN

Scaled Speedup =T’ / T = (1-p) + pN

A Complete (but slightly messy)
RISCV-ish Datapath

PC+4

Program
Counter(PC

)

Branch: PC Source Select

Instructio
Fetch

Instructio
Memory

In A reg select
In B reg select

Input A
Register
Control

Input B
Register
_ Control

N AL LI

Input A

Op select

op = [+I %y xl/

Out reg select

Branch Target Address Offset

Op select

Register File

Output
Register
Control

st: data

op = [Id,st]

Id/st: address

What should go in the ISA?

Reduced Instruction Set Computer

rd
rd
rd
rd

Simple primitives:
Let software compose complex operations

Register operands:
Decouple functionality from memory accesses

Few total operations:
Usually only one way to do something

Few cases to map to control signals
in microarchitecture

M[imm]
M[req]
M[reg + imm]
M[PC + imm]

Complex Instruction Set Computer

Simple & complex operations:
Hardware must support complex functionality

Many operations:
Often several ways to do the same thing

Register and memory operands:
Operations may directly manipulate memory

Many cases to map to control
signals in microarchitecture

D(Rb,Ri,S)

Source Dest Src,Dest C Analog '?Q
y Reg movq $0x4,%rax temp = Oxd4; @’bé
Mem movq $-147, (%rax) *p = -147; e/‘“
s »
= : 7
movg Reg Reg movg %rax,$rdx temp2 templ; °/7;
Mem movqg %rax, (%rdx) *p = temp; S
27 2
Mem Reg movqg (%rax),%rdx temp = *p; 5

Plus all of these combinations
Mem[Reg[Rb]+S*Reg[Ri]+ D]

Principles of ISA Design

General Principles

. «“ . ”
Regularity — “Law of least astonishment An examination of the relation between architecture and compiler

Orthogonality — keep separable concerns separate
Composability — regular, orthogonal ops combine easily

design leads to several principles which can simplify compilers
and improve the object code they produce.

Specific Principles Compillers ane Computer Architecture

Carnegie-Mellon University

One vs. All - precisely one way to do it, or all ways should be possible

Primitives, not solutions — solve by coding, compiling, & synthesizing 3

“Blatant opinions” (matters of taste)

Addressing — not limited to simple arrays, etc.

Environment Support — exceptions, processes, debugging, etc

Deviations — deviate from these rules only in implementation-specific ways The interactions between the design of a computer’s
instruction set and the design of compilers that generate

simplify com
programs the
are absol

code for that computer have serious implicati for
overall computational cost and efficiency. This article,
which investigates those interactions. should ideallv be

, . Some architectures have provided direct
Designing irregular structures at the chip level implementations of high-level concepts. In

is very expensive. many cases these turn out to be more trouble
than they are worth.

ever, they leac
neonle have ¢

RISCV ISA

* We will learn about ISA design by learning about
RISCV

* Modern, full-featured RISC ISA
* Developed in the last decade at UC Berkeley

* The fifth in a sequence of RISC ISAs originating in the 80s

* https://riscv.org/technical/specifications/
* The RISC-V Instruction Set Manual, Volume |: BaseUser-Level ISA, Waterman et al, 2011

» Goals
* Open-source
* Free
» Simple, but full-featured; avoids “over-architecting” for a particular uArch style (FPGA,
ASIC,...)
» Extensible through extension specifications and variants
» Support heterogeneous & parallel systems efficiently
» Support 32- and 64-bit variants efficiently

* Fully virtualizable
e S i1innnrte (hiitt Arnce nat randtiira) IEEE 74 ElantinAa PDAaint

https://riscv.org/technical/specifications/

Tooling

SPEC2017 Benchmark Suite

SPEC CPU® 2017

SPECspeed®2017 ——
| Languagel1] KLOC[21 Application Area

600.perlbench_s C 362 Perl interpreter

602.gcc_s C 1,304 GNU C compiler

605.mcf_s C 3 Route planning

620.omnetpp_s C++ 134 Discrete Event simulation - computer network
623.xalancbmk_s C++ 520 XML to HTML conversion via XSLT

625.x264_s C 96 Video compression

631.deepsjeng_s C++ 10 Artificial Intelligence: alpha-beta tree search (Chess)
641.1eela_s C++ 21 Artificial Intelligence: Monte Carlo tree search (Go)
648.exchange2_s Fortran 1 Artificial Intelligence: recursive solution generator (Sudoku)

657.xz_s C 33 General data compression

https://www.spec.org/cpu2017/

Pin and Pintools

Pin allows you to inspect and instrument an executable x86 binary, a single instruction at
a time.

Why do we care?

Suppose when you execute the binary, you want it to stop every time there is a branch
instruction, execute a different function (e.g. counting #branches), and then return back to the
main binary.

Pin allows you to write a branch-counting pintool, which will “instrument” the original binary.

This means the pintool will add instructions to the original binary, causing it to call the
branch-counting function every time there is a branch instruction. Pin then runs this modified,
instrumented binary.

What is a pintool?

« While Pin executes the instrumented binaries, the pintool defines how
the binary is instrumented.

pin |-t SHOME/18344/obj-intel64/mem-count.so J-o test.stats -- ICUIl https://google.coml

N

pintool X binary to
instrument
The pintool specifies that an instrumentation function should be called for
each instruction, which identifies the (load, store) instructions, and for each
(load,store) instruction, calls another function to count the (load, store).

Important components of a pintool

We will focus on three main components of a pintool:

1. Knobs
a. Command-line arguments to the pintool

2. AddinstrumentFunction
a. Instrumenting each instruction

3. AddFiniFunction
a. What runs after the main application is complete

Knobs - Command Line Arguments

Knobs allow passing command-line arguments to the pintool. This will be useful to dynamically select, e.g. a
different branch prediction algorithm, from the command-line without recompiling the pintool.

Format of a Knob:

KNOB<datatype> KnobName (KNOB_MODE, KNOB_FAMILY, PREFIX, DEFAULT VALUE, PURPOSE) ;
datatype - type of the data being read from the command line (e.g. string, UINT32, etc)

KnobName - Name for the Knob, will be used to refer to the Knob through the rest of the program

KNOB_MODE - Indicates how multiple arguments for the same Knob are handled (e.g. if KNOB_MODE_WRITEONCE is used, only the first
argument will be read into the Knob)

KNOB_FAMILY - Name for the family that the Knob belongs to, you can turn on/off Knobs by their families.
PREFIX!- The flag that will be used on the command line for this Knob (e.g. -o for output file name)

DEFAULTIVALUE - Default value of the Knob if nothing specified on command line

_ - String description that explains what the Knob does _

Knobs - Command Line Arguments

KNOB<datatype> KnobName (KNOB MODE, KNOB FAMILY,

Example:

datatype KnobName KNOB_MODE

R

KNOB<stringp| KnobOutputFilel(KNOB_MODE WRITEONCE|

2 2

PREFIX DEFAULT

Passing a command-line argument to this

Knob:
pin -t SHOME/18344/obj-intel64/mem-count.so

PREFIX, DEFAULT VALUE, PURPOSE

KNOB_FAMILY

PURPOSE

-0 test.stats

-— curl https://google.com

) ;

Using Knobs in the pintool

KNOB<string> KnobOutputFile(KNOB_MODE_WRITEONCE,

2 2

The KnobName.Value() function gives the value stored in the Knob.

std::ofstream out(KnobOutputFile.Value().c_str());

Here, KnobOutputFile.Value() returns the string stored in the Knob. If nothing is specified on the
command-line, this will return the default value, which is “memcount.stats” in this case.

You can define similar Knobs to read integer values, e.g. to specify the size of a cache, TLB, etc.

INS_AddinstrumentFunction

Allows you to specify a function that is called for every single
instruction
// Insert call to function that runs for every instruction

INS AddInstrumentFunction (Instruction, O0);

Here, Instruction is the function that is called for each instruction.

Example Instruction() - Instrument Mem. Accesses

// Runs for every instruction

VOID Instruction(INS ins, void * v)

Count Memory Operands 5
in the instruction

UINT32 memOperands =JINS_MemoryOperandCount(ins);

// Instrument each memory operand. If the operand is both read and written
// it will be processed twice.

// Iterating over memory operands ensures that instructions on IA-32 with
// two read operands (such as SCAS and CMPS) are correctly handled.

for (UINT32 memOp = 0; memOp < memOperands; memOp++)

{
const UINT32 size = INS_MemoryOperandSize(ins, memOp);
. if (INS_MemoryOperandIsRead(ins, memOp))
If memory operand is read, {
// map sparse INS addresses to dense IDs
Ca" the Load() function const ADDRINT iaddr = INS_Address(ins);

INS_InsertPredicatedCall(
ins, IPOINT_BEFORE, (AFUNPTR) Load,
IARG_MEMORYOP_EA, memOp,
IARG_UINT32, size,
IARG_ADDRINT, iaddr,

IARG_END);
}
if (INS_MemoryOperandIsWritten(ins, memOp))
. . {
If memory operand Is written, const ADDRINT iaddr = INS_Address(ins);

Ca" the Store() funCtion' INS_Insertpredingegggkm_ssmm, (AFUNPTR) Store,

IARG_MEMORYOP_EA,memOp,
IARG_UINT32, size,
IARG_ADDRINT, iaddr,
IARG_END);

We will provide you with the Instruction() required for the lab!

Example Instruction() - Instrument Mem. Accesses

// Runs for every instruction

VOID Instruction(INS ins, void * v)

VOID Load(ADDRINT addr, UINT32 size, ADDRINT instAddr)

UINT32 memOperands = INS_MemoryOperandCount(ins);

// Instrument each memory operand. If the operand is both read and written
W, it will be processed twice.

VOID Store(ADDRINT addr. UINT32 size. ADDRINT instAddr) /] Mserating over memory operands ensures that instructions on IA-32 with
2 2 // two ™ead operands (such as SCAS and CMPS) are correctly handled.

for (UINT3Z2%qemOp = O; memOp < memOperands; memOp++)

H - const UINT32 s®=e = INS_MemoryOperandSize(ins, memOp);

ere, i_f (INS_MemoryOperandI'sRead(ins, memOp))

U
addr -address being read/written to oM ADDRINT addr = TNS_AdS Boa(ins)s
INS_InserwPredicatedCall(
size -size of the data being read/written Se e Sl [
IARG UINT32, size,

instAddr - address of the instruction itself : 7
For the labs, these arguments are all you need e e
to know about. You will write functions that use it sl T
these arguments for solving the labs. SRR S e e e

IARG_MEMORYOP_EA,memOp,
IARG_UINT32, size,
IARG_ADDRINT, iaddr,
IARG_END);

We will provide you with the Instruction() required for the lab!

Example Instruction() - Instrument Branch

Instructions N
Check if instruction is TRUE for only conditional
a branch branches

oid IpstrufentInstruction(@FNS—tRsy—vlid—tva—yl
lf (INS_IsBranch(ins)| && |INS HasFallThrough(lns)l {
INS IRSértcacc(ins, IPOINT_BEFORE, (AFUNPTR) branch|
IARG_INST_PTR, IARG_BRANCH_TAKEN, IARG_ENDTJ;

void branch(ADDRINT pc, bool brTaken)

Here,

pc -address of the instruction brTaken =-whether the branch is taken or not

We will provide you with the Instruction() required for the lab!

INS_AddFiniFunction

Allows you to specify a function that is called after the original binary has completed

execution
INS_AddFiniFunction(Fini, 0);

VOID Fini(INT32 code, VOID * v)
{

std::ofstream out(KnobOutputFile.Value().c_str());

//Output your results here

out.close();

tmux demo

Q&A + impromptu OH

