18-344 Recitation 10

Lab 5 - Synchronization: Overview

Logistical Notes

- HW 9 due Nov 21
- Lab 4 due Nov 28
- Thanksgiving Break next week

Review of the week

- Recap: sparse problems
- Cache coherence
- MSI, MESI, snoopy
- Data races
- Mutex, SpinLocks, Transactional Memory
- Memory Consistency
- Reordering: write buffers, write combining, etc

Intel Transactional Memory

General Psuedo-code

```
for(i = 0..MAX TRIES) {
if(xbegin()) {
    ...; xend();
    goto done;
//Fallback code here
Lock()
... // do work
Unlock()
```

Done: //continue

Reasons a transaction might abort

- Too many blocks with their TM bits set leaves no room for more TM blocks
- Too many defined as "more blocks w/ TM bits set than blocks in a way"
- Conflict with another transaction or non-transactional access
- identified through incoming coherence traffic
- Explicit xabort() instruction when transactional code concludes transaction is not useful
- Other, unspecified, but arbitrary conditions left up to the micro architects
- I speculate that these are related to internal buffers of fixed capacity

Lab Logistics

You will be using Intel Transactional Memory, make sure to use a machine that supports it

ece029, ece030, ece031

You can double check the TSX is enabled using the binary:

./has-tsx

Task 1: Giga-Updates Per Second (GUPS) Kernel

NoSync:

for(int i = 0; i < num_iters; i++){</pre> <u>size_t ind</u> = rand() % kv_entries; kv[ind]++;

KV	1	0	1	2	2	2	1	1
KV	1	0	1	2	3	2	1	1

10th iteration

11th iteration

Task 1: GUPS Kernel

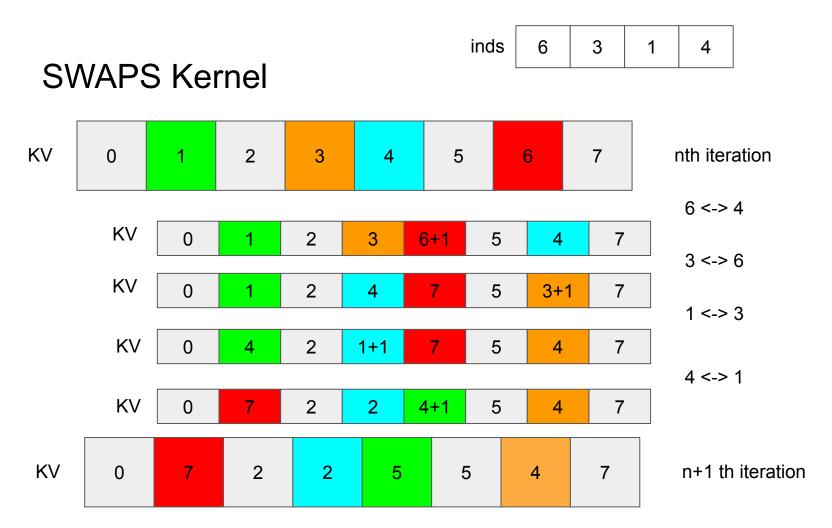
Parameters:

num_entries - Number of entries in the Key - Value array

num_threads - Number of threads running a kernel

num_iters - number of times each thread will run the kernel

Task 1: GUPS Kernel


Fix synchronization problems using:

- 1. pthread_spinlock_t
- 2. __sync_fetch_and_add
- 3. __sync_bool_compare_and_swap
- 4. Transactional Memory

All fixes should have the same sum!

Task 2: Swap Within Array Partition Set (SWAPS) Kernel

}

Task 2: SWAPS Kernel

Parameters:

num_entries - Number of entries in the Key - Value array

num_threads - Number of threads running a kernel

num_iters - number of times each thread will run the kernel

num_swaps - number of swaps per kernel execution

Useful resource

A Primer on Memory Consistency and Cache Coherence

- Daniel J. Sorin Mark D. Hill David A. Wood