18-344 Recitation 8

11/07/2025

Outline

LN~

Logistics
Homeworks
Review

Lab 3

Logistics

e Homework 7 released, deadline extended: November 10 (Monday) (in 3 days)
o Covers lectures 15-16

e Homework 8 released, due on November 17 (Monday) (in 10 days)
o Covers lecture 17

e |ab 3 deadlines extended as well
o Code freeze: October 21 (Friday) (in two weeks)
m Submit (push a commit to your repo) on GitHub Classroom
o Report: November 24 (Monday) (in two weeks + three days)
m Submit on Gradescope

e Lab 4 will still be released on November 17
o Code freeze: December 11
m Submit (push a commit to your repo) on GitHub Classroom
o Report: December 14
m Submit on Gradescope

Homework 7 — in case you missed it

How to calculate the average ILP given a sequence of instructions?

13

For this assignment, we define: [LP —_—

IS

where Tn is the number of cycles to execute the sequence of instructions

with M execution units.

Review

Scalar/Vector/(Spatial) Dataflow architectures

Memory | DCache access ICache access Compute + Control
‘ Vector
Compute + . 5
Memory | DCache access | ICache o] Vector register file

‘ Dataflow

Compute +
Memory | DCache access | ICache i

‘ Coarse-grained Reconfigurable Array Architectures

Key idea: architecture eliminates

Memory Compute instruction & control overheads

! Brandon Lucia. 2024. Energy-minimal Computing: Edge architectures for extreme efficiency. CMU 18-344.

Spatial dataflow for programmable acceleration

Dense matrix-vector multiplication:

Pseudocode and dataflow-graph (DFG)’

def dmv (A, B, Z, m, n):
for i = 0..m:

w =20
for j = 0..n:
w += A[i,j] * B[j]
Z[i] = w

! Nikhil Agarwal et al. 2024. The TYR Dataflow Architecture: Improving Locality by Taming Parallelism. MICRO 2024.

Dataflow in action

Dense matrix-vector multiplication’s inner loop: a running example’

! Nikhil Agarwal et al. 2024. The TYR Dataflow Architecture: Improving Locality by Taming Parallelism. MICRO 2024.

Sparse problems

Machine learning, networking, and many more problems all involve sparse data.

movies

movies

Compressed Sparse Columns/Rows — CSC/CSR

Matrices/tensors in sparse problems have high memory footprint yet low density.
=> Convert and store data in more space-efficient formats (e.g. CSC and CSR).

How to convert a matrix/edge list to CSR?

Edge list (may not always be sorted)
(also called COO, coordinate list):

10

2 = 0 = 7
2 =1 =: 3
1 = 0 4
1 - 3 5
3 = 3 3
4 = 0 1
7 = 2 9
5 —=> 0 2
5 = 2 8

EL to CSR: 1/ Sort EL by rows (user)

user — movie : welght

ool N B W R NN
N N R R R
NS N © W wWwWe ko
coN O - W U PEs W

11

EL to CSR: 1/ Sort EL by rows (user)

user — movie : welght

D

T =N~ W e
N N R R R
coON O = W o= W

12

EL to CSR: 1/4 Sort EL by rows (user)

user — movie : welght

N U~ W NN R
N N N A R AN
N NS © W RO WwWoe
O ON P W WN us

13

EL to CSR: 2/4 Count neighbors and build offset array

user

~ o1 o =~ W NN Bl)

— movie

— 0
— 3
— 0
— 1
— 3
— 0
— 0
— 2
—> 2

weight

O OoON P W WY o1&~

Neighbor count for each user

Start from 0

Offset Array (OA)

14

EL to CSR: 2/4 Count neighbors and build offset array

user

N U B~ W NN R

— movie : weilght

N 0 4 Neighbor count for each user

— 3 5 u, u, u, U, UuUs u,

- 0 / 21111201

- 1 3

N 3 3 No edge starting from u,,
+ =0

- 0 1

- 0 2

N 5 3 Offset Array (OA)

- 2 9

15

EL to CSR: 2/4 Count neighbors and build offset array

user

~ o1 o =~ W NN el

— movie

— 0
— 3
— 0
— 1
— 3
— 0
— 0
— 2
—> 2

weight

O OoON P W WY U &

Neighbor count for each user

u, u, u, u, u, u, u. u

0 2 11111201
+ = 2

0

Offset Array (OA)

16

EL to CSR: 2/4 Count neighbors and build offset array

user — movie : weight

1 N 0 . A Neighbor count for each user

1 - 3 5 Ug Us Us Uy
0 2101(1

3 - 3 3 =4

4 - 0 1 0

5 - 0 2

5 N 5 3 Offset Array (OA)

7 - 2 9

17

EL to CSR: 2/4 Count neighbors and build offset array

user — movie : weight

1 N 0 . A Neighbor count for each user

1 —> 3 : 5 u, u, u,
0| 2 1

3 - 3 3 =3

4 - 0 1 ol o

5 - 0 2

5 —> 2 8 Offset Array (0A)

7 - 2 9

EL to CSR: 2/4 Count neighbors and build offset array

user — movie : weight
1 N 0 . 0 Neighbor count for each user
1 —> 3 : 3 u, u,
0| 2
=6
0|0
Offset Array (OA)

19

EL to CSR: 2/4 Count neighbors and build offset array

user — movie : weight
1 N 0 . 0 Neighbor count for each user
1 —> 3 : 3 u, u,

0| 2

0|0

Offset Array (OA)

20

EL to CSR: 2/4 Count neighbors and build offset array

user — movie welght
1 — 0 : 4
1 — 3 : 5

Neighbor count for each user
u, u

0| 2

No edge starting from u,

8+ 0=28

Offset Array (OA)

0|0

21

EL to CSR: 2/4 Count neighbors and build offset array

user — movie : weight
1 N 0 . 4 Neighbor count for each user
1 —> 3 S 5 u,
0
0
Offset Array (OA)

22

EL to CSR: 2/4 Count neighbors and build offset array

user — movie : weight
1 — 0 : 4
1 — 3 : 5
3 - 3 : 3
5 — 0 : 2
5 — 2 8

7 - 2 : 9

Offset Array (OA)

0

1 Ok

The last element in OA always
equals to size(edges)

-

23

EL to CSR: 3/4 Build neighbor array

user — movie : weight
Offset Array (OA)

1 - 0 4

For each non-zero-length interval in the
OA, append its edges’ destinations
(movies) to the NA in-order.

Neighbor Array (NA)

24

EL to CSR: 3/4 Build neighbor array

user — movie : weight
Offset Array (OA)

1
1

:

e

8 Neighbor Array (NA)

25

EL to CSR: 3/4 Build neighbor array

user — movie : weight
1 — 0 : 4
1 — 3 : 5

NS

Offset Array (OA)

0

I B E

>

—o—

Neighbor Array (NA)

26

EL to CSR: 3/4 Build neighbor array

Offset Array (OA)

user — movie : weight
1 — 0 4
1 — 3 5

0

3 ook

—g—

8 Neighbor Array (NA)

27

EL to CSR: 3/4 Build neighbor array

user

1
1

— movie

—> 0
—> 3

weight

Offset Array (OA)

0

3 pok

D

0

= s

Neighbor Array (NA)

28

EL to CSR: 3/4 Build neighbor array

user — movie

1
1

0
3

weight

Offset Array (OA)

0

o Il =] -T- I
7

0

3

3

Neighbor Array (NA) J

EL to CSR: 3/4 Build neighbor array

user — movie

1
1

0
3

weight

Offset Array (OA)

0

0

0

Neighbor Array (NA)

30

EL to CSR: 3/4 Build neighbor array

Offset Array (OA)

user — movie : weight
1 — 0 : 4
1 - 3 5 0

Neighbor Array (NA)

0

S

31

EL to CSR: 4/4 Build the property array (if needed)

user — movie : weight
Offset Array (OA)

1

1 oo [l <[5 < [+ - |
Neighbor Array (NA)

Property Array (PA)
2]8]9

32

EL to CSR: done!

Offset Array (OA) (1ndptr)

user — movie : weight
1 — 0 : 4
1 - 3 5 0

0

B - [

0

3

Neighbor Array (NA) (1ndices)

0

Property Array (PA) (data)

s

5

33

How to use the CSR?

Say, we are interested in user uz’s
rating for movie m,.

First, we find the offset for user u
by indexing

Next, we iterate through NA with
range OA[2] ... OA[2+1]-1
(inclusive) and check for a match
with movie m1’s index, 1.

If match (e.g. at NA[1]), we then
index PA[1i] to find user u,’s rating.

Offset ArrayNOA) (1ndptr)

NeighborlArray (NA) (indices)

34

EL (COO), CSC, and CSR

You should now be able to convert EL to CSR.
Similarly, you should be able to convert EL to CSC.

By traversing the CSC/CSR (as seen on last slide), you should be able to convert
CSC and CSR to EL as well.

This is what you’ll be implementing in the next lab!
(Without the property array.)
More to follow in upcoming weeks’ recitations.

35

Lab 3

Lab 3 — in case you missed it

There’s a little pintool that we distribute called vm_trace.

This pintool will be very useful for you to test and profile your VM implementation
on real-world workloads.

It is not required that you use this pintool, however we highly recommend you
use it. (You'll need to somehow generate sufficiently complex traces for testing
anyways. Why not go with the easier route?)

vm_trace is NOT included in the regular lab3 tar ball.
It is available separately at:
/afs/ece.cmu.edu/class/ece344/assign/vm_trace.tar.gz

37

