18-344 Recitation 4

09/26/2025

Outline

1. Logistics
2. Review
3. Homework 1 postmortem

Logistics

e Lab 0 and Homework 1 grades have been released

e Lab 1 released

o Code freeze: September 28 (Sunday) (in 2 days)
m Submit (push a commit) on GitHub Classroom

o Report submission: October 1 (Wednesday) (in 5 days)
m Submit on Gradescope

e Homework 3 released, due September 29 (Monday) (in 3 days)

o Covers materials from lectures 7-9
m Mostly caching

e Homework 2 grades to be released around this weekend/early next week

Review

The memory hierarchy

e L2 L3)
C C C Memory — Disk storage
CPU a a a bus Memory
[Registers | & £ £
h h h
e e e Flash storage
Register Level 1 Level 2 Level 3 Memory _
reference Cache Cache Cache reference Disk Flash
reference reference reference memory memory
reference reference
Size: 4000 bytes 64 KB 256 KB 16-64 MB 32-256 GB " L
Speed: 200 ps 1ns 3-10 ns 10-20ns 50-100 ns P i L

5-10 ms 100-200 us
Memory hierarchy for server

Computer Architecture: A Quantitative Approach 6th Edition, Hennesy and Patterson

Memory access time

Generally,

Average memory access time = Hit time + Miss rate x Miss penalty

Caches’ 3 C’s

e Compulsory miss: The first access to a block address is always a miss
e Capacity miss: Cache is too small to hold everything long enough so they can

be reused
o Think of it as a non-compulsory miss that would occur in an ideal fully-associative cache
e Conflict miss: Miss to a previously visited block that was evicted due to

another block address being mapped to the same cache block
o Ifamissisn’'t a compulsory or a capacity miss, it's a conflict miss.

Cache replacement policies

e Round-robin
e Least-recently used (LRU)

Cache replacement policies

e Round-robin
e Least-recently used (LRU)

accessCacheLRU (access a) {
for each block in cache, b:
if b '= a.block:
LRU Age[b]++
LRU Age[b] =0
}

findBlockLRU () {
return argmax (b,LRU_Age)
}

Cache replacement policies

e Round-robin
e Least-recently used (LRU)

o Expensive to implement
m Area & Power cost to store ages
m Time & Energy cost to update ages and identify the block to evict

Cache replacement policies

e Round-robin
e Least-recently used (LRU)

o Expensive to implement
m Area & Power cost to store ages
m Time & Energy cost to update ages and identify the block to evict
e Bit-pseudo-least-recently used (BPLRU)

o Evict a block that was definitely not most recently used, decent approximation of LRU

Cache replacement policies

Round-robin
Least-recently used (LRU)

(@)

Expensive to implement
m Area & Power cost to store ages

m Time & Energy cost to update ages a;|

Bit-pseudo-least-recently used (BPLR

(@)

Evict a block that was definitely not most re

accessCachePLRU (access a) {
MRU Bit[a.block] =1
if ++MRU_ BitSum setSize:
for each block in cache, b:
MRU Bit[b] = 0
MRU BitSum = 0

}

findBlockLRU () {
for i in 0. .setSize:
if 'MRU Bit[i]:
return block (i) ;

Cache replacement policies

e Round-robin
e Least-recently used (LRU)

o Expensive to implement
m Area & Power cost to store ages
m Time & Energy cost to update ages and identify the block to evict
e Bit-pseudo-least-recently used (BPLRU)

o Evict a block that was definitely not most recently used, decent approximation of LRU
o Not as expensive as LRU

Cache replacement policies

e Round-robin
e Least-recently used (LRU)

o Expensive to implement
m Area & Power cost to store ages
m Time & Energy cost to update ages and identify the block to evict
e Bit-pseudo-least-recently used (BPLRU)

o Evict a block that was definitely not most recently used, decent approximation of LRU
o Not as expensive as LRU

e Belady’'s MIN algorithm (MIN)

o Optimally evict a block that has the longest reuse distance

Cache replacement policies

e Round-robin
e Least-recently used (LRU)

o Expensive to implementl findBlockMIN () {

0://init reuse distances
. Area & Power cos 1l:for each block in cache, b:
m Time & Energy cos 2: RD[b] = 0; RD_done[b] = false;
. 3://look forward in the execution trace
® BIt-pSGUdO-leaSt'recent 4:for each access, a, forward in execution trace:
o Evict a block that was d¢ 5://increment reuse distance for each block not already seen
. 6: for each block in cache, b:
o Not as expensive as LR{ 7. if RD done[b] == false:
’ i 8: RD[b]++;
¢ Beladys MIN algorlthm 9: RD done[a.block] = true
o Optimally evict a block t 10://MIN finds the block with maximum RD
11l:return argmax(b,RD[b])

Cache replacement policies

e Round-robin
e Least-recently used (LRU)

o Expensive to implement | £indBlockMIN () {

m Area & Power cost

m Time & Energy co
e Bit-pseudo-least-recentl
o Evict a block that was de
o Not as expensive as LRL

e Belady’s MIN algorithm
o Optimally evict a block tr]

e

HOWOoOOJdo Ul WM KR O

://init reuse distances
:for each block in cache, b:

RD[b] = 0; RD _done[b] = false;

://look forward in the execution trace
:for each access, a, forward in execution trace:
://increment reuse distance for each block not already seen

for each block in cache, b:
if RD_done[b] == false:
RD[b]++;
RD done[a.block] = true

://MIN finds the block with maximum RD
:return argmax (b,RD[b])

Cache replacement policies

e Round-robin
e Least-recently used (LRU)

o Expensive to implement
m Area & Power cost to store ages
m Time & Energy cost to update ages and identify the block to evict
e Bit-pseudo-least-recently used (BPLRU)

o Evict a block that was definitely not most recently used, decent approximation of LRU
o Not as expensive as LRU

e Belady’'s MIN algorithm (MIN)

o Optimally evict a block that has the longest reuse distance
o Not realistic to implement

Cache replacement policies

e Round-robin
e |east-recently used (LRU)

o Expensive to implement
m Area & Power cost to store ages
m Time & Energy cost to update ages and identify the block to evict
e Bit-pseudo-least-recently used (BPLRU)

o Evict a block that was definitely not most recently used, decent approximation of LRU
o Not as expensive as LRU

e Belady’'s MIN algorithm (MIN)
o Optimally evict a block that has the Io

st reuse distance

o Not realistic to implement

~hhink of it as a non-compulsory miss that
would occur in an ideal fully-associative cache.

Misses per Kilo

Comparing cache replacement policies

Instruction (MPKI)

RR

It-
PLRU

Notional Plot: not real
data (You measure these
in Lab 2!)

RR: log(set size) bits per set to track next
to evict, no action on access

Bit-PLRU: 1 MRU bit per block + log(set
size) bits per set (or equivalent logic) to
detect all set,

Clear bits on access if all bits set

LRU: 1 age per block + logic to track max.
Update (set size - 1) ages on any access

MIN: unimplementable, requires future
knowledge of execution trace.

Caching optimizations

e \ictim cache
o (Usually) small, fully-associative cache that tracks evicted blocks.
e Stream buffer

o A buffer that prefetches successive blocks from a lower level cache to a higher level cache
upon a miss.

e \Write buffer

o Single-cycle operation to buffer a write request before it is issued to the cache.
o Ordering challenges.

e Scratchpad

o Software controlled memory with explicit, scratch-pad-private physical memory space.

and @ef — we'll talk about these briefly

max

Physical memory

User

—247

247

100 150 200 250

50

| 1 | |

e
[sa040]

QwIn $sAIY

Page

PUUOLY

Execution Units

@

8

Juidug uonndaxyg

wasAsqng
KIowop

| |
; Exception Handling/ :
| 1 |
. Suppression |
| |
' Transient Accessed '
: _ Secret @ |
| Instructions :
| AN reseosomsmmammammarsnsmnspashashasedendesasesns arsmeastas P |
: Microarchitectural : :
I State Change I
: LT EET TR EEr E g :
-

|] : g |
: Section 4.1 = :
C ?&Esér‘l;(éo've}fcﬁaimlﬁ """""" P :
! ¥ |
| .
. Architectural Recovery | Recovered | |
|
. State Secret @ | |
|

|
|

|

Section 4.2

Indirect branch prediction

Suun:c .
.,

i
|
i
i
i
i
|
H subset of 12 LSB "
i
i
T
1
|
i
i
i
|
i

58-bit

Branch History Buffer
S8 bat

J\XOR folding ¥

[BTB lookuPl—-I 64-bit destination

Taken branches

Direct branch prediction /

XOR foldinge"""** [Source |

| Source | |Dcslinalion|

if <in bounds> Y,

XOR folding
(cf. Listing 4)

Context A ‘ '_(_nggqx_t_]_B_'
; 22D ; "
call [function] ~—~_call [function]- <5
a
. ©e® . ¥
e)
function A —— spectre gadget < @

function B MTM legit function

Homework 1 postmortem
— all of you did a pretty good job

Common questions

Q1.2 Speedup w/ Example

3 Points “You friend proposes an optimization which would speed up all operations by
30%”

Your friend proposes

T .
operations by 30%. Ca X =13 = - original
optimized

Answer in nanosecon

