
18-344 Recitation 1
09/05/2025

1. Logistics
2. Review
3. Tool Primer
4. Labs + Lab Reports

a. Doing the lab
b. Writing the report
c. Presenting the data

Outline

Logistics

● Lab 0 due September 15 (next next Monday) (in 10 days)
○ Review last week’s recitation if needed

● Homework 1 due September 14 (next next next Sunday) (in 9 days)
○ Covers materials from lectures 1-4

Review

Speedup

Amdahl’s Law v1

unchanged fraction improved fraction

Amdahl’s Law v2

Basic RISC-V Datapath

IF ID EX

Mem

WB

Tool Primer

- Standard Performance Evaluation Corporation
- Provides suites of benchmarks
- SPEC CPU 2017 Integer is just one of them!

SPEC

- A dynamic binary instrumentation tool
- Dynamic (as opposed to static). Tool operates at runtime / during execution.
- Binary (what is being instrumented). Tool operates on the raw binary.
- Instrumentation. Insertion of additional code to monitor/analyze the program

- Pin dynamically inserts code (your pintool) while executing a program!

- Count number of branches executed while running a binary!
- Can’t do this statically!

Pin

- Pin executes the instrumented binaries
- The pintool defines how the binary is instrumented

- The pintool defines
- Which instructions to instrument

- loads, stores, branches?
- How the binaries are instrumented

- what code runs upon seeing the instruction?
- How it interacts with the user

- where/how to write output?
- how to change its behavior? e.g. making the pintool count loads/stores for specific addresses

Pintools

pin -- curl cmu.edu

pintool binary/program to
instrument & its
parameters

-t obj-intel64/mem-count.so -o curl.stats

output knob defined
by the pintool

1. Knobs
a. Command-line arguments to the Pintool

2. AddInstrumentFunction
a. A function (code) that instruments instructions

3. AddFiniFunction
a. Code that runs when the program finishes

Components of a Pintool

- Knobs allow passing command-line arguments to the pintool.
- Useful for dynamically configuring the pintool from the command-line without recompiling

- e.g. a different branch prediction algorithm

KNOB<datatype> KnobName (KNOB_MODE, KNOB_FAMILY, PREFIX, DEFAULT_VALUE, PURPOSE);

datatype - type of the data being read from the command line (e.g. string, UINT32, etc)

KnobName - Name for the Knob, will be used to refer to the Knob through the rest of the program

KNOB_MODE - Indicates how multiple arguments for the same Knob are handled (e.g. if KNOB_MODE_WRITEONCE is used, only the first argument will
be read into the Knob)

KNOB_FAMILY - Name for the family that the Knob belongs to, you can turn on/off Knobs by their families.

PREFIX - The flag that will be used on the command line for this Knob (e.g. -o for output file name)

DEFAULT_VALUE - Default value of the Knob if nothing specified on command line

PURPOSE - String description that explains what the Knob does

Knobs

Fields you will use in this class

PREFIX DEFAULT

Passing a command-line argument to this Knob:

pin -t obj-intel64/mem-count.so -o test.stats -- curl cmu.edu

KNOB<datatype> KnobName (KNOB_MODE, KNOB_FAMILY, PREFIX, DEFAULT_VALUE, PURPOSE);

Example:

Knobs - Command Line Arguments

datatype KnobName KNOB_MODE KNOB_FAMILY

PURPOSE

Using Knobs in the pintool

The KnobName.Value() function gives the value stored in the Knob.

Here, KnobOutputFile.Value() returns the string stored in the Knob. If nothing is specified on the
command-line, this will return the default value, which is “memcount.stats” in this case.

You can define similar Knobs to read integer values, e.g. to specify the size of a cache, TLB, etc.

Allows you to specify a function that is called for every single instruction

// Insert call to function that runs for every instruction

INS_AddInstrumentFunction(Instruction, 0);

Here, Instruction is the function that is called for each instruction.

INS_AddInstrumentFunction

Example Instruction() - Instrument Mem. Accesses

Count memory operands
in the instruction

If memory operand is read,
call the Load() function.

If memory operand is written,
call the Store() function.

We will provide you with the Instruction() required for the lab!

Example Instruction() - Instrument Mem. Accesses

Here,

addr

size

- address being read/written to

- size of the data being read/written

instAddr - address of the instruction itself

For the labs, these arguments are all you need
to know about. You will write functions that use
these arguments for solving the labs.

We will provide you with the Instruction() required for the lab!

Here,

pc - address of the instruction - whether the branch is taken or not

Example Instruction() - Instrument Branch Instructions

Check if instruction is
a branch

TRUE for only conditional
branches

pc brTaken

We will provide you with the Instruction() required for the lab!

Allows you to specify a function that is called after the original binary has completed
execution
INS_AddFiniFunction(Fini, 0);

INS_AddFiniFunction

- Super powerful “terminal multiplexer”
- Manage windows, tabs, panes

- For this class, useful for keeping your session alive even after disconnecting
- SPEC+Pin runs take a long time!

- tmux demo
- tmux
- <PREFIX>+d
- tmux attach

- <PREFIX> is Ctrl-b by default

tmux

Doing the lab

- Small portion of your lab grade comes from your code.

- Most of your lab grade comes from your report.

- Lab report is where you make your work shine!

Grading

1. Implementation
a. Implement for correctness first

i. Ensures correct data + counts towards grading
b. Then implement stats/counters for data collection

2. Data Collection
a. Running your implementation to gather results
b. Varying parameters to see how results change

3. Writing the Report
a. Majority of lab grade is influenced by the report

Phases of a Lab

Phases of a Lab (Ideal)

Lab Release Lab Deadline

Implementation
Collection

Report

Phases of a Lab (Unideal)

Lab Release Lab Deadline

Starting late Bug! Bug x2!

- Aim for correctness the first/second time around
- Verify with data—”does the data make sense?”
- Discuss with us (OH/Slack) to check your understanding!

- If you realize too late that your implementation is wrong
- Don’t worry—mention what is wrong in your report
- Explain how it affects your results
- We care more about report + reasoning than implementation + results

Lab Tips

- Ideally, collect data as few times as possible
- SPEC runs take a long time!
- Have idea of what data is important
- Influences the stats/counters you implement
- Influences the graphs you put in your report

- Don’t leave the report to the last minute
- Aim to finish collecting data a few days before the deadline

More Lab Tips

Writing the report

Report Structure

1. Introduction

2. Methodology

3. Results

4. Discussion

5. Conclusion

1. Introduction

- Briefly, what is this report about?

- What topic are you studying?

- Why is it important?

- How did you explore this topic?

- How did you do your experiments?

- Design/implementation decisions?

- What assumptions did you make?

2. Methodology — How?

- What results did you see?

- Show your data
- Warning: Not literally all of your data. More on this later.

- Data should tell a story, show trends

3. Results — What?

4. Discussion

- Why does the data look the way it does?

- Point out the trends, then explain the trends

- Connect the trends to concepts

- Briefly, what are your takeaways from your experiments?
- Key learnings
- Ideal configuration/parameters

- What are the limitations of your experiments?

- Given more time/resources, what would be worth exploring next?

5. Conclusion

- Make your reports legible and pretty!

- Explicit sections and headers

- Brownie points for LaTeX (Overleaf)!

Format & Style

Presenting the data
(Graphs and tables)

- Give the reader a comparative sense of scale
- “My cache is ~2x faster across all benchmarks”
- Not “my cache is 2.386x faster on benchmark X, 1.893x faster on benchmark Y…”

Graphs show trends

1. Descriptive title
2. Axes titles (UNITS)
3. Legend (as needed)
4. Keep it simple

- Categorical data
- x-axis categorical (benchmarks)
- legend categorical (baseline vs.

improved)

- y-axis continuous (throughput)

Grouped Bar Chart

- Gives further breakdown
- Overall composition

Stacked Bar Chart

- Shows relationship between two
continuous variables

- As you vary one, what happens to
the other?

Scatter Plot

- Similar to scatter plot, but
emphasizes a trend over the points

Line Graph

- Graphs for trends, tables for quantities
- Most of the time, trends are more useful than quantities!

- Keep tables short and brief

Tables

Speedup

Benchmark X Benchmark Y Benchmark Z

2.386 1.893 2.102

Making the Graphs

- Get comfortable with a text data format!
- e.g. CSV, TOML, JSON … your choice!
- Your code should dump the text data format of your choice
- Makes it easier to graph your data

- Processing the data
- Write scripts for aggregating your data across multiple output files
- Write scripts for pre/post-processing your data

- Spreadsheets
- Google Sheets, Excel

- Plotting Libraries
- Matplotlib

Lab Report Guide

On course website -> Lab Details -> Lab Resources -> Lab Report Guide

Or use this url:
https://course.ece.cmu.edu/~ece344/course_documents/Lab_Report_Guide.pdf

https://course.ece.cmu.edu/~ece344/course_documents/Lab_Report_Guide.pdf

