18-344 Recitation 1

09/05/2025

Outline

LN~

Logistics
Review
Tool Primer

Labs + Lab Reports
a. Doing the lab
b. Writing the report
c. Presenting the data

Logistics

e Lab 0 due September 15 (next next Monday) (in 10 days)

o Review last week’s recitation if needed

e Homework 1 due September 14 (next next next Sunday) (in 9 days)
o Covers materials from lectures 1-4

Review

Speedup

Lhase
q b

timproved

Amdahl’s Law v1

1 - X 1 ase X 1 ase
toverall — (f) & -+ f &

1.0 S

Y Y

unchanged fraction improved fraction

Amdahl’s Law v2

1
Soverall — (1— 1)

1.0

Basic RISC-V Datapath
IFI DI EX | wB

PC+4

I InplA Input B I
Regiiter Register

__ Control
In A reg seleq

In B reg seleg

Program Register File

Counter(PC
)

Output
Register
Control

__Op selec
op = [+I = X, /

Out reg s@e

Branch: PC Source Select

Branch Target Address Offset Op select

st: data

Id/st: address

I op = [Id,st

Tool Primer

SPEC

- Standard Performance Evaluation Corporation

- Provides suites of benchmarks

- SPEC CPU 2017 Integer is just one of them!

SPECspeed®2017
Integer

600.perlbench_s
602.gcc_s
605.mcf_s
620.omnetpp_s
623.xalancbmk_s
625.x264_s
631.deepsjeng_s
641.leela_s
648.exchange2_s
657.xz_s

Languagel1]

C

C

C
C++
C++

C
C++
C++

Fortran
C

KLOC[2]

362
1,304
3

134
520
96

10

21

i

33

Application Area

Perl interpreter

GNU C compiler

Route planning

Discrete Event simulation - computer network

XML to HTML conversion via XSLT

Video compression

Artificial Intelligence: alpha-beta tree search (Chess)
Artificial Intelligence: Monte Carlo tree search (Go)
Artificial Intelligence: recursive solution generator (Sudoku)

General data compression

Pin

- A dynamic binary instrumentation tool

- Dynamic (as opposed to static). Tool operates at runtime / during execution.
- Binary (what is being instrumented). Tool operates on the raw binary.
- Instrumentation. Insertion of additional code to monitor/analyze the program

- Pin dynamically inserts code (your pintool) while executing a program!

- Count number of branches executed while running a binary!
- Can’t do this statically!

Pintools

- Pin executes the instrumented binaries

- The pintool defines how the binary is instrumented

pin |-t obj-intel64/mem-count.so

-0 curl.stats -

N

pintool

- The pintool defines
- Which instructions to instrument
- loads, stores, branches?
- How the binaries are instrumented

X

output knob defined
by the pintool

- what code runs upon seeing the instruction?

- How it interacts with the user
- where/how to write output?

curl cmu.edu

X

binary/program to
instrument & its
parameters

- how to change its behavior? e.g. making the pintool count loads/stores for specific addresses

Components of a Pintool

1. Knobs

a. Command-line arguments to the Pintool

2. AddinstrumentFunction
a. Afunction (code) that instruments instructions

3. AddFiniFunction

a. Code that runs when the program finishes

Knobs

- Knobs allow passing command-line arguments to the pintool.
- Useful for dynamically configuring the pintool from the command-line without recompiling
- e.g. a different branch prediction algorithm

KNOB<datatype> KnobName (KNOB_MODE, KNOB_FAMILY, PREFIX, DEFAULT_VALUE, PURPOSE);

datatype - type of the data being read from the command line (e.g. string, UINT32, etc)

KnobName" - Name for the Knob, will be used to refer to the Knob through the rest of the program

KNOB_MODE - Indicates how multiple arguments for the same Knob are handled (e.g. if KNOB_MODE_WRITEONCE is used, only the first argument will
be read into the Knob)

KNOB_FAMILY - Name for the family that the Knob belongs to, you can turn on/off Knobs by their families.
PREFIX - The flag that will be used on the command line for this Knob (e.g. -o for output file name)

DEFAULTIVALUE - Default value of the Knob if nothing specified on command line

_- String description that explains what the Knob does _

Knobs - Command Line Arguments

KNOB<datatype> KnobName (KNOB_MODE, KNOB_FAMILY, PREFIX, DEFAULT_VALUE, PURPOSE);

Example:

datatype KnobName KNOB_MODE KNOB_FAMILY

4 4

KNOB<stringp| KnobOutputFilel(KNOB_MODE WRITEONCE|

2 2

PREFIX DEFAULT PURPOSE

Passing a command-line argument to this Knob:

pin -t obj-intel64/mem-count.so Fo test.stats| -- curl cmu.edu

Using Knobs in the pintool

KNOB<string> KnobOutputFile(KNOB_MODE_WRITEONCE,

2 2

The KnobName.Value() function gives the value stored in the Knob.

std::ofstream out(KnobOutputFile.Value().c_str());

Here, KnobOutputFile.Value() returns the string stored in the Knob. If nothing is specified on the
command-line, this will return the default value, which is “memcount.stats” in this case.

You can define similar Knobs to read integer values, e.g. to specify the size of a cache, TLB, etc.

INS_AddInstrumentFunction

Allows you to specify a function that is called for every single instruction
// Insert call to function that runs for every instruction
INS_AddInstrumentFunction(Instruction, 0);

Here, Instruction is the function that is called for each instruction.

Example Instruction() - Instrument Mem. Accesses

// Runs for every instruction

VOID Instruction(INS ins, void * v)

Count memory operands 5
in the instruction

UINT32 memOperands =JINS_MemoryOperandCount(ins);

// Instrument each memory operand. If the operand is both read and written
// it will be processed twice.

// Iterating over memory operands ensures that instructions on IA-32 with
// two read operands (such as SCAS and CMPS) are correctly handled.

for (UINT32 memOp = 0; memOp < memOperands; memOp++)

{
const UINT32 size = INS_MemoryOperandSize(ins, memOp);
. if (INS_MemoryOperandIsRead(ins, memOp))
If memory operand is read, {
// map sparse INS addresses to dense IDs
Ca" the Load() function const ADDRINT iaddr = INS_Address(ins);

INS_InsertPredicatedCall(
ins, IPOINT_BEFORE, (AFUNPTR) Load,
IARG_MEMORYOP_EA, memOp,
IARG_UINT32, size,
IARG_ADDRINT, iaddr,

IARG_END);
}
if (INS_MemoryOperandIsWritten(ins, memOp))
. . {
If memory operand Is written, const ADDRINT iaddr = INS_Address(ins);

call the Store() function. INS_Insertpredingegggkm_ssmm, (AFUNPTR) Store,

IARG_MEMORYOP_EA,memOp,
IARG_UINT32, size,
IARG_ADDRINT, iaddr,
IARG_END);

We will provide you with the Instruction() required for the lab!

Example Instruction() - Instrument Mem. Accesses

// Runs for every instruction

VOID Instruction(INS ins, void * v)

VOID Load(ADDRINT addr, UINT32 size, ADDRINT instAddr)

UINT32 memOperands = INS_MemoryOperandCount(ins);

// Instrument each memory operand. If the operand is both read and written
W, it will be processed twice.

VOID Store(ADDRINT addr. UINT32 size. ADDRINT instAddr) /] Merating over memory operands ensures that instructions on IA-32 with
2 2 // two ™ead operands (such as SCAS and CMPS) are correctly handled.

for (UINT3Z2%qemOp = O; memOp < memOperands; memOp++)
{
const UINT32 s®=e = INS_MemoryOperandSize(ins, memOp);
Here,
@f (INS_MemoryOperandI'sRead(ins, memOp))
Y
= = // map sparse INS addM™egses to dense IDs
addr -address being read/written to CONY&_ADDRINT iaddr = INS_Addrase(ins);

INS_InserwPredicatedCall(
3 -l i i ins, IPOINT_BEFORE, (AFUNPTRY| Load,
size -size of the data being read/written e
IARG UINT32, size,
IARG_RRDRINT, iaddr,

instAddr - address of the instruction itself : TARG_ENDY
For the labs, these arguments are all you need £F (R eretiREss At oH st OOt)
to know about. You will write functions that use b LS s

. INS_InsertPredicatedCall(
these arguments for solvmg the labs. ins, IPOINT_BEFORE, (AFUNPTRY
IARG_MEMORYOP_EA,memOp,
IARG_UINT32, size,
IARG_ADDRINT, iaddr,
IARG_END);

We will provide you with the Instruction() required for the lab!

Example Instruction() - Instrument Branch Instructions

Check if instruction is TRUE for only conditional
a branch branches

oid IpstrufentInstruction(@FNS—tRsy—vlid—tva—f
lf (INS_IsBranch(ins)| && |INS HasFallThrough(lns)l {
INS IRSértcacc(ins, IPOINT_BEFORE, (AFUNPTR) branch|
IARG_INST_PTR, IARG_BRANCH_TAKEN, IARG_ENTJ;

void branch(ADDRINT pc, bool brTaken)

Here,

pc -address of the instruction brTaken -whether the branch is taken or not

We will provide you with the Instruction() required for the lab!

INS_AddFiniFunction

Allows you to specify a function that is called after the original binary has completed
execution
INS _AddFiniFunction(Fini, 0);

VOID Fini(INT32 code, VOID * v)
{

std::ofstream out(KnobOutputFile.Value().c_str());

//Output your results here

out.close();

Tmux

- Super powerful “terminal multiplexer”
- Manage windows, tabs, panes

- For this class, useful for keeping your session alive even after disconnecting
- SPEC+Pin runs take a long time!

- tmux demo

- tmux
- <PREFIX>+d
- tmux attach

- <PREFIX> is Ctrl-b by default

Doing the lab

Grading

- Small portion of your lab grade comes from your code.

- Most of your lab grade comes from your report.

- Lab report is where you make your work shine!

Phases of a Lab

1. Implementation

a. Implement for correctness first
i. Ensures correct data + counts towards grading
b. Then implement stats/counters for data collection

2. Data Collection

a. Running your implementation to gather results
b. Varying parameters to see how results change

3. Writing the Report

a. Majority of lab grade is influenced by the report

Phases of a Lab (Ideal)

Implementation

Report

Lab Release Lab Deadline

Phases of a Lab (Unideal) e ~

Submission

v/ Submitted!
Sep 27 at 11:59pm

Submission Details

Download Lab_1.zip
Starting late l Bug x2! /

Lab Release Lab Deadline

Lab Tips

- Aim for correctness the first/second time around

- Verify with data—"does the data make sense?”
- Discuss with us (OH/Slack) to check your understanding!

- If you realize too late that your implementation is wrong
- Don’t worry—mention what is wrong in your report
- Explain how it affects your results
- We care more about report + reasoning than implementation + results

More Lab Tips

- ldeally, collect data as few times as possible

- SPEC runs take a long time!

- Have idea of what data is important

- Influences the stats/counters you implement
- Influences the graphs you put in your report

- Don’t leave the report to the last minute
- Aim to finish collecting data a few days before the deadline

Writing the report

Report Structure

1.

Introduction
Methodology
Results
Discussion

Conclusion

1. Introduction
- Briefly, what is this report about?
- What topic are you studying?

- Why is it important?

2. Methodology — How?
- How did you explore this topic?
- How did you do your experiments?
- Design/implementation decisions?

- What assumptions did you make?

3. Results — What?

- What results did you see?

- Show your data
Warning: Not literally all of your data. More on this later.

- Data should tell a story, show trends

4. Discussion
- Why does the data look the way it does?
- Point out the trends, then explain the trends

- Connect the trends to concepts

5. Conclusion

- Briefly, what are your takeaways from your experiments?
Key learnings
|deal configuration/parameters

- What are the limitations of your experiments?

- Given more time/resources, what would be worth exploring next?

Format & Style
- Make your reports legible and pretty!
- Explicit sections and headers

- Brownie points for LaTeX (Overleaf)!

Presenting the data
(Graphs and tables)

A

|

B

|

¢c | b

|

E

| F |

G

|

H

| I | J |

K

|

Y

|

|

1000
1002
1003
1003
1004
1005
1007
1007
1009
1010
1010
1011
1011
1011
1011
1012
1012
1013
1013
1016
1016
1018
1018
1018
1019
1020
1020
1020
1022

 |LYLTY_CAR DATE

43390
43359
43531
43532
43406
43462
43439
43438
43424
43352
43448
43453
43435
43310
43412
43635
43539
43528
43531
43574
43625
43636
43346
43432
43492
43328
43375
43587
43397

STORE_NBF TXN_ID
1

B I I R T T T T S S N S S S T N S N R B s gy

N0 O B W N

5 Natural Chi
58 Red Rock D
52 Grain Wave

106 Natural Chi
96 WW Originz
86 Cheetos Pu
10 RRD SR Slo
49 Infuzions S
20 Doritos Che
51 Doritos Me)
59 Old El Paso

1 Smiths Crir
49 Infuzions S
84 GrnWves PI
59 Old El Paso

3 Kettle Sens
20 Doritos Che
93 Doritos Cor
91 CCs Tasty (
74 Tostitos Sp
63 Kettle 135g
38 Infuzions vV

3 Kettle Sens
97 RRD Salt &'
84 GrnWves PI
19 Smiths Crir

7 Smiths Crir
84 GrnWves PI

3 Kettle Sens

b | s | b | b | b | b | b | o | o | b | N | b | b | b | b | N | b | b | b | N | b | o | o | b | b | b | o | b | N

6 YOUNG SIN Premium
2.7 YOUNG SIN Mainstream
3.6 YOUNG FAI Budget

3 YOUNG FAI Budget
1.9 OLDER SIN(Mainstream
2.8 MIDAGE SIt Mainstream
2.7 YOUNG SIN Budget
3.8 YOUNG SIN Budget
5.7 NEW FAMIL Premium
8.8 YOUNG SIN Mainstream
5.1 YOUNG SIN Mainstream
2.9 OLDER SIN(Mainstream
3.8 OLDER SIN(Mainstream
6.2 OLDER SIN(Mainstream
5.1 OLDER SIN(Mainstream
4.6 OLDER FAN Mainstream
5.7 OLDER FAN Mainstream
3.9 RETIREES Budget
4.2 RETIREES Budget
4.4 OLDER FAN Mainstream
4.2 OLDER FAN Mainstream
2.4 YOUNG SIN Mainstream
4.6 YOUNG SIN Mainstream

3 YOUNG SIN Mainstream
3.1 OLDER SIN(Premium
2.6 YOUNG SIN Mainstream
5.7 YOUNG SIN Mainstream
3.1 YOUNG SIN Mainstream
4.6 OLDER FAN Budget

PROD_NBR PROD_NAN PROD_QTY TOT_SALES LIFESTAGE PREMIUM_CUSTOMER

Graphs show trends

- Give the reader a comparative sense of scale

- “My cache is ~2x faster across all benchmarks”
- Not “my cache is 2.386x faster on benchmark X, 1.893x faster on benchmark Y...”

FP Throughput of XYZ Benchmarks

B Baseline [Improved

400

300

200

GFLOPS

100

Benchmark X Benchmark Y Benchmark Z

<EP Throughput of XYZ Benchmar

B Baseline

1. Descriptive title

2. Axes titles (UNITS)
3. Legend (as needed)
4. Keep it simple

B Improve

400

300

200

100

Benchmark X Benchmark Y Benchmark Z

Grouped Bar Chart

- Categorical data
- x-axis categorical (benchmarks)

- legend categorical (baseline vs. FP Throughput of XYZ Benchmarks
improved) B Baseline [Improved
400
- y-axis continuous (throughput) 0

200

GFLOPS

100

Benchmark X Benchmark Y Benchmark Z

Stacked Bar Chart

- Gives further breakdown
- Overall composition

100% of execution time

Compare sales strategy
B Product A] Product B [l Product C Product D |Jij Product E [l Product F [l Product G

900
-a B R
— N
300 I I l I l I I
0
Strategy 1 Strategy 2 Strategy 3 Strategy 4 Strategy 5 Strategy 6 Strategy 7 Strategy 8

45% - Memory Accesses

20% - Control Flow

17.5% - Integer 12.5% - Fetch /

Scatter Plot

- Shows relationship between two
continuous variables

- As you vary one, what happens to
the other?

Time

Line Graph

- Similar to scatter plot, but
emphasizes a trend over the points

Ol B OV O

L) . L) 1) 1 . 1 L) . S | L) T L} .

O—NOUAOO DY O

LOG, OF THE NUMBER OF
COMPONENTS PER INTEGRATED FUNCTION

Fig. 2 Number of components per Integrated
function for minimum cost per component
extrapolated ve time,

Tables

- Graphs for trends, tables for quantities
- Most of the time, trends are more useful than quantities!

- Keep tables short and brief

Speedup
Benchmark X Benchmark Y Benchmark Z
2.386 1.893 2.102

Making the Graphs

Get comfortable with a text data format!
e.g. CSV, TOML, JSON ... your choice!
Your code should dump the text data format of your choice
Makes it easier to graph your data

Processing the data
Write scripts for aggregating your data across multiple output files
Write scripts for pre/post-processing your data

Spreadsheets
Google Sheets, Excel

Plotting Libraries
Matplotlib

Lab Report Guide

On course website -> Lab Details -> Lab Resources -> Lab Report Guide

Or use this url:
https://course.ece.cmu.edu/~ece344/course documents/Lab Report Guide.pdf

https://course.ece.cmu.edu/~ece344/course_documents/Lab_Report_Guide.pdf

