
18-344 Recitation 10
Lab 5 - Synchronization: Overview

Logistical Notes

● HW 9 due Nov 21
● Lab 4 due Nov 28
● Thanksgiving Break next week

Review of the week

● Recap: sparse problems
● Cache coherence
● MSI, MESI, snoopy
● Data races
● Mutex, SpinLocks, Transactional Memory
● Memory Consistency
● Reordering: write buffers, write combining, etc

Intel Transactional Memory

General Psuedo-code

for(i = 0..MAX_TRIES){
if(xbegin()){

...; xend();
goto done;

}
}

//Fallback code here
Lock()
… // do work
Unlock()

Done:
//continue

Reasons a transaction might abort

• Too many blocks with their TM bits set leaves no room for more TM blocks
• Too many defined as “more blocks w/ TM bits set than blocks in a way”
• Conflict with another transaction or non-transactional access
• identified through incoming coherence traffic
• Explicit xabort() instruction when transactional code concludes transaction is not
useful
• Other, unspecified, but arbitrary conditions left up to the micro architects
• I speculate that these are related to internal buffers of fixed capacity

Lab Logistics

You will be using Intel Transactional Memory, make sure to use a machine that
supports it

ece029, ece030, ece031

You can double check the TSX is enabled using the binary:

./has-tsx

Task 1: Giga-Updates Per Second (GUPS) Kernel

NoSync:

 for(int i = 0; i < num_iters; i++){
size_t ind = rand() % kv_entries;
kv[ind]++;

 }

1 0 1 2 2 2 1 1 10th iteration

1 0 1 2 3 2 1 1 11th iteration

KV

KV

Task 1: GUPS Kernel

Parameters:

num_entries - Number of entries in the Key - Value array

num_threads - Number of threads running a kernel

num_iters - number of times each thread will run the kernel

Task 1: GUPS Kernel

Fix synchronization problems using:

1. pthread_spinlock_t
2. __sync_fetch_and_add
3. __sync_bool_compare_and_swap
4. Transactional Memory

All fixes should have the same sum!

Task 2: Swap Within Array Partition Set (SWAPS) Kernel

for(int i = 0; i < num_iters; i++){
 uniq_list(kv_entries, num_swaps, inds);
 for(int j = 0; j < num_swaps; j++){
 int j2 = j == 0 ? (num_swaps-1) : j-1;
 unsigned long t = kv[inds[j2]];

kv[inds[j2]] = kv[inds[j]];
 kv[inds[j]] = t+1;
 }

}

SWAPS Kernel

0 1 2 3 4 5 6 7 nth iteration

6 3 1 4

KV

inds

0 1 2 3 6+1 5 4 7KV

0 1 2 4 7 5 3+1 7KV

0 4 2 1+1 7 5 4 7KV

6 <-> 4

3 <-> 6

1 <-> 3

0 7 2 2 4+1 5 4 7KV
4 <-> 1

0 7 2 2 5 5 4 7 n+1 th iterationKV

Task 2: SWAPS Kernel

Parameters:

num_entries - Number of entries in the Key - Value array

num_threads - Number of threads running a kernel

num_iters - number of times each thread will run the kernel

num_swaps - number of swaps per kernel execution

Useful resource

A Primer on Memory Consistency and Cache Coherence
- Daniel J. Sorin Mark D. Hill David A. Wood

https://course.ece.cmu.edu/~ece847c/S15/lib/exe/fetch.php?media=part2_2_sorin12.pdf

