18-344 Recitation 7

10/31/2025

Outline

1. Logistics
2. Review
3. Lab3

Logistics

e Homework 7 released, due November 5 (Wednesday) (in 5 days)
o Covers lectures 15-16

e Lab3

o Code freeze: October 14 (Friday) (in two weeks)

m Submit (push a commit to your repo) on GitHub Classroom
o Report: November 17 (Monday) (in two weeks + three days)

m Submit on Gradescope

Review

Pipeline data hazards

sub , X5, X& sub x8, x16, x4 lw , @xabc
lw x16% 0xabc add , X6, X114 sub x6, x5, x4
add x12, x6, x1l4 lw x16, 0xabc add x12 x6, x1l4
Read-After- (RAW) -After-Read (WAR) -After-Write (WAW)

There’s always data hazards in programs, and we can’t change that.

How to further exploit ILP?

Exploiting ILP using multiple issue

Common Issue Hazard Distinguishing

name structure detection Scheduling characteristic Examples

Superscalar Dynamic ~ Hardware Static In-order execution Mostly in the embedded

(static) space: MIPS and ARM,
including the Cortex-AS3

Superscalar Dynamic ~ Hardware = Dynamic Some out-of-order None at the present

(dynamic)

execution, but no
speculation

Superscalar Dynamic Hardware

Dynamic with

Out-of-order execution

Intel Core 13, 15, 17; AMD

(speculative) speculation with speculation Phenom; IBM Power 7
VLIW/LIW Static Primarily Static All hazards determined Most examples are in signal
software end indicated by compiler processing, such as the TI

ERIC Primarily

What we mean when we say “superscalar

static out-of-order” in this class.

IJJ uiv \'Ullll.lll\/l

Computer Architecture: A Quantitative Approach 6th Edition, Hennesy and Patterson

Exploiting ILP using multiple issue

Common Issue Hazard Distinauishina

Hardware-based speculation:
1. Dynamic branch prediction to choose which instructions to execute
2. Speculation to allow the execution of instructions before the control dependences are resolved

3. Dynamic scheduling to deal with the scheduling of different combinations of basic blocks

7

speculation
Superscalar Dynamic Hardware Dynamic with Out-of-order execution Intel Core 13, 15, 17; AMD
(speculative) speculation with speculation Phenom; IBM Power 7
VLIW/LIW Static Primarily Static All hazards determined Most examples are in signal
software and indicated by compiler processing, such as the TI
(often implicitly) Co6x
ERIC Primarily ~ Primarily =~ Mostly static All hazards determined [tanium
static software and indicated explicitly

by the compiler

Computer Architecture: A Quantitative Approach 6th Edition, Hennesy and Patterson

Register renaming

lw , O0xabc
RAW
sub x5, x6, x4

‘/WAR

add , x11, x14

Instruction stream
Instruction stream Renaming table after renaming

Register renaming

lw: x6 = ril
lw , Oxabc lw ri1, 0Oxabc

RAW
sub x5, x6, X4

‘/WAR

add , x11, x14

Instruction stream
Instruction stream Renaming table after renaming

Register renaming

lw , @xabc
RAW
sub x5, x6, x4

‘/WAR

add , x11, x14

Instruction stream

lw:

sub:

X6 = ril

X5 — r2

X6 &< ril

lw rl, 0xabc

sub r2, ri1, x4

Renaming table

Instruction stream
after renaming

10

Register renaming

lw , @xabc
RAW
sub x5, x6, x4

‘/WAR

add , x11, x14

Instruction stream

lw: x6 — ril
sub: x5 — r2

X6 < rl
add: x6 — r3

lw rl, 0xabc
sub r2, ri1, x4

add r3, x11, x14

Renaming table

Instruction stream
after renaming

11

Register renaming

lw , O0xabc

RAW
sub x5, x6, X4

‘/WAR

add , x11, x14

Instruction stream

Gets rid of the false dependence.

lw:

sub:

add:

X6

x5

X6

X6

N NN

ril

r2

ril

r3

lw , @xabc

RAW
sub r2, ril, x4

Y
Y

y
add r3, x11, x14

Renaming table

Instructibn stream
after rehaming

12

Lab 3

Overview

e A VM simulator, instead of a pintool
o Virtual-to-physical mapping using hierarchical page table
o Translation Lookaside Buffer
o Page fault handler

14

What's provided, and what's not

e Provided by us, can make small changes if you want

O

pte-util.h, pte.{h,cpp}
m Simple declarations of PTE types for you to use
vm.h, vm-util.h
m VM class and various helpful declarations for you to use
Vm-provided.cpp
m Contains implementation of VM methods that you do not need to implement (e.g. allocating and replacing
physical pages)
vm_trace/*
m A pintool we provide that you can use to collect a trace of memory accesses for testing

e Provided, but you'll need to implement/modify

O

ptab.{h,cpp}
m Skeleton code and declarations of page table operations that you’ll need to implement
tlb.{h,cpp}
m Skeleton code and declarations of a TLB that you’ll need to implement
vm-student.cpp
m This is where you’ll implement VM methods (e.g. map, translate) using the page table and TLB
vm-test.cpp
m Adriver for the VM simulator that runs on a given trace. Skeleton code with a simple, hard-coded trace is
provided. You'll need to modify it so it works with traces generated by vm_trace.

15

General structure

TLB*x _TLB;

PTE root;

[VM
(vm.h)

PTE }
(pte.{h,cpp},

pte-util.h)

VM Provided

(vm-provided.cpp)

(vm-util.h)

VM Util]

Task 1: Implement a hierarchical page table

48-bit virtual addresses and 4KB pages => 512 entries per page table.

VPN: Virtual Page Number
PT: Page Table

PTB: Page Table Base
PTE: Page Table Entry
PTO: Page Table Offset

%cr3: PTB

35 27 26 18 17 98 0
i V$N i [T PT
| | | | | PTE 3
| : | | = 2'er
L1 PTO E E E PTE PTE ,
| | | | | : L3 PT
i L2 PTO i i PTE PTE __[—————
| | i | | : & PT
| | L3 PTO | - PTE PTE
| | | | |
| | |
| | | L4 PTO
| | |
| | |

17

Task 1: Implement a hierarchical page table

vim-student. cpp: implement three functions (using your PT implementation):

e vmMap(vaddr, size)
o Update Page Table to map size bytes at address vaddr; Could span multiple pages; create
Page Tables or PTEs here if not exist

e vmTranslate(vaddr)
o TODOs in the handout; Return the translated physical address

e vmPageFaultHandler(*pte)

o Handle Page Faults (page not residing in memory) here; if there exist free physical pages in
memory, allocate them with bumpAllocate() function; if you run out of free pages, replace
an existing page with the replacePage() function. These functions return the PPN to store in
your PTE.

o bumpAllocate() and replacePage() are provided to you; declarations in vm. h,
implementations in vm-provided.cpp.

18

Task 2: Implement a TLB

tlb.{h, cpp}: Implement a TLB structure, with your choice of organization (size,
ways, replacement). You will also need two functions: Lookup() and update().

e lookup(vaddr, &PPN)
o Attempt to assign cached-PPN to the argument &PPN, and return true for hits.

e update(vaddr, new_PPN)

o Update the TLB entries with this new mapping.
o This may evict an existing entry, your TLB organization should account for replacement.

19

Testing

Sample mmap log:

PC=... : mmap(vaddr =

l

pin }———*

trace

len <zip>) ret =

(vm_trace/*)

[vim_trace

Modify vim_test.cpp to parse* the traces generated by vim_trace.
vin_trace logs mmaps and optionally memory accesses.

20

Reporting the results

e Page Table implementation should report #page_faults, #num_accesses
and #t1lb_hits.

e You will justify your TLB organization with a quantitative analysis of these
three parameters.
o Show a plot of TLB misses vs TLB configurations.
o Reason about the reduction in Page Table walks due to your TLB.

e Your code should also be robust to handle exceptions: page faults and
segmentation faults (unmapped accesses).

e Turn in all code, writeup, and test traces!
o Include any scripts/tests you used as well.

21

