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Gourse Description Lecture 9: Meltdown and Spectre

This course covers the design and implementation of computer systems from the perspective of the
hardware software interface. The purpose of this course is for students to understand the
relationship between the operating system, software, and computer architecture. Students that
complete the course will have learned operating system fundamentals, computer architecture
fundamentals, compilation to hardware abstractions, and how software actually executes from the
perspective of the hardware software/boundary. The course will focus especially on understanding
the relationships between software and hardware, and how those relationships influence the design
of a computer system's software and hardware. The course will convey these topics through a series
of practical, implementation-oriented lab assignments.

Credit: John Masers, RedHat, Meltdown and Spectre, USENIX Lisa 2018
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Side-channel attacks

*  “In computer security, a side-channel attack is any attack based on information
gained from the physical implementation of a computer system, rather than
weaknesses in the implemented algorithm itself (e.g. cryptanalysis and software
bugs).” —from the Wikipedia definition

*  Examples of side channels include
Monitoring a machine's electromagnetic emissions (“TEMPEST”-like remote attacks)

. Measuring a machine's power consumption (differential power analysis)

Timing the length of operations to derive machine state
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Caches as side channels

- Caches exist because they provide faster access to frequently used data
. The closer data is to the compute cores, the less time is required to load it when needed
+ This difference in access time for an address can be measured by software
- Data closer to the cores will take fewer cycles to access
. Data further away from the cores will take more cycles to access
- Consequently it is possible to determine whether an address is cached
. Calibrate by measuring access time for known cached/not cached data

5 Time access toa memory location and compare with calibration
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Caches as side channels

+  Consequently it is possible to determine whether a specific address is in the cache

Calibrate by measuring access time for known cached/not cached data

Time access toa memory location and compare with calibration

time = rdtsc(); Execution time taken for

maccess (&data[0x300]) ; _ . . . .
instruction is proportional

delta3 = rdt - time;
elta rdtse () IS to whether it is in cache(s)

time = rdtsc();
maccess (&data[0x200]) ;
delta? = rdtsc() - time;
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Caches as side channels (continued)

+ Many arches provide convenient high resolution cycle-accurate timers
e.g. x86 provides RDTSC (Read Time Stamp Counter) and RDTSCP instructions
- But there are other ways to measure on arches without unprivileged TSC
Some arches (e.g. x86) also provide convenient unprivileged cache flush instructions
CLFLUSH guarantees that a given (virtual) address is not present in any level of cache
But possible to also flush using a “displacement” approach on other arches
Create data structure the size of cache and access entry mapping to desired cache line

On x86 the time for a flush is proportionate to whether the data was in the cache

flush+flush attack determines whether an entry was cached without doing a load

Harder to detect using CPU performance counter hardware (measuring cache misses)
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Caches as side channels (continued)

*  Some processors provide a means to prefetch data that will be needed soon

Usually encoded as “hint” or “nop space” instructions that may have no effect
x86 processors provide several variants of PREFETCH with a temporal hint

This may result in a prefetched address being allocated into a cache

*  Processors will perform page table walks and populate TLBs on prefetch

This may happen even if the address is not actually fetched into the cache

asm volatile ("prefetcht0 (%0)" : : "r" (p));
asm volatile ("prefetchtl (%0)™ : : "r" (p)):
asm volatile ("prefetcht2 (%0)™ : : "r" (p)):
asm volatile ("prefetchnta (%0)" : : "r" (p));
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Meltdown, Spectre, TLBleed,
NetSpectre, Foreshadow, etc. etc.
etc.




2018: year of uarch side-channel vulnerabilities

The list of publicly disclosed vulnerabilities so far this year includes:

Spectre-v| (Bounds Check Bypass) . Spectre-vl.l (Bounds Check Bypass Store)
Spectre-v2 (Branch Target Injection) . Spectre-vl.2 (Read-only Protection Bypass)
Meltdown (Rogue Data Cache Load) . “TLBleed” (TLB side-channel introduced)
“Variant 3a” (Rogue System Register Read) . SpectreRSB / ret2spec (return predictor attack)
“Variant 4” (Speculative Store Bypass) . “NetSpectre” (Spectre over the network)
BranchScope (directional predictor attack) . “Foreshadow” (LI Terminal Fault)

Lazy FPU save/restore
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Example vendor response strategy

- We were on a specific timeline for public disclosure (a good thing!)

Limited amount of time to create, test, and prepare to deploy mitigations
Focus on mitigating the most egregious impact first, enhance later
Report/Warn the level of mitigation to the user/admin
*+  Created “Omega” Team for microarchitecture vulnerabilities
Collaborate with others across industry and upstream on mitigations
Backport those mitigations (with tweaks as needed) to Linux distros
Example: RH did |15 kernel backports, back to Linux 2.6.18

Other companies/vendors did similar numbers of patches
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Example vendor response strategy (cont.)

* Produce materials for use during disclosure
Blogs, whitepapers, performance webinars, etc.

The “Xin 3 minutes” videos intended to be informative

*  Run performance analysis and document best tuning practices
Goal is to be “safe by default” but to give customers flexibility to choose

Your risk assessment may differ from another environment

Threat model may be different for public/private facing

Meltdown and Spectre alone cost 10,000+ hours Red Hat engineering time
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In the field — Microcode, Millicode, Chicken Bits...

. Modern processors are designed to be able to handle (some) in-field issues
Microcoded processors leverage “ucode” assists to handle certain operations

Ucode has existed for decades, adopted heavily by Intel following (infamous) “FDIV” bug

Not a magic bullet. It only handles certain instructions, doesn’t do page table walks,
cache loads, and other critical path operations, or simple instructions (e.g. an “add”)

OS vendors ship signed blobs provided by e.g. Intel and AMD and loaded by the OS
«  Millicode is similar in concept to Microcode (but specific to IBM)
We secretly deployed updates internally during the preparation for disclosure
Chicken bits are used to control certain processor logic, and (de)features
RISC-based machines traditionally don’t use ucode but can disable (broken) features

Contemporary x86 processors also have on order of 10,000 individual chicken bits
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In the field — Microcode, Millicode, Chicken Bits...

Everything else needs to be done in software (kernel, firmware, app...)

In reality we leverage a combination of hardware interfaces and software fixes

Remember: we can’t change hardware but we can tweak its behavior+software
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Deploying and validating mitigations (e.g. Linux)

+  Operating System vendors provide tools to determine vulnerability and mitigation
The specific mitigations vary from one architecture and Operating System to another

- Windows includes new PowerShell scripts, various Linux tools have been created

Very recent (upstream) Linux kernels include the following new “sysfs” entries:

$ grep . /sys/devices/system/cpu/vulnerabilities/*
/sys/devices/system/cpu/vulnerabilities/meltdown:Mitigation: PTI
/sys/devices/system/cpu/vulnerabilities/spectre vl:Vulnerable

/sys/devices/system/cpu/vulnerabilities/spectre v2:Vulnerable: Minimal
generic ASM retpoline
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Meltdown

*  Implementations of Out-of-Order execution that strictly follow Tomasulo algorthim
handle exceptions arising from speculated instructions at instruction retirement

* Speculated instructions do not trigger (synchronous) exceptions
. Loads that are not permitted will not be reported until they are no longer speculative

. At that time, the application will likely receive a “segmentation fault” or other error
* Some implementations may perform load permission checks in parallel
. This improves performance since we don’t wait to perform the load

. Rationale is that the load is only speculative (“not observable”)

*  Avrace condition may thus exist allowing access to privileged data
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Meltdown (single bit example)

A malicious attacker arranges for exploit code similar to the following to speculatively execute:

1f (spec_cond) {
unsigned char value = * (unsigned char *)ptr;
unsigned long index2 = (((value>>bit)&l)*0x100)+0x200;

maccess (&data[index2]) ;

- “data” is a user controlled array to which the attacker has access, “ptr” contains privileged data
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Meltdown (continued)

A malicious attacker arranges for exploit code similar to the following to speculatively execute:

1f (spec_cond) {
unsigned char value = * (unsigned char *)ptr;
unsigned long index2 = (((valu bit) &1) *0x100)+0x200;

maccess (&data[index2]) ;

load a pointer to

which we don’t
ha C
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Meltdown (continued)

A malicious attacker arranges for exploit code similar to the following to speculatively execute:

1f (spec_cond) {
unsigned char value = * (unsigned char *)ptr;
unsigned long index2 = (((value>>bit)&l)*0x100)+0x200;

maccess (&data[index2]) ;

bit shift extracts
a single bit of data
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Meltdown (continued)

A malicious attacker arranges for exploit code similar to the following to speculatively execute:

1f (spec_cond) {
unsigned char value = * (unsigned char *)ptr;
unsigned long index2 = (((value>>bit)&l)*0x100)+0x200;

maccess (&data[index2]) ;

generate address
from data value
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Meltdown (continued)

A malicious attacker arranges for exploit code similar to the following to speculatively execute:

1f (spec_cond) {
unsigned char value = * (unsigned char *)ptr;
unsigned long index2 = (((value>>bit)&l)*0x100)+0x200;

maccess (&data[index2]) ;

use address as offset to
pull in cache line

that we control
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Meltdown (continued)

char value = *SECRET_KERNEL_PTR;

|

mask out bit | want to read char data[];

l 0x000

calculate offset in “data”___________,,_,._.—-—V 0x100

(that | do have access to)\ 0x200
0x300
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Meltdown (continued)

Access to “data” element Ox 100 pulls the corresponding entry into the cache

char data[];

0x000 Cache
0x100 —) Ox100
0x200

0x300 DATA
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Meltdown (continued)

Access to “data” element 0x300 pulls the corresponding entry into the cache

char data[];

0x000

0Ox 100

0x200 Cache
0x300 DATA — 0x300
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Meltdown (continued)

We use the cache as a side channel to determine which element of “data” is in the cache

Access both elements and time the difference in access (we previously flushed them)

time = rdtsc(); Execution time taken for
maccess (&data[0x300]) ; _ instruction is proportional
delta3 = rdtsc() - time; to whether it is in cache(s)
time = rdtsc() ;

maccess (&data[0x200]) ;
delta?2 = rdtsc() - time;
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Meltdown: Speculative Execution

Entry

o U1 A W PN

RegRename

Pl

P2

P3

P4

R1

R1

R2

R4

Instruction

Rl = LOAD SPEC_CONDITION
TEST SPEC_CONDITION
IF (SPEC_CONDITION) {
R2 = LOAD KERNEL_ADDRESS
R3 = (((R2&1)*0x100)+0x200)

R4 = LOAD USER_BUFFER[R3]

Deps

X
|
|

X
2
3

Ready?

Y

< < < Z <

Spec?

N
N
N
Y
Y
Y

flags for
_ future

exception
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Meltdown: Speculative Execution

Entry

o U1 A W PN

RegRename

Pl

P2

P3

P4

R1

R1

R2

R4

Instruction

Rl = LOAD SPEC_CONDITION
TEST SPEC_CONDITION
IF (SPEC_CONDITION) {
R2 = LOAD KERNEL_ADDRESS
R3 = (((R2&1)*0x100)+0x200)

R4 = LOAD USER_BUFFER[R3]

Deps

X
|
|

X
2
3

Ready?

Y

< < < Z <

Spec?

N
N
N
Y
Y
Y

A

should kill
speculation

here
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Meltdown: Speculative Execution

Entry RegRename Instruction Deps Ready? Spec?

| PI=RI RI=LOADSPEC CONDITON X Y N

2 TEST SPEC_CONDITION | Y N
3 IF (SPEC_CONDITION) { | N N
4 P2=RI R2= LOADKERNEL_ADDRESS X Y Y*
5 P3=R2 R3= (((R2&1)*¥0x100)+0x200) 2 Y Y*
6 P4=R4 R4=LOADUSER BUFFER[R3] 3 Y Y* <(ummmmm re2lly bad

thing (™)
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Meltdown (continued)

*  When the right conditions exist, this branch of code will run speculatively
Privilege check for “value” will fail, but only result in an entry tag in the ROB
. The access will occur although “value” will be discarded when speculation is undone
+ The offset in the “data” user array is dependent upon the value of privileged data
We can use this as a counter between several possible entries of the user data array

+ Cache side channel timing analysis used to determine “data” location accessed

. Time access to “data” locations 0x200 and Ox300 to infer value of desired bit

Access is done in reverse in my code to account for cache line prefetcher
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Mitigating Meltdown

+ The “Meltdown” vulnerability requires several conditions:
Privileged data must reside in memory for which active translations exist

. On some processor designs the data must also be in the LI data cache
«  Primary Mitigation: separate application and Operating System page tables
Each application continues to have its own page tables as before

. The kernel has separate page tables not shared with applications

Limited shared pages exist only for entry/exit trampolines and exceptions
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Mitigating Meltdown

« Linux calls this page table separation “PTI”: Page Table Isolation
Requires an expensive write to core control registers on every entry/exit from OS kernel
e.g. TTBR write on impacted ARMv8, CR3 on impacted x86 processors
* Only enabled by default on known-vulnerable microprocessors
An enumeration is defined to discover future non-impacted silicon
Address Space IDentifiers (ASIDs) can significantly improve performance
ASIDs on ARMv8, PCIDs (Process Context IDs) on x86 processors

TLB entries are tagged with address space so a full invalidation isn't required

Significant performance delta between older (pre-2010 x86) cores and newer ones
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Spectre: A primer on exploiting “gadgets” (gadget code)

A “gadget’ is a piece of existing code in an (unmodified) existing program binary
For example code contained within the Linux kernel, or in another “victim” application
A malicious actor influences program control flow to cause gadget code to run
Gadget code performs some action of interest to the attacker
For example loading sensitive secrets from privileged memory
Commonly used in “Return Oriented Programming” (ROP) attacks
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Spectre-vl: Bounds Check Bypass (CVE-2017-2573)

«  Modern microprocessors may speculate beyond a bounds check condition

What's wrong with the following code?
If (untrusted offset < limit) {

trusted value = trusted data[untrusted offset];

tmp = other datal (trusted value) &mask];

A bit “mask” extracts part of a word (memory location)
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Branch prediction (Speculation)

LOAD x

l

LOAD arrayl _size

Condition Flags If (x < arrayl_size)

True
FLAGS? ===y = array2[arrayl[x] * 256];

\ False
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Spectre-vl: Bounds Check Bypass (cont.)

+ The code following the bounds check is known as a “gadget” (see ROP attacks)
Existing code contained within a different victim context (e.g. OS/Hypervisor)
+ Code following the untrusted_offset bounds check may be executed speculatively
Resulting in the speculative loading of trusted data into a local variable
This trusted data is used to calculate an offset into another structure
Relative offset of other data accessed can be used to infer trusted value
LID$ cache load will occur for other_data at an offset correlated with trusted value

Measure which cache location was loaded speculatively to infer the secret value
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Mitigating Spectre-vl: Bounds Check Bypass

. Existing hardware lacks the capability to limit speculation in this instance
. Mitigation: modify software programs in order to prevent the speculative load
On most architectures this requires the insertion of a serializing instruction (e.g. “Ifence”)
s Some architectures can use a conditional masking of the untrusted_offset
Prevent it from ever (even speculatively) having an out-of-bounds value
Linux adds new “nospec” accessor macros to prevent speculative loads
+ Tooling exists to scan source and binary files for offending sequences

Much more work is required to make this a less painful experience
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Mitigating Spectre-vl: Bounds Check Bypass (cont.)

Example of mitigated code sequence:

If (untrusted offset < limit) {

. a4 : : revent load
serializing instruction|(); —<G———— P )
— speculation
trusted value = trusted dataluntrusted offset];

tmp = other datal (trusted value) &mask];
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Mitigating Spectre-vl: Bounds Check Bypass (cont.)

Another example of mitigated code sequence (e.g. Linux kernel):

If (untrusted offset < limit) {

untrusted offset = aXrray index nospec (untrusted offset, limit);

trusted value = trusted datal rusted offset];

tmp = other datal (trusted valul) &mask];

clamps value of untrusted_offset
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Spectre-v2: Reminder on branch predictors

Process A

0x5000 BRANCH A

Process B OR Kernel / Hypervisor
0x5000 BRANCH B

0x000 T,T,N,N,T,T,N,N
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Spectre-v2: Branch Predictor Poisoning (CVE-2017-5715)

. Modern microprocessors may be susceptible to “poisoning” of the branch predictors
Rogue application “trains” the indirect predictor to predict branch to “gadget” code

Processor incorrectly speculates down indirect branch into existing code but offset of the
branch is under malicious user control — repurpose existing privileged code as a “gadget”

Relies upon the branch prediction hardware not fully disambiguating branch targets

Virtual address of branch in malicious user code constructed to use same predictor entry
as a branch in another application or the OS kernel running at higher privilege

- Privileged data is extracted using a similar cache access pattern to Spectre-vl
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Mitigating Spectre-v2: Big hammer approach

«  Existing branch prediction hardware lacks capability to disambiguate contexts
Relatively easy to add this in future cores (e.g. using ASID/PCID tagging in branches)

« Initial mitigation is to disable the indirect branch predictor hardware (sometimes)

Completely disabling indirect prediction would seriously harm core performance
Instead disable indirect branch prediction when it is most vulnerable to exploit
e.g. on entry to kernel or Hypervisor from less privileged application context

Flush the predictor state on context switch to a new application (process)
Prevents application-to-application attacks across a new context

 Afine grained solution may not be possible on existing processors
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Mitigating Spectre-v2: Big hammer (cont)

* Microcode can be used on some microprocessors to alter instruction behavior
...also used to add new “instructions” or system registers that exhibit side effects

*  On Spectre-v2 impacted x86 microprocessors, microcode adds new SPEC_CTRL MSRs
Model Specific Registers are special memory addresses that control core behavior
Identified using the x86 “CPUID” instruction which enumerates available capabilities
IBRS (Indirect Branch Restrict Speculation)
Used on entry to more privileged context to restrict branch speculation
STIBP (Single Threaded Indirect Branch Predictor)
Use to force an SMT (“Hyperthreaded”) core to predict on only one thread
IBPB (Indirect Branch Predictor Barrier)
Used on context switch into a new process to flush predictor entries

-  What are the problems with using microcode interfaces?
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Mitigating Spectre-v2 with Retpolines

* Microcoded mitigations are effective but expensive due to their implementation

Many cores do not have convenient logic to disable predictors so “IBRS” must also disable
independent logic within the core. It may take many thousands of cycles on kernel entry

* Google decided to try an alternative solution using a pure software approach
If indirect branches are the problem, then the solution is to avoid using them
“Retpolines” stand for “Return Trampolines” which replace indirect branches

Setup a fake function call stack and “return” in place of the indirect call
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Mitigating Spectre with Retpolines (cont)

Example retpoline call sequence on x86 (source:

)

call set up target;
capture spec:

pause;

jmp capture spec;

set up target:

mew Swlt, (SrEm) _ modify return stack to

ret; force “return” to target
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https://support.google.com/faqs/answer/7625886

Mitigating Spectre with Retpolines (cont)

Example retpoline call sequence on x86 (source:

)

call set up target;

capture spec: N
T PR harmless infinite loop for
- the CPU to speculate )
Jmp capture spec;

set up target:
mov srll, (Srsp);

ret;

* We might replace “pause” with “Ifence” depending upon power/uarch
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Mitigating Spectre-v2 with Retpolines
(cont)

 Retpolines are a novel solution to an industry-wide problem with indirect branches
Credit to Google for releasing these freely without patent claims/encouraging adoption
*  However they present a number of challenges for Operating Systems and users
Requires recompilation of software, possibly dynamic patching to disable on future cores
Mitigation should be temporary in nature, automatically disabled on future silicon
Cores speculate return path from functions using an RSB (Return Stack Buffer)
Need to explicitly manage (stuff) the RSB to avoid malicious interference

Certain cores will use alternative predictors when RSB underflow occurs
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Mitigating Spectre-v2 with Retpolines
(cont)

 Retpolines are a novel solution to an industry-wide problem with indirect branches
Credit to Google for releasing these freely without patent claims/encouraging adoption
*  However they present a number of challenges for Operating Systems and users
Requires recompilation of software, possibly dynamic patching to disable on future cores
Mitigation should be temporary in nature, automatically disabled on future silicon
Cores speculate return path from functions using an RSB (Return Stack Buffer)
Need to explicitly manage (stuff) the RSB to avoid malicious inerference

Certain cores will use alternative predictors when RSB underflow ocdirs

see SpectreRSB,“ret2spec”,
and other RSB vulnerabilties
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Variations on a theme: variant 3a (Sysreg read)

«  Variations of these microarchitecture attacks are likely to be found for many years

An example is known as “variant 3a”. Some microprocessors will allow speculative
read of privileged system registers to which an application should not have access

Can be used to determine the address of key structures such as page table base registers
Sequence similar to meltdown but instead of data, access system registers

Extract the value by crossing the uarch/arch boundary in same way as in “Meltdown”
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Variant 4: “Speculative Store Buffer Bypass”

Recall that processors use “load/store” queues LIl I$
A—h
These sit between the core and its cache hierarchy |
Recent stores may be to addresses we later read Branch Instruction Fetch
. ‘ . Predictor «m INstruction Decode
The store might be obvious (e.g. to stack pointer) RREER
But store may use register containing any address l l l l l
Dynamically determine memory dependency Regls[ter Renaming (]ROB)
L2
Searching Load/Store queue takes some time Integer Physical Vector Physical
CAM (Content Addressable Memory) Register File Register File $
| |
Different alignments and sub-word . .
. Execution Units
*  Processor speculatively bypasses the store queue |
Speculates there are no conflicting recent stores Load/Store Queue
|

May speculatively use older values of variables

LI D$ -

Detect at retirement/unwind (“Disambiguation”)
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Variant 4: “Speculative Store Buffer Bypass” (cont.)

Variant 4 targets same-context (e.g. JIT or scripted code in browser sandbox)
Also web servers hosting untrusted third-party code (e.g. Java)

Can be creatively used to steer speculation to extract sandbox runtime secrets

Mitigation is to disable speculative store bypassing in some cases
“Speculative Store Bypass Disable” (SSBD) is a new microcode interface on e.g. x86
We can tell the processor to disable this feature when needed (also on other arches)
Performance hit is typically a few percent, but worst case is |0+ percent hit

Linux provides a global knob or a per-process “prctl”
The “prctl” is automatically used to enable the “SSBD” mitigation

e.g. Red Hat ship Open]JDK in a default-disable SSB configuration
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Variations on a theme: LazyFPU save/restore

* Linux (and other OSes) used to perform “lazy” floating point “save/restore”
Floating point unit used to be a separate physical chip (once upon a time)
Hence we have a means to mark it “not present” and trap whenever it is used
On context switch from one process to another, don’t bother stashing the FP state
Many applications don’t use the FP, mark it unavailable and wait to see if they use it
The “floating point” registers are used for many vectorized crypto operations
. Modern processors integrate the FPU and perform speculation including FP/AVX/etc.
It is possible to speculatively read the floating point registers from another process

Can be used to extract cryptographic secrets by monitoring the register state

Mitigation is to disable lazy save/restore of the FPU

Which Linux has done by default for some time anyway (mostly vendor kernel issue)
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Variations on a theme: Bounds Check Bypass Store (variant |.x)

The original Spectre-v| disclosure gadget assumed a load following bounds check:

if (x < arrayl_size)
y = array2[arrayl[x] * 256];

It is possible to use a store following the bounds instead of a load
e.g. set a variable based upon some value within the array
Mitigation is similar to load case but must locate+patch stores

Scanners such as “smatch” updated to account for “BCBS”
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TLBleed — TLBs as a side-channel

Translation Lookaside Buffer (TLB)

0xA000

0x8000
0xb000
0x@000

memp OxG000

mmmp 0x6000
mmmp 0x4000
mmmp OxA000

TLB is just another form of cache
(but not for program data)

11l Meltdown

and Spectre

<« redhat



SMT (Simultaneous Multi-Threading)

Recall that most “processors” are multi-core
Cores may be partitioned into hw threads

Increases overall throughput by up to 30%

-1
-3
. | B
=3
-1
-1
-l | =
-3
-1

Can decrease perf. due to competition
SMT productized into many designs including . . . .
Intel’s “Hyper-threading” (HT) technology : :

This is what you see in “/proc/cpuinfo” as
“sibling” threads of the same core

Lightweight per-thread duplicated resources
Shared L1 cache, shared ROB, shared...

Separate context registers (e.g. arch GPRs)

L2 $

Partitioning of some resources

TLB partially competitively shared
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TLBleed — TLBs as a side-channel

« TLBs similar to other caches (but cache memory translations, not their contents)

Formed from an (undocumented) hierarchy of levels, similar to caches
Ll i-side and d-side TLBs with a shared L2 sTLB
* Intel Hyper-threaded cores share data-side TLB resources between sibling threads
TLB not fully associative, possible to cause evictions in the peer
=> Can observe the TLB activity of a peer thread

TLBleed relies upon temporal access to data being measured
Requires co-resident hyper-threads between victim and attacker

Requires vulnerable software (e.g. some builds of libgcrypt)
Uses a novel machine learning approach to monitor TLBs
« Mitigation requires careful analysis of e.g. vulnerable crypto code

Can disable HT or apply process pinning strategies as well
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NetSpectre — Spectre over the network

« Spectre attacks can be performed over the network by using two combined gadgets

A “leak” gadget sets some flag or state during speculative out of bounds access:
if (x < bitstream_length)
if(bitstream[x])
flag = true
A “transmit” gadget uses the flag during arbitrary operation that is remotely observable

e.g. during the transmission of some packet, check the flag value

« An attacker trains the leak gadget then extracts data with the transmit gadget

Rate limited to bits per hour over the internet, detectable even among noise

Acceleration possible using e.g. an AVX2 power-down side-channel (Intel)
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LI Terminal Fault (aka “Foreshadow”

Activities [ Terminal v Sun 10:57 24, O~

je wor X

File Edit View Search Terminal Help

[+] Physical address 0x100000
[+] Physical offset : oxffff880000000000
[+] Reading virtual address: exffff880000100000

ST AR

R i

[+] Physical address : 0x100000

[+] Physical offset : oxffff880000000000

[+] Reading virtual address: exffff880000100000

[+] Physical address 0x100000
[+] Physical offset : oxffff880000000000
[+] Reading virtual address: exffff880000100000

[jcm@omega2 me ./virt_reader
[+] Physical address : 0x100000

[+] Physical offset : oxffff880000000000
[+] Reading virtual address: exffff880000100000

The Magic Words are Squeamish Ossirage”C I
[jcm@omega2 meltdown]$
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Ll Terminal Fault (aka “Foreshadow”™)

Virtual Memory

0x4080
0x4040
0x4000

0x0080
0x0040
0x0000

Page Table Walk

Virtual Index

0x040

Physical Tag

Ox1000
DATA
Cached Data
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LI Terminal Fault (aka “Foreshadow?™)

0x55d776036 | 000
N/

Process Page Table
|

A

ll<—<

i«
i«

N/ \J/

page
offset

Y

PA top bits Valid

v

address forwarded
to Ll data cache
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LI Terminal Fault (aka “Foreshadow”)

0x55d776036 | 000
N/ \J/ N/

Process Page Table
A

ll<—<

page PA SPGCUlatiVely

offset .
forwarded prior
to valid check

Il
i«

i«

Y

PA top bits Valid

v

address forwarded
to Ll data cache
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LI Terminal Fault (aka “Foreshadow”)

Stage | Translation

Guest VM
0x55d776036 | OOO

\ Y4
Process Pagglables
A I

i~
<—
III|<—(

vy

PA top bits

Valid

Stage 2 Translation

Hypervisor

Pa

e Tables

PA top bits

Valid
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PA speculatively
forwarded to Ll D$
(no stage? translation)

LI Terminal Fault (aka “Foreshadow”)

Stage | Translation

Guest VM
0x55d776036 | 000

\/ \/
Process page Table
]

A

Stage 2 Translation

III
<—
III|<—(

-

\J

PA top bits Valid

PA top bits Valid
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LI Terminal Fault (aka “Foreshadow”)

+  Operating Systems use PTE (Page Table Entry) valid bit for management
“paging” (aka “swapping”) implemented by marking PTEs “not present”

Not present PTEs can be used to store OS metadata (disk addresses)
Specification says that all bits are ignored when not present

Linux stores the address on disk we swapped the page to

Intel processors will speculate on validity of PTEs (Page Table Entries)
Forward the PA to the LID$ prior to completing valid (“present”) check

3

Common case (fast path) is that the PTE is “present” (valid)
“Terminal Fault” tagged in ROB for at-retirement handling

Similar to “Meltdown” and a similar underlying fix
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LI Terminal Fault (aka “Foreshadow”)

* A “not present” PTE can be used to speculatively read secrets
Contrive a not present PTE in the Operating System (bare metal attack)
+ Mitigate this by ensuring OS never generates suitable PTEs
All swapped out pages are masked to generate PAs outside RAM

Terminating page walks do not undergo second stage translations
Intel second stage (EPT) is ignored for not “present” PTEs

PA treated as a host address and forwarded to the cache
Can extract cached data from other Vms/Hypervisor
« Mitigate this by keeping secrets away from reach
Flush the LID$ on entry into VM code (Linux)
Scrub secrets from the cache (e.g. Hyper-V)

Linux full mitigation may require HT disable
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Related Research

« Meltdown and Spectre are only recent examples of microarchitecture attack
. A memorable attack known as “Rowhammer” was discovered previously
Exploit the implementation of (especially non-ECC) DDR memory
5 Possible to perturb bits in adjacent memory lines with frequent access
Can use this approach to flip bits in sensitive memory and bypass access restrictions
5 For example change page access permissions in the system page tables
*  Another recent attack known as “MAGIC” exploits NBTI in silicon
. Negative-bias temperature instability impacts reliability of MOSFETs (“transistors”)

. Can be exploited to artificially age silicon devices and decrease longevity

Proof of concept demonstrated with code running on OpenSPARC core
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Where do we go from here!

+  Changes to how we design hardware are required

Addressing Meltdown, and Spectre-v2 in future hardware is relatively straightforward
Addressing Spectre-vl and v4 (SSB) may be possible through register tagging/tainting

A fundamental re-adjustment in focus on security vs. performance is required

+  Changes to how we design software are required
All self-respecting software engineers should have some notion of how processors behave
A professional race car driver or pilot is expected to know a lot about the machine

””

Communication. No more “hardware” and “software” people. No more “us” and “them”.
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Where do we go from here!

+  Open Source can help

. Open Architectures won’t magically solve our security problems (implementation vs spec)
. However they can be used to investigate and understand, and collaborate on solutions

+ Many/most security researchers using RISC-V already, makes a lot of sense

+ Wecan collaborate to explore novel solutions (yes, even us “software” people)

. Opening up processor microcode/designs. Can you fully trust what you can’t see?

125 Meltdown and Spectre -~ redhat



	Slide 1
	Slide 2: Meltdown and Spectre
	Slide 3
	Slide 4: Side-channel attacks
	Slide 5: Side-channel attacks
	Slide 6: Caches as side channels
	Slide 7: Caches as side channels
	Slide 8: Caches as side channels (continued)
	Slide 9: Caches as side channels (continued)
	Slide 10: Meltdown, Spectre, TLBleed, NetSpectre, Foreshadow, etc. etc. etc.
	Slide 11: 2018: year of uarch side-channel vulnerabilities
	Slide 12: Example vendor response strategy
	Slide 13: Example vendor response strategy (cont.)
	Slide 14: In the field – Microcode, Millicode, Chicken Bits...
	Slide 15: In the field – Microcode, Millicode, Chicken Bits...
	Slide 16: Deploying and validating mitigations (e.g. Linux)
	Slide 17: Meltdown
	Slide 18: Meltdown (single bit example)
	Slide 19: Meltdown (continued)
	Slide 20: Meltdown (continued)
	Slide 21: Meltdown (continued)
	Slide 22: Meltdown (continued)
	Slide 23: Meltdown (continued)
	Slide 24: Meltdown (continued)
	Slide 25: Meltdown (continued)
	Slide 26: Meltdown (continued)
	Slide 27: Meltdown: Speculative Execution
	Slide 28: Meltdown: Speculative Execution
	Slide 29: Meltdown: Speculative Execution
	Slide 30: Meltdown (continued)
	Slide 31: Mitigating Meltdown
	Slide 32: Mitigating Meltdown
	Slide 33: Spectre: A primer on exploiting “gadgets” (gadget code)
	Slide 34: Spectre-v1: Bounds Check Bypass (CVE-2017-2573)
	Slide 35: Branch prediction (Speculation)
	Slide 36: Spectre-v1: Bounds Check Bypass (cont.)
	Slide 37: Mitigating Spectre-v1: Bounds Check Bypass
	Slide 38: Mitigating Spectre-v1: Bounds Check Bypass (cont.)
	Slide 39: Mitigating Spectre-v1: Bounds Check Bypass (cont.)
	Slide 40: Spectre-v2: Reminder on branch predictors
	Slide 41: Spectre-v2: Branch Predictor Poisoning (CVE-2017-5715)
	Slide 42: Mitigating Spectre-v2: Big hammer approach
	Slide 43: Mitigating Spectre-v2: Big hammer (cont)
	Slide 44: Mitigating Spectre-v2 with Retpolines
	Slide 45: Mitigating Spectre with Retpolines (cont)
	Slide 46: Mitigating Spectre with Retpolines (cont)
	Slide 47: Mitigating Spectre-v2 with Retpolines (cont)
	Slide 48: Mitigating Spectre-v2 with Retpolines (cont)
	Slide 49: Variations on a theme: variant 3a (Sysreg read)
	Slide 50: Variant 4: “Speculative Store Buffer Bypass”
	Slide 51: Variant 4: “Speculative Store Buffer Bypass” (cont.)
	Slide 52: Variations on a theme: LazyFPU save/restore
	Slide 53: Variations on a theme: Bounds Check Bypass Store (variant 1.x)
	Slide 54: TLBleed – TLBs as a side-channel
	Slide 55: SMT (Simultaneous Multi-Threading)
	Slide 56: TLBleed – TLBs as a side-channel
	Slide 57: NetSpectre – Spectre over the network
	Slide 58: L1 Terminal Fault (aka “Foreshadow”)
	Slide 59: L1 Terminal Fault (aka “Foreshadow”)
	Slide 60: L1 Terminal Fault (aka “Foreshadow”)
	Slide 61: L1 Terminal Fault (aka “Foreshadow”)
	Slide 62: L1 Terminal Fault (aka “Foreshadow”)
	Slide 63: PA speculatively forwarded to L1 D$ (no stage2 translation)
	Slide 64: L1 Terminal Fault (aka “Foreshadow”)
	Slide 65: L1 Terminal Fault (aka “Foreshadow”)
	Slide 66: Related Research
	Slide 67: Where do we go from here?
	Slide 68: Where do we go from here?

