
18-344 Recitation 4
09/26/2025

1. Logistics
2. Review
3. Homework 1 postmortem

Outline

Logistics

● Lab 0 and Homework 1 grades have been released
● Lab 1 released

○ Code freeze: September 28 (Sunday) (in 2 days)
■ Submit (push a commit) on GitHub Classroom

○ Report submission: October 1 (Wednesday) (in 5 days)
■ Submit on Gradescope

● Homework 3 released, due September 29 (Monday) (in 3 days)
○ Covers materials from lectures 7-9

■ Mostly caching
● Homework 2 grades to be released around this weekend/early next week

Review

The memory hierarchy

Computer Architecture: A Quantitative Approach 6th Edition, Hennesy and Patterson

Memory access time

Generally,

Caches’ 3 C’s

● Compulsory miss: The first access to a block address is always a miss
● Capacity miss: Cache is too small to hold everything long enough so they can

be reused
○ Think of it as a non-compulsory miss that would occur in an ideal fully-associative cache

● Conflict miss: Miss to a previously visited block that was evicted due to
another block address being mapped to the same cache block

○ If a miss isn’t a compulsory or a capacity miss, it’s a conflict miss.

Cache replacement policies

● Round-robin
● Least-recently used (LRU)

Cache replacement policies

● Round-robin
● Least-recently used (LRU)

Cache replacement policies

● Round-robin
● Least-recently used (LRU)

○ Expensive to implement
■ Area & Power cost to store ages
■ Time & Energy cost to update ages and identify the block to evict

Cache replacement policies

● Round-robin
● Least-recently used (LRU)

○ Expensive to implement
■ Area & Power cost to store ages
■ Time & Energy cost to update ages and identify the block to evict

● Bit-pseudo-least-recently used (BPLRU)
○ Evict a block that was definitely not most recently used, decent approximation of LRU

Cache replacement policies

● Round-robin
● Least-recently used (LRU)

○ Expensive to implement
■ Area & Power cost to store ages
■ Time & Energy cost to update ages and identify the block to evict

● Bit-pseudo-least-recently used (BPLRU)
○ Evict a block that was definitely not most recently used, decent approximation of LRU

Cache replacement policies

● Round-robin
● Least-recently used (LRU)

○ Expensive to implement
■ Area & Power cost to store ages
■ Time & Energy cost to update ages and identify the block to evict

● Bit-pseudo-least-recently used (BPLRU)
○ Evict a block that was definitely not most recently used, decent approximation of LRU
○ Not as expensive as LRU

Cache replacement policies

● Round-robin
● Least-recently used (LRU)

○ Expensive to implement
■ Area & Power cost to store ages
■ Time & Energy cost to update ages and identify the block to evict

● Bit-pseudo-least-recently used (BPLRU)
○ Evict a block that was definitely not most recently used, decent approximation of LRU
○ Not as expensive as LRU

● Belady’s MIN algorithm (MIN)
○ Optimally evict a block that has the longest reuse distance

Cache replacement policies

● Round-robin
● Least-recently used (LRU)

○ Expensive to implement
■ Area & Power cost to store ages
■ Time & Energy cost to update ages and identify the block to evict

● Bit-pseudo-least-recently used (BPLRU)
○ Evict a block that was definitely not most recently used, decent approximation of LRU
○ Not as expensive as LRU

● Belady’s MIN algorithm (MIN)
○ Optimally evict a block that has the longest reuse distance

Cache replacement policies

● Round-robin
● Least-recently used (LRU)

○ Expensive to implement
■ Area & Power cost to store ages
■ Time & Energy cost to update ages and identify the block to evict

● Bit-pseudo-least-recently used (BPLRU)
○ Evict a block that was definitely not most recently used, decent approximation of LRU
○ Not as expensive as LRU

● Belady’s MIN algorithm (MIN)
○ Optimally evict a block that has the longest reuse distance

Cache replacement policies

● Round-robin
● Least-recently used (LRU)

○ Expensive to implement
■ Area & Power cost to store ages
■ Time & Energy cost to update ages and identify the block to evict

● Bit-pseudo-least-recently used (BPLRU)
○ Evict a block that was definitely not most recently used, decent approximation of LRU
○ Not as expensive as LRU

● Belady’s MIN algorithm (MIN)
○ Optimally evict a block that has the longest reuse distance
○ Not realistic to implement

Cache replacement policies

● Round-robin
● Least-recently used (LRU)

○ Expensive to implement
■ Area & Power cost to store ages
■ Time & Energy cost to update ages and identify the block to evict

● Bit-pseudo-least-recently used (BPLRU)
○ Evict a block that was definitely not most recently used, decent approximation of LRU
○ Not as expensive as LRU

● Belady’s MIN algorithm (MIN)
○ Optimally evict a block that has the longest reuse distance
○ Not realistic to implement

Capacity miss: Think of it as a non-compulsory miss that
would occur in an ideal fully-associative cache.

Comparing cache replacement policies

Caching optimizations

● Victim cache
○ (Usually) small, fully-associative cache that tracks evicted blocks.

● Stream buffer
○ A buffer that prefetches successive blocks from a lower level cache to a higher level cache

upon a miss.
● Write buffer

○ Single-cycle operation to buffer a write request before it is issued to the cache.
○ Ordering challenges.

● Scratchpad
○ Software controlled memory with explicit, scratch-pad-private physical memory space.

 and – we’ll talk about these briefly

Homework 1 postmortem
– all of you did a pretty good job

Common questions

