
18-344 Recitation 7
10/31/2025

1

1. Logistics
2. Review
3. Lab 3

Outline

2

Logistics

● Homework 7 released, due November 5 (Wednesday) (in 5 days)
○ Covers lectures 15-16

● Lab 3
○ Code freeze: October 14 (Friday) (in two weeks)

■ Submit (push a commit to your repo) on GitHub Classroom
○ Report: November 17 (Monday) (in two weeks + three days)

■ Submit on Gradescope

3

Review

4

Pipeline data hazards

sub x6, x5, x4

lw x16, 0xabc

add x12, x6, x14

Read-After-Write (RAW)

sub x8, x16, x4

add x16, x6, x14

lw x16, 0xabc

lw x6, 0xabc

sub x6, x5, x4

add x12 x6, x14

Write-After-Read (WAR) Write-After-Write (WAW)

There’s always data hazards in programs, and we can’t change that.

How to further exploit ILP?

Exploiting ILP using multiple issue

6Computer Architecture: A Quantitative Approach 6th Edition, Hennesy and Patterson

What we mean when we say “superscalar
out-of-order” in this class.

Exploiting ILP using multiple issue

7Computer Architecture: A Quantitative Approach 6th Edition, Hennesy and Patterson

Hardware-based speculation:
1. Dynamic branch prediction to choose which instructions to execute
2. Speculation to allow the execution of instructions before the control dependences are resolved
3. Dynamic scheduling to deal with the scheduling of different combinations of basic blocks

Register renaming

8

lw x6, 0xabc

sub x5, x6, x4

add x6, x11, x14

Instruction stream Renaming table
Instruction stream
after renaming

WAR

RAW

Register renaming

9

lw x6, 0xabc

sub x5, x6, x4

add x6, x11, x14

lw: x6 -> r1

Instruction stream Renaming table

lw r1, 0xabc

Instruction stream
after renaming

WAR

RAW

Register renaming

10

lw x6, 0xabc

sub x5, x6, x4

add x6, x11, x14

lw: x6 -> r1

sub: x5 -> r2

 x6 <- r1

Instruction stream Renaming table

lw r1, 0xabc

sub r2, r1, x4

Instruction stream
after renaming

WAR

RAW

Register renaming

11

lw x6, 0xabc

sub x5, x6, x4

add x6, x11, x14

lw: x6 -> r1

sub: x5 -> r2

 x6 <- r1

add: x6 -> r3

Instruction stream Renaming table

lw r1, 0xabc

sub r2, r1, x4

add r3, x11, x14

Instruction stream
after renaming

WAR

RAW

Register renaming

12

lw x6, 0xabc

sub x5, x6, x4

add x6, x11, x14

lw: x6 -> r1

sub: x5 -> r2

 x6 <- r1

add: x6 -> r3

Instruction stream Renaming table

lw r1, 0xabc

sub r2, r1, x4

add r3, x11, x14

Instruction stream
after renaming

WAR

RAW RAW

Gets rid of the false dependence.

Lab 3

13

Overview

● A VM simulator, instead of a pintool
○ Virtual-to-physical mapping using hierarchical page table
○ Translation Lookaside Buffer
○ Page fault handler

14

What’s provided, and what’s not

● Provided by us, can make small changes if you want
○ pte-util.h, pte.{h,cpp}

■ Simple declarations of PTE types for you to use
○ vm.h, vm-util.h

■ VM class and various helpful declarations for you to use
○ Vm-provided.cpp

■ Contains implementation of VM methods that you do not need to implement (e.g. allocating and replacing
physical pages)

○ vm_trace/*
■ A pintool we provide that you can use to collect a trace of memory accesses for testing

● Provided, but you’ll need to implement/modify
○ ptab.{h,cpp}

■ Skeleton code and declarations of page table operations that you’ll need to implement
○ tlb.{h,cpp}

■ Skeleton code and declarations of a TLB that you’ll need to implement
○ vm-student.cpp

■ This is where you’ll implement VM methods (e.g. map, translate) using the page table and TLB
○ vm-test.cpp

■ A driver for the VM simulator that runs on a given trace. Skeleton code with a simple, hard-coded trace is
provided. You’ll need to modify it so it works with traces generated by vm_trace. 15

General structure

16

VM
(vm.h)

TLB* _TLB;

PTE root;

TLB
(tlb.{h,cpp})

PTab
(ptab.{h,cpp})

VM Util
(vm-util.h)

PTE
(pte.{h,cpp},
pte-util.h)VM Provided

(vm-provided.cpp)

VM Student
(vm-student.cpp)

Task 1: Implement a hierarchical page table

17

VPN

48-bit virtual addresses and 4KB pages => 512 entries per page table.
35 0

L1 PTO

L2 PTO

L3 PTO

8917182627

VPN: Virtual Page Number
PT: Page Table
PTB: Page Table Base
PTE: Page Table Entry
PTO: Page Table Offset

%cr3: PTBL1 PT
PTE

PTE

…

L4 PTO

L2 PT
PTE

PTE

… L3 PT
PTE

PTE

… L4 PT
PTE

PTE

…

Task 1: Implement a hierarchical page table

18

vm-student.cpp: implement three functions (using your PT implementation):

● vmMap(vaddr, size)
○ Update Page Table to map size bytes at address vaddr; Could span multiple pages; create

Page Tables or PTEs here if not exist

● vmTranslate(vaddr)
○ TODOs in the handout; Return the translated physical address

● vmPageFaultHandler(*pte)
○ Handle Page Faults (page not residing in memory) here; if there exist free physical pages in

memory, allocate them with bumpAllocate() function; if you run out of free pages, replace
an existing page with the replacePage() function. These functions return the PPN to store in
your PTE.

○ bumpAllocate() and replacePage() are provided to you; declarations in vm.h,
implementations in vm-provided.cpp.

Task 2: Implement a TLB

19

tlb.{h,cpp}: Implement a TLB structure, with your choice of organization (size,
ways, replacement). You will also need two functions: lookup() and update().

● lookup(vaddr, &PPN)
○ Attempt to assign cached-PPN to the argument &PPN, and return true for hits.

● update(vaddr, new_PPN)
○ Update the TLB entries with this new mapping.
○ This may evict an existing entry, your TLB organization should account for replacement.

Testing

20

vm_trace
(vm_trace/*)

pin

workload

trace vm_test
(vm_test.cpp) vm stats

Modify vm_test.cpp to parse* the traces generated by vm_trace.
vm_trace logs mmaps and optionally memory accesses.

Sample mmap log:
PC=...: mmap(vaddr = ... len = ... <zip>) ret = ...

Reporting the results

21

● Page Table implementation should report #page_faults, #num_accesses
and #tlb_hits.

● You will justify your TLB organization with a quantitative analysis of these
three parameters.

○ Show a plot of TLB misses vs TLB configurations.
○ Reason about the reduction in Page Table walks due to your TLB.

● Your code should also be robust to handle exceptions: page faults and
segmentation faults (unmapped accesses).

● Turn in all code, writeup, and test traces!
○ Include any scripts/tests you used as well.

