
18-344 Recitation 2
Learning the Tool Chain

Logistics

● HW 1 released via gradescope due Sept 14, BEFORE CLASS
○ Correction: Q2The latency of specific instructions

● Lab0 was due Sept 5.
● Lab1 releases Sept 14, Due Sept 21.

Recitation 1 Corrections

Spec2017 Failing Benches:

● deepsjeng, perlbench, specrandom
● x264
● No fails

Review

Amdahl’s Law

100% of execution time

45% - Memory Accesses 20% - Control Flow17.5% - Integer 12.5% - Fetch

5% -
Floating
Point

Amdahl’s Law:
optimized time = [1-p x time / 1.0] + [p x time / speedup]
Or equivalently:
speedup = 1 / [(1 – p) / 1.0 + p / speedup]

85% - Memory
Accesses

Gustafson’s Law for overall speedup with speedup factor of N:
(assume) Optimized time = T = 1
Unoptimized time = T’ = (1-p)T + pT*N = (1-p) + pN
Scaled Speedup = T’ / T = (1-p) + pN

Another view of the world: Gustafson’s Law

A Complete (but slightly messy)
RISCV-ish Datapath

Input A Input B

ALU
ALU: output C

Reg 1
Reg 2
Reg 3
Reg 4

Register File

Output
Register
Control

Input A
Register
Control

Input B
Register
Control

Instruction
Memory

In
st

ru
ct

io
n

D

ec
o

d
e

Instruction
FetchProgram

Counter(PC
)

In A reg select

In B reg select

Op select
op = [+, -, x, /]

Out reg select

4

+

Memory
Unit

Op select
op = [ld,st]

ld: data

Data
Memory

st: data

ld/st: address

Branch Target Address Offset

MUX

Branch: PC Source Select

PC+4

+

What should go in the ISA?

Reduced Instruction Set Computer
Simple primitives:
Let software compose complex operations

Complex Instruction Set Computer
Simple & complex operations:
Hardware must support complex functionality

Register operands:
Decouple functionality from memory accesses

Few total operations:
Usually only one way to do something

Register and memory operands:
Operations may directly manipulate memory

Many operations:
Often several ways to do the same thing

Many cases to map to control
signals in microarchitecturerd = M[imm]

rd = M[reg]
rd = M[reg + imm]
rd = M[PC + imm]

Plus all of these combinations

Few cases to map to control signals
in microarchitecture

Principles of ISA Design

General Principles
Regularity – “Law of least astonishment”
Orthogonality – keep separable concerns separate
Composability – regular, orthogonal ops combine easily

Specific Principles
One vs. All – precisely one way to do it, or all ways should be possible
Primitives, not solutions – solve by coding, compiling, & synthesizing

“Blatant opinions” (matters of taste)
Addressing – not limited to simple arrays, etc.
Environment Support – exceptions, processes, debugging, etc
Deviations – deviate from these rules only in implementation-specific ways

RISCV ISA

• We will learn about ISA design by learning about
RISCV

• Modern, full-featured RISC ISA

• Developed in the last decade at UC Berkeley
• The fifth in a sequence of RISC ISAs originating in the 80s

• https://riscv.org/technical/specifications/
• The RISC-V Instruction Set Manual, Volume I: BaseUser-Level ISA, Waterman et al, 2011

• Goals
• Open-source
• Free
• Simple, but full-featured; avoids “over-architecting” for a particular uArch style (FPGA,

ASIC,…)
• Extensible through extension specifications and variants
• Support heterogeneous & parallel systems efficiently
• Support 32- and 64-bit variants efficiently
• Fully virtualizable
• Supports (but does not require) IEEE 754 Floating Point

https://riscv.org/technical/specifications/

Tooling

SPEC2017 Benchmark Suite

SPEC CPU® 2017

https://www.spec.org/cpu2017/

Pin and Pintools

Pin allows you to inspect and instrument an executable x86 binary, a single instruction at
a time.

Why do we care?

Suppose when you execute the binary, you want it to stop every time there is a branch
instruction, execute a different function (e.g. counting #branches), and then return back to the
main binary.

Pin allows you to write a branch-counting pintool, which will “instrument” the original binary.

This means the pintool will add instructions to the original binary, causing it to call the
branch-counting function every time there is a branch instruction. Pin then runs this modified,
instrumented binary.

● While Pin executes the instrumented binaries, the pintool defines how
the binary is instrumented.

pin -o test.stats -- curl https://google.com

The pintool specifies that an instrumentation function should be called for
each instruction, which identifies the (load, store) instructions, and for each
(load,store) instruction, calls another function to count the (load, store).

What is a pintool?

pintool binary to
instrument

-t $HOME/18344/obj-intel64/mem-count.so

We will focus on three main components of a pintool:

1. Knobs
a. Command-line arguments to the pintool

2. AddInstrumentFunction
a. Instrumenting each instruction

3. AddFiniFunction
a. What runs after the main application is complete

Important components of a pintool

Knobs allow passing command-line arguments to the pintool. This will be useful to dynamically select, e.g. a
different branch prediction algorithm, from the command-line without recompiling the pintool.

Format of a Knob:

KNOB<datatype> KnobName (KNOB_MODE, KNOB_FAMILY, PREFIX, DEFAULT_VALUE, PURPOSE);

datatype - type of the data being read from the command line (e.g. string, UINT32, etc)

KnobName - Name for the Knob, will be used to refer to the Knob through the rest of the program

KNOB_MODE - Indicates how multiple arguments for the same Knob are handled (e.g. if KNOB_MODE_WRITEONCE is used, only the first
argument will be read into the Knob)

KNOB_FAMILY - Name for the family that the Knob belongs to, you can turn on/off Knobs by their families.

PREFIX - The flag that will be used on the command line for this Knob (e.g. -o for output file name)

DEFAULT_VALUE - Default value of the Knob if nothing specified on command line

PURPOSE - String description that explains what the Knob does

Knobs - Command Line Arguments

Fields you will use in this class

PREFIX DEFAULT

Passing a command-line argument to this
Knob:
pin -t $HOME/18344/obj-intel64/mem-count.so -o test.stats -- curl https://google.com

KNOB<datatype> KnobName (KNOB_MODE, KNOB_FAMILY, PREFIX, DEFAULT_VALUE, PURPOSE);

Example:

Knobs - Command Line Arguments

datatype KnobName KNOB_MODE KNOB_FAMILY

PURPOSE

Using Knobs in the pintool

The KnobName.Value() function gives the value stored in the Knob.

Here, KnobOutputFile.Value() returns the string stored in the Knob. If nothing is specified on the
command-line, this will return the default value, which is “memcount.stats” in this case.

You can define similar Knobs to read integer values, e.g. to specify the size of a cache, TLB, etc.

Allows you to specify a function that is called for every single
instruction
// Insert call to function that runs for every instruction

INS_AddInstrumentFunction(Instruction, 0);

Here, Instruction is the function that is called for each instruction.

INS_AddInstrumentFunction

Example Instruction() - Instrument Mem. Accesses

Count Memory Operands
in the instruction

If memory operand is read,
call the Load() function.

If memory operand is written,
call the Store() function.

We will provide you with the Instruction() required for the lab!

Example Instruction() - Instrument Mem. Accesses

Here,

addr

size

- address being read/written to

- size of the data being read/written

instAddr - address of the instruction itself

For the labs, these arguments are all you need
to know about. You will write functions that use
these arguments for solving the labs.

We will provide you with the Instruction() required for the lab!

Example Instruction() - Instrument Branch
Instructions

Check if instruction is
a branch

TRUE for only conditional
branches

brTaken

Here,

pc - address of the instruction - whether the branch is taken or not

We will provide you with the Instruction() required for the lab!

Allows you to specify a function that is called after the original binary has completed
execution
INS_AddFiniFunction(Fini, 0);

INS_AddFiniFunction

tmux demo

Q&A + impromptu OH

