
18-344 Recitation 2
09/12/2025

1. Logistics
2. Review
3. Labs

a. Lab 0
b. Lab 1

Outline

Logistics

● Lab 0 due September 15 (next Monday) (in 3 days)
○ Review last week’s recitation if needed

● Homework 1 due September 14 (Sunday) (in 2 days)
○ Covers materials from lectures 1-4

● NEW Lab 1 will be released on September 15 (next Monday) (in 3 days)
○ From lab 1 onwards, all labs will be partnered (group of 2 unless otherwise approved).

Start looking for a lab partner now!
■ Use the Piazza post and/or Slack to find your lab partner.

Review

Speedup

Speedup w/ Example

When we say: A is X times faster than B, we mean:

Speedup w/ Example

“You friend proposes an optimization which would speed up all operations by
30%”

ISA Design

ISA is the contract between hardware and software. It’s what the hardware offers
and what the software would expect to be available.

If something is not necessarily required to be known by both hardware and
software, it shouldn’t be in the ISA1.

1 Exceptions2 apply.

2 These exceptions are out of the scope of this class.

So, what’s usually in an ISA?

● Architectural registers
○ e.g. x0...x31 in RISC-V’s RV32/RV64 ISAs

● Instruction definitions
○ e.g. ADD, XOR, LOAD, STORE, etc.
○ Definitions include:

■ What the operation and operands are
■ What the side-effects are
■ How the instruction should be encoded

● Memory
More specifically, the idea of the existence of memory.

○ The ISA defines how large the memory address space is, and how to use the memory.
■ e.g. RV32I has a byte-addressable memory address space of 2^32 bytes.

Aside: RISC-V instruction syntax

opcode rd, rs1, rs2
=> rd = op(rs1, rs2)

opcode rd, rs1, imm
=> rd = op(rs1, imm)

... for more, check out
https://github.com/riscv/riscv-isa-manual/

https://github.com/riscv/riscv-isa-manual/

So, what’s usually not in an ISA?

● Microarchitectural registers
○ i.e. Physical register files used to implement architectural registers are not in the ISA.

● Instruction implementation
○ e.g. It is 100% valid for the implementation of an ISA to choose to use a single adder to

implement MUL, as long as the result of the MUL adheres to what the ISA defines.
○ e.g. It is also 100% valid for the implementation of an ISA to choose to use a slow adder for

some ADDs and a faster adder for other ADDs under different circumstances1.
● What memory is made of

○ e.g. ISA doesn’t tell you how much physical memory is available.
○ e.g. ISA doesn’t specify how much time it takes to write to/read from memory.

1 This is true as long as all the ADDs are using the same instruction and the ISA does not specify
instruction latencies2 (whether cycles or wall-plug time).

2 For this course, we assume that ISAs don’t specify instruction latencies.

Basic RISC-V Datapath

IF ID EX

Mem

WB

5-Stage Pipelined Processor Datapath
a.k.a. The 5-Stage Pipeline with Branch Prediction and

EX->EX & Mem->EX Forwarding

5-Stage Pipelined Execution
Cycle IF ID EX Mem WB

1 lw x1,0x10(x0)

WITHOUT EX->EX &
Mem->EX Forwarding

5-Stage Pipelined Execution
Cycle IF ID EX Mem WB

1 lw x1,0x10(x0)

2 addi x2,x1,0x1 lw x1,0x10(x0)

WITHOUT EX->EX &
Mem->EX Forwarding

5-Stage Pipelined Execution
Cycle IF ID EX Mem WB

1 lw x1,0x10(x0)

2 addi x2,x1,0x1 lw x1,0x10(x0)

3 add x3,x2,x1 addi x2,x1,0x1 lw x1,0x10(x0)

WITHOUT EX->EX &
Mem->EX Forwarding

5-Stage Pipelined Execution
Cycle IF ID EX Mem WB

1 lw x1,0x10(x0)

2 addi x2,x1,0x1 lw x1,0x10(x0)

3 add x3,x2,x1 addi x2,x1,0x1 lw x1,0x10(x0)

4 addi x2,x1,0x1 lw x1,0x10(x0)

WITHOUT EX->EX &
Mem->EX Forwarding

addi references a value in x1, but the previous
lw has not yet put a new value in x1 yet!

5-Stage Pipelined Execution
Cycle IF ID EX Mem WB

1 lw x1,0x10(x0)

2 addi x2,x1,0x1 lw x1,0x10(x0)

3 add x3,x2,x1 addi x2,x1,0x1 lw x1,0x10(x0)

4 add x3,x2,x1 addi x2,x1,0x1 lw x1,0x10(x0)

WITHOUT EX->EX &
Mem->EX Forwarding

Solution: insert a pipeline bubble in the EX stage to force the addi to wait until x1
has the new value. In practice people use the nop instruction or clear the control
signals to create the pipeline bubble. We also call this “stalling the EX stage”.

1

5-Stage Pipelined Execution
Cycle IF ID EX Mem WB

1 lw x1,0x10(x0)

2 addi x2,x1,0x1 lw x1,0x10(x0)

3 add x3,x2,x1 addi x2,x1,0x1 lw x1,0x10(x0)

4 add x3,x2,x1 addi x2,x1,0x1 lw x1,0x10(x0)

5 add x3,x2,x1 addi x2,x1,0x1 lw x1,0x10(x0)

WITHOUT EX->EX &
Mem->EX Forwarding

Another pipeline bubble in the Mem stage is
also needed because x1’s content won’t be
updated until the end of the WB stage.

1

2 1

5-Stage Pipelined Execution
Cycle IF ID EX Mem WB

1 lw x1,0x10(x0)

2 addi x2,x1,0x1 lw x1,0x10(x0)

3 add x3,x2,x1 addi x2,x1,0x1 lw x1,0x10(x0)

4 add x3,x2,x1 addi x2,x1,0x1 lw x1,0x10(x0)

5 add x3,x2,x1 addi x2,x1,0x1 lw x1,0x10(x0)

6 sw x3,0x14(x0) add x3,x2,x1 addi x2,x1,0x1

WITHOUT EX->EX &
Mem->EX Forwarding

The addi is cleared to proceed once x1 has been updated (lw
passes the WB stage). Note that pipeline bubbles also proceed.

1

2 1

12

5-Stage Pipelined Execution
Cycle IF ID EX Mem WB

1 lw x1,0x10(x0)

2 addi x2,x1,0x1 lw x1,0x10(x0)

3 add x3,x2,x1 addi x2,x1,0x1 lw x1,0x10(x0)

4 add x3,x2,x1 addi x2,x1,0x1 lw x1,0x10(x0)

5 add x3,x2,x1 addi x2,x1,0x1 lw x1,0x10(x0)

6 sw x3,0x14(x0) add x3,x2,x1 addi x2,x1,0x1

7 add x3,x2,x1 addi x2,x1,0x1

WITHOUT EX->EX &
Mem->EX Forwarding

1

2 1

12

2

Wait... add references a value in x2, but the previous addi
has not yet put a new value in x2 yet! Also, note that add’s
reference to x1 won’t be an issue here.

5-Stage Pipelined Execution
Cycle IF ID EX Mem WB

1 lw x1,0x10(x0)

2 addi x2,x1,0x1 lw x1,0x10(x0)

3 add x3,x2,x1 addi x2,x1,0x1 lw x1,0x10(x0)

4 add x3,x2,x1 addi x2,x1,0x1 lw x1,0x10(x0)

5 add x3,x2,x1 addi x2,x1,0x1 lw x1,0x10(x0)

6 sw x3,0x14(x0) add x3,x2,x1 addi x2,x1,0x1

7 sw x3,0x14(x0) add x3,x2,x1 addi x2,x1,0x1

WITHOUT EX->EX &
Mem->EX Forwarding

1

2 1

12

2

Solution: more pipeline bubbles...

3

5-Stage Pipelined Execution
Cycle IF ID EX Mem WB

1 lw x1,0x10(x0)

2 addi x2,x1,0x1 lw x1,0x10(x0)

3 add x3,x2,x1 addi x2,x1,0x1 lw x1,0x10(x0)

4 add x3,x2,x1 addi x2,x1,0x1 lw x1,0x10(x0)

5 add x3,x2,x1 addi x2,x1,0x1 lw x1,0x10(x0)

6 sw x3,0x14(x0) add x3,x2,x1 addi x2,x1,0x1

7 sw x3,0x14(x0) add x3,x2,x1 addi x2,x1,0x1

8 sw x3,0x14(x0) add x3,x2,x1 addi x2,x1,0x1

WITHOUT EX->EX &
Mem->EX Forwarding

1

2 1

12

2

Solution: more pipeline bubbles...

3

34

5-Stage Pipelined Execution
Cycle IF ID EX Mem WB

1 lw x1,0x10(x0)

2 addi x2,x1,0x1 lw x1,0x10(x0)

3 add x3,x2,x1 addi x2,x1,0x1 lw x1,0x10(x0)

4 add x3,x2,x1 addi x2,x1,0x1 lw x1,0x10(x0)

5 add x3,x2,x1 addi x2,x1,0x1 lw x1,0x10(x0)

6 sw x3,0x14(x0) add x3,x2,x1 addi x2,x1,0x1

7 sw x3,0x14(x0) add x3,x2,x1 addi x2,x1,0x1

8 sw x3,0x14(x0) add x3,x2,x1 addi x2,x1,0x1

9 add x0,x0,x0 sw x3,0x14(x0) add x3,x2,x1

WITHOUT EX->EX &
Mem->EX Forwarding

1

2 1

12

2

Same deal as before, add is allowed to
proceed once x2’s value has been updated.

3

34

34

5-Stage Pipelined Execution
Cycle IF ID EX Mem WB

1 lw x1,0x10(x0)

2 addi x2,x1,0x1 lw x1,0x10(x0)

3 add x3,x2,x1 addi x2,x1,0x1 lw x1,0x10(x0)

4 add x3,x2,x1 addi x2,x1,0x1 lw x1,0x10(x0)

5 add x3,x2,x1 addi x2,x1,0x1 lw x1,0x10(x0)

6 sw x3,0x14(x0) add x3,x2,x1 addi x2,x1,0x1

7 sw x3,0x14(x0) add x3,x2,x1 addi x2,x1,0x1

8 sw x3,0x14(x0) add x3,x2,x1 addi x2,x1,0x1

9 add x0,x0,x0 sw x3,0x14(x0) add x3,x2,x1

WITHOUT EX->EX &
Mem->EX Forwarding

1

2 1

12

2

There isn’t enough space to show this – after cycle
11, this add instruction will exit the pipeline.

3

34

34

5-Stage Pipelined Execution
WITHOUT EX->EX &
Mem->EX Forwarding

What’s the CPI of the pipeline for the first three instructions?

Cycles = 11, Instructions = 3
=> CPI = 11/3 ~= 3.67

What’s the IPC of the pipeline for the first three instructions?

Instructions = 3, Cycles = 11
=> IPC = 3/11 ~= 0.273

Ideally, you’d want IPC to get as close to 1 as possible.

5-Stage Pipelined Execution
Cycle IF ID EX Mem WB

1 lw x1,0x10(x0)

WITH EX->EX & Mem->EX
Forwarding

5-Stage Pipelined Execution
Cycle IF ID EX Mem WB

1 lw x1,0x10(x0)

2 addi x2,x1,0x1 lw x1,0x10(x0)

WITH EX->EX & Mem->EX
Forwarding

5-Stage Pipelined Execution
Cycle IF ID EX Mem WB

1 lw x1,0x10(x0)

2 addi x2,x1,0x1 lw x1,0x10(x0)

3 add x3,x2,x1 addi x2,x1,0x1 lw x1,0x10(x0)

WITH EX->EX & Mem->EX
Forwarding

5-Stage Pipelined Execution
Cycle IF ID EX Mem WB

1 lw x1,0x10(x0)

2 addi x2,x1,0x1 lw x1,0x10(x0)

3 add x3,x2,x1 addi x2,x1,0x1 lw x1,0x10(x0)

4 addi x2,x1,0x1 lw x1,0x10(x0)

WITH EX->EX & Mem->EX
Forwarding

addi references a value in x1, but the previous
lw has not yet put a new value in x1 yet!

5-Stage Pipelined Execution
Cycle IF ID EX Mem WB

1 lw x1,0x10(x0)

2 addi x2,x1,0x1 lw x1,0x10(x0)

3 add x3,x2,x1 addi x2,x1,0x1 lw x1,0x10(x0)

4 add x3,x2,x1 addi x2,x1,0x1 lw x1,0x10(x0)

WITH EX->EX & Mem->EX
Forwarding

1

Solution: (same as last time) insert a pipeline bubble in the EX
stage to force the addi to wait until x1 has the new value.

5-Stage Pipelined Execution
Cycle IF ID EX Mem WB

1 lw x1,0x10(x0)

2 addi x2,x1,0x1 lw x1,0x10(x0)

3 add x3,x2,x1 addi x2,x1,0x1 lw x1,0x10(x0)

4 add x3,x2,x1 addi x2,x1,0x1 lw x1,0x10(x0)

5 sw x3,0x14(x0) add x3,x2,x1 addi x2,x1,0x1 lw x1,0x10(x0)

WITH EX->EX & Mem->EX
Forwarding

1

At the trigger clock edge between cycle 4 and 5, the result of lw becomes available.
The pipeline identifies that the following instruction – addi – depends on the result of
lw via register x1, and forwards this value to addi as it enters the EX stage.

1

Mem->EX forwarding!

5-Stage Pipelined Execution
Cycle IF ID EX Mem WB

1 lw x1,0x10(x0)

2 addi x2,x1,0x1 lw x1,0x10(x0)

3 add x3,x2,x1 addi x2,x1,0x1 lw x1,0x10(x0)

4 add x3,x2,x1 addi x2,x1,0x1 lw x1,0x10(x0)

5 sw x3,0x14(x0) add x3,x2,x1 addi x2,x1,0x1 lw x1,0x10(x0)

6 add x0,x0,x0 sw x3,0x14(x0) add x3,x2,x1 addi x2,x1,0x1

WITH EX->EX & Mem->EX
Forwarding

1

At the trigger clock edge between cycle 5 and 6, the result of addi becomes available.
The pipeline identifies that the following instruction – add – depends on the result of
addi via register x2, and forwards this value to add as it enters the EX stage.

1

1

EX->EX forwarding!

5-Stage Pipelined Execution
Cycle IF ID EX Mem WB

1 lw x1,0x10(x0)

2 addi x2,x1,0x1 lw x1,0x10(x0)

3 add x3,x2,x1 addi x2,x1,0x1 lw x1,0x10(x0)

4 add x3,x2,x1 addi x2,x1,0x1 lw x1,0x10(x0)

5 sw x3,0x14(x0) add x3,x2,x1 addi x2,x1,0x1 lw x1,0x10(x0)

6 add x0,x0,x0 sw x3,0x14(x0) add x3,x2,x1 addi x2,x1,0x1

7 add x0,x0,x0 add x0,x0,x0 sw x3,0x14(x0) add x3,x2,x1 addi x2,x1,0x1

8

WITH EX->EX & Mem->EX
Forwarding

1

1

1

EX->EX forwarding!

At the trigger clock edge between cycle 6 and 7, the result of add becomes available.
The pipeline identifies that the following instruction – sw – depends on the result of add
via register x3, and forwards this value to sw as it enters the EX stage.
Note that this forwarding still happens for sw – a memory instruction that does not
execute the EX stage – the forwarded value will follow the control signals into Mem.

5-Stage Pipelined Execution
Cycle IF ID EX Mem WB

1 lw x1,0x10(x0)

2 addi x2,x1,0x1 lw x1,0x10(x0)

3 add x3,x2,x1 addi x2,x1,0x1 lw x1,0x10(x0)

4 add x3,x2,x1 addi x2,x1,0x1 lw x1,0x10(x0)

5 sw x3,0x14(x0) add x3,x2,x1 addi x2,x1,0x1 lw x1,0x10(x0)

6 add x0,x0,x0 sw x3,0x14(x0) add x3,x2,x1 addi x2,x1,0x1

7 add x0,x0,x0 add x0,x0,x0 sw x3,0x14(x0) add x3,x2,x1 addi x2,x1,0x1

8 add x0,x0,x0 add x0,x0,x0 add x0,x0,x0 sw x3,0x14(x0) add x3,x2,x1

WITH EX->EX & Mem->EX
Forwarding

1

1

1

5-Stage Pipelined Execution
Cycle IF ID EX Mem WB

1 lw x1,0x10(x0)

2 addi x2,x1,0x1 lw x1,0x10(x0)

3 add x3,x2,x1 addi x2,x1,0x1 lw x1,0x10(x0)

4 add x3,x2,x1 addi x2,x1,0x1 lw x1,0x10(x0)

5 sw x3,0x14(x0) add x3,x2,x1 addi x2,x1,0x1 lw x1,0x10(x0)

6 add x0,x0,x0 sw x3,0x14(x0) add x3,x2,x1 addi x2,x1,0x1

7 add x0,x0,x0 add x0,x0,x0 sw x3,0x14(x0) add x3,x2,x1 addi x2,x1,0x1

8 add x0,x0,x0 add x0,x0,x0 add x0,x0,x0 sw x3,0x14(x0) add x3,x2,x1

9 add x0,x0,x0 add x0,x0,x0 add x0,x0,x0 add x0,x0,x0 add x0,x0,x0

WITH EX->EX & Mem->EX
Forwarding

1

1

1

With forwarding, the third instruction
exits the pipeline after the 8th cycle.

5-Stage Pipelined Execution
WITH EX->EX & Mem->EX
Forwarding

What’s the CPI of the pipeline for the first three instructions?

Cycles = 8, Instructions = 3
=> CPI = 8/3 ~= 2.667

What’s the IPC of the pipeline for the first three instructions?

Instructions = 3, Cycles = 8
=> IPC = 3/8 = 0.375

IPC is no way near 1 yet, but it’s better than 0.273.

Iron Law of Computer Performance

From without forwarding to with forwarding, we’ve improved CPI:

Speedup again?
From without forwarding to with forwarding, we’ve improved CPI:

That is, the new CPU Time is 8/11 of the original CPU Time.
How much speedup did we just get?

Pipeline hazards
We’ve already seen this:

Cycle IF ID EX Mem WB

1 lw x1,0x10(x0)

2 addi x2,x1,0x1 lw x1,0x10(x0)

3 add x3,x2,x1 addi x2,x1,0x1 lw x1,0x10(x0)

4 addi x2,x1,0x1 lw x1,0x10(x0)

addi reads an incorrect value from x1 in EX, then, lw writes to x1.

This is the Read-After-Write (RAW) hazard, the only possible hazard type in our
simple 5-stage pipeline.

Pipeline hazards

sub x6, x5, x4

lw x16, 0xabc

add x12, x6, x14

Read-After-Write (RAW)

Can happen in our
pipeline.

sub x8, x16, x4

add x16, x6, x14

lw x16, 0xabc

lw x6, 0xabc

sub x6, x5, x4

add x12 x6, x14

Write-After-Read (WAR)

Can happen in an
(incorrectly implemented)
out-of-order pipeline.

Write-After-Write (WAR)

Can happen in an
(incorrectly
implemented)
out-of-order pipeline.

: the order in which the accesses
to register should happen

Labs

Lab 0

Recitation 0 and 1 should have everything you need for finishing Lab 0.

https://course.ece.cmu.edu/~ece344/course_documents/18344-f25-recitation0.pdf

https://course.ece.cmu.edu/~ece344/course_documents/18344-f25-recitation1.pdf

https://course.ece.cmu.edu/~ece344/course_documents/18344-f25-recitation1.pdf
https://course.ece.cmu.edu/~ece344/course_documents/18344-f25-recitation1.pdf

Lab 1

● Starting from Lab 1, labs will be partnered (in most cases, group of 2)
● We recommend using proper version control tools

○ e.g. git;

○ Not likely that we can be of much help if you nuked your work on the number machines
● Schedule regular meetings with your lab partner

○ This is more important than you’d think
● Watch out for an announcement on the “code freeze” policy

○ Expect a code deadline a few days before the report deadline

 MAKE SURE YOUR REPO IS PRIVATE IF
USING GITHUB OR ALTERNATIVES

