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bourse I]BSB[iDtiUII Lecture 8: Cache Replacement Policies and Enhancements

This course covers the design and implementation of computer systems from the perspective of the
hardware software interface. The purpose of this course is for students to understand the
relationship between the operating system, software, and computer architecture. Students that
complete the course will have learned operating system fundamentals, computer architecture
fundamentals, compilation to hardware abstractions, and how software actually executes from the
perspective of the hardware software/boundary. The course will focus especially on understanding
the relationships between software and hardware, and how those relationships influence the design
of a computer system's software and hardware. The course will convey these topics through a series

of practical, implementation-oriented lab assignments. Credit: Brandon Lucia



Replacement Policies



Replacement Policies
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Replacement Policies — Round Robin | 7= &7
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Replacement Policies — Round Robin | 7= &7
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Replacement Policies — Round Robin | 7= &7
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Replacement Policies — Round-Robin Analysis

1b x6 Oxe @
1lb x6 0Oxb

w 1b %6 0xc
1b x6 0xd

1b x6 0Oxa

Set 0
Q)

Advantage: Simple to implement and understand
Disadvantage: Hopefully the next to evict isn’t going to be the next to be accessed...



Replacement Policies — Round-Robin Analysis
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Replacement Policies — Round-Robin Analysis
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Replacement Policies — Round-Robin Analysis

1b x6 O0Oxe
1b x6 0Oxb
1b x6 0Oxc

:

b x6 0xd @

Set

1b x6 Oxa

Advantage: Simple to implement and understand
Disadvantage: Hopefully the next to evict isn’t going to be the next to be accessed...



Replacement Policies — Round-Robin Analysis
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Advantage: Simple to implement and understand
Disadvantage: Hopefully the next to evict isn’t going to be the next to be accessed...



Replacement Policies — Round-Robin Analysis

1b x6 O0Oxe
1b x6 0Oxb

a b %6 oxc
1b x6 0xd

1b x6 0Oxa

Set 0
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Advantage: Simple to implement and understand
Disadvantage: Hopefully the next to evict isn’t going to be the next to be accessed...



Minimum Number of Misses?

What is the best replacement strategy to minimize misses & why?
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Minimum Number of Misses?

:
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When are we going to re-use cached data?

1b x6 0xe Miss
1b x6 0Oxb Hit
1b x6 0Oxc Hit

1b x6 0xd Hit
b x6 0Oxa Miss

Set O
D
O
o
o

Replacement decisions must be informed by the next reuse of a block of data.
Think: what is an optimal policy? How far in the future is something going to be used again?



When are we going to re-use cached data?

1b x6 0xe Miss
1b x6 0Oxb Hit
1b x6 0Oxc Hit

1b x6 0xd Hit

C .
B B B BECEE praemumys

What defines optimality for a cache replacement algorithm?



Belady’s MIN Algorithm for Optimal Replacement

1b x6 0xe Miss
1b x6 0Oxb Hit
1b x6 0Oxc Hit

1b x6 0Oxd Hit
1b x6 Oxa Miss

Bélady Laszlo:
“What defines optimality for a cache replacement algorithm?”
Evict the cached element that will be used furthest in the future.




Belady’s MIN Algorithm for Optimal Replacement
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Belady's MIN Algorithm for Optimal Replacement
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Set 0

reuse distance: 6 reuse distance: 1 reuse distance: 2 reuse distance: 4



Belady's MIN Algorithm for Optimal Replacement
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Belady's MIN Algorithm for Optimal Replacement
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Belady's MIN Algorithm for Optimal Replacement
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Belady's MIN Algorithm for Optimal Replacement

findBlockMIN() {
://init reuse distances
:for each block in cache, b:
RD[b] = 0; RD_done[b] = false;
://look forward in the execution trace
:for each access, a, forward in execution trace:
://increment reuse distance for each block not already seen
for each block in cache, b:

if RD done[b] == false:

RD[b]++;

RD done[a.block] = true
://MIN finds the block with maximum RD
:return argmax(b,RD[b])

I—‘O\O(D\IO\(ﬂnthl—‘O

B

MIN results in the MINimum number of replacements in a cache for an execution trace.



Belady's MIN Algorithm for Optimal Replacement

findBlockMIN() {
://init reuse distances
:for each block in cache, b:
RD[b] = 0; RD_done[b] = false;
://look forward in the execution trace
:for each access, a, forward in execution trace:
://increment reuse distance for each block not already seen
for each block in cache, b:

if RD done[b] == false:

RD[b]++;

RD done[a.block] = true
://MIN finds the block with maximum RD
:return argmax(b,RD[b])

I—‘O\O(D\IO\(ﬂnthl—‘O

B

See any limitations of the MIN algorithm for cache replacement?



Belady's MIN Algorithm for Optimal Replacement

findBlockMIN() {
://init reuse distances
:for each block in cache, b:
RD[b] = 0; RD_done[b] = false;
://look forward in the execution trace
:for each access, a, forward in execution trace:
://increment reuse distance for each block not already seen
for each block in cache, b:

if RD done[b] == false:

RD[b] ++;

RD done[a.block] = true
://MIN finds the block with maximum RD
:return argmax(b,RD[b])
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B

Need omniscient future knowledge of the execution trace of your program!
MIN is , but not practically implementable



Practical Replacement Algorithms

General idea: Assume the near future is similar to the recent past
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If a block was used recently, it will be used again soon
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Least-Recently Used (LRU) Replacement

Evict the block that was used the furthest in the execution’s past
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If a block was not used recently, it will not be used again soon
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Least-Recently Used (LRU) Replacement

Evict the block that was used the furthest in the execution’s past
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last use: -6 last use: -1 last use: -4 last use: -2

LRU’s Gamble: “Haven’t used block Oxe for longest,
probably won’t use it again any time soon, either”

If a block was not used recently, it will not be used again soon
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Least-Recently Used (LRU) Replacement

Evict the block that was used the furthest in the execution’s past

MIN
Evicts ——
o
v e a b C
(Vp)
last use: -6 last use: -1 last use: -4 last use: -2

Caveat: LRU is wrong if past does not predict future
Caveat to caveat: past usually predicts future well

If a block was not used recently, it will not be used again soon
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Oxe
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(Naive) LRU Algorithm & Implementability

accessCachelRU (access a) {
for each block in cache, b:
if b '= a.block:
LRU Age[b]++
LRU Age[b] = 0
}

findBlockLRU () {

return argmax (b,LRU_Age)
}

and limitations of LRU?



(Naive) LRU Algorithm & Implementability

accessCachelLRU (access a) {
for each block in cache, b:
if b !'= a.block:
LRU Age[b]++
LRU Age[b] =0
}

findBlockLRU () {
return argmax (b,LRU_Age)

}
Implementability! Does not require unknowable information about future of execution

Limitation! Requires accessing metadata for every block on each access to any block.

Time & energy cost to update ages. Area & power cost to store age values.
Does not scale beyond about 4 way set associativity.



Bit-Pseudo-Least-Recently Used (Bit-PLRU)

Evict a block that was definitely not most recently used
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MRU: O MRU: 1 MRU: O MRU: O

Set MRU bit when block is used (most recently), clear all MRU bits when
all MRU bits are set, evict the left-most block with unset MRU bit

1b
1b
1b
1b
1b
1b
1b
1b
1b
1b
1b
1b

X6
X6
X6
X6
X6
X6
X6
X6
X6
X6
X6
X6

Oxe
Oxa
Oxb
Oxa
Oxc
Oxa
Oxd
Oxa
Oxe
Oxa
Oxb
Oxe

knowable

guessable



Bit-Pseudo-Least-Recently Used (Bit-PLRU)

Evict a block that was definitely not most recently used

Bit-PLRU
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Set MRU bit when block is used (most recently), clear all MRU bits when
all MRU bits are set, evict the left-most block with unset MRU bit
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Bit-Pseudo-Least-Recently Used (Bit-PLRU)

Evict a block that was definitely not most recently used

LRU
Evicts
Bit-PLRU MIN
Evicts Evicts ——
a b C
MRU: O MRU: 1 MRU: O MRU: O

Bit-PLRU is a decent approximation of LRU
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Bit-PLRU Algorithm & Implementability

accessCachePLRU (access a) {
MRU Bit[a.block] =1
if ++MRU BitSum == setSize:
for each block in cache, b:
MRU Bit[b] = 0
MRU BitSum = 0

findBlockLRU () {
for 1 in 0. .setSize:
if 'MRU Bit[i]:
return block (i) ;

and limitations of Bit-PLRU?



Bit-PLRU Algorithm & Implementability

accessCachePLRU (access a) {
MRU Bit[a.block] =1
if ++MRU BitSum == setSize:
for each block in cache, b:
MRU Bit[b] = 0
MRU BitSum = 0

findBlockLRU () {
for 1 in 0. .setSize:
if 'MRU Bit[i]:
return block (i) ;

}

Implementability! No future knowledge, 1 bit/block overhead, block-local metadata
updates on access (no O(n) aging operation)

Limitation! Approximates LRU, which approximates MIN by guessing based on history...



Misses per Kilo
Instruction (MPKI)

Replacement Policies — Performance &
Complexity Cost/Benefit Analysis

RR

It-
PLRU

Notional Plot: not real

data (You measure these
in Lab 2!)

RR: log(set size) bits per set to track next
to evict, no action on access

Bit-PLRU: 1 MRU bit per block + log(set

size) bits per set (or equivalent logic) to
detect all set,

Clear bits on access if all bits set

LRU: 1 age per block + logic to track max.
Update (set size - 1) ages on any access

MIN: unimplementable, requires future
knowledge of execution trace.



More cache-related optimizations

Way 0 Way 1 Way 2 Way 3




Recall a Set Associative Caches

Way 0 Way 1 Way 2 Way 3 What typej of miss can be addressed by
cache design?

L3S e Cold?
. Capacity?
Conflict?

What can we do to address those misses

without doing the impractical:

. Increasing cache size
significantly(costly)

. Increasing associativity (slower)

Address the most glaring misses caused by
partitioning, i.e. conflict misses
e But how?




Miss Cache

Set associative
Probably write-through (Why?)

Just a few lines, i.e. 2 — 4, but
fully associative

The most recent few reads brought
into L1 from L2 also hang out for a
very short time in the “Miss Cache”
which is fully associative. L1 misses
that is satisfied by the “Miss Cache”
very low penalty.



Miss Cache

But, most of the time, the miss cache
stores values that are already stored
in the L1 cache, as they were just
read into both L1 and the miss cache
from the L2 cache, which is a waste
of space.

What can we do about that?



Victim Caches/Buffers

Only store things into the cache upon
eviction — then the only copy is in the
small cache between L1 and L2, now called
victim buffer.

Block evicted from cache goes into (usually
fully associative, small) victim buffer.

Victim Cache



Victim Caches/Buffers

Block evicted from cache goes into (usually
fully associative, small) victim buffer.

L3S

On next access, “victim” can be re-cached
without going down the hierarchy.

Victim Cache



Victim Caches/Buffers

Way 0 Way 1 Way 2 Way 3 Block evicted from cache goes into (usually
fully associative, small) victim buffer.

L3S

On next access, “victim” can be re-cached
without going down the hierarchy.

What problem does a victim cache solve?

Victim Cache



Miss Caching vs Victim Caching

Key— — LI I<ache
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Figure 3-3: Conflict misses removed by miss caching Figure 3-5: Conflict misses removed by victim caching

Norman P. Jouppi. 1990. Improving direct-mapped cache performance by the addition of a small fully-associative
cache and prefetch buffers. SIGARCH Computer Architecture News 18(3):388-397.

* Victim Caches better than Miss Caches
* But, butter for d-Caches than i-Caches. Why? (Think about locality and distance)



Stream Buffer

Benefits i-caches
Upon miss, prefetch next n instructions
Gets back ahead after jumps




Non-blocking Writes & Write Buffering

Byte M

sw Oxc $S1000

Write Buffer Entry (e.g.)

Write|Buffer

WB drains to...
...cache if :...memory, if write-through .
write-back :(why WB important for Byte OxF

Memory unit can read
from write buffer

:write-through caches?)

Byte OxE
Byte OxD

[Ld/St] Byte OxC
Memory
Cache Byte 2
Werite buffer: single cycle to add write op to write buffer Byte 1
What problem does a write buffer solve? Byte O

What are key challenges associated with a write buffer?



Non-blocking Writes & Write Buffering

Cont. Data C
Sigs.:

sw Oxc $S1000

Write Buffer Entry (e.g.)

Write|Buffer
WB drains to...

...cache if

Memory unit can read write-back

from write buffer

Byte M

E...memory, if write-through .
:(why WB important for
:write-through caches?)

Op- I I
Select £
[Ld/St]
Memory
Cache Byte 2
Completed memory operations’ effects not yet in memory (complicated stuff, Byte 1

later in the semester...)
What is the latency of a write if it ends up buffered?
Unpredictable write completion latency. Need ordering logic.

Byte O

Byte OxF
Byte OxE
Byte OxD
Byte OxC



Non-temporal/Streaming Stores

[Ld/St]

Write Buffer

Memory unit can read
from write buffer

&

Byte M
In x86: movntdq rl5, O0xC

WB drains to...

...cache if write-back ~ ...memory, if write-through

not non-temporal Eor non-temporal instruction

Memory

Cache Byte 2
Non-temporal Store: Acts like no-write-allocate+write-through even if Byte 1
write-allocate+write-back for rest of cache. Byte O

When would you use a non-temporal store instruction?

Byte OxF
Byte OxE
Byte OxD
Byte OxC



Non-temporal/Streaming Stores

Write Buffer

Memory unit can read
from write buffer

&

Byte M
In x86: movntdq rl5, O0xC

WB drains to...

...cache if write-back ~ ...memory, if write-through

not non-temporal Eor non-temporal instruction

[Ld/St]
Memory

Cache Byte 2
When would you use a non-temporal store instruction? Byte 1

Data streaming, accesses that are sure to have no locality Byte O

Byte OxF
Byte OxE
Byte OxD
Byte OxC



No standard hints are presently defined (except the privileged WFI instruction which uses a sep-
arately reserved encoding). We anticipate standard hints to eventually include memory-system
spatial and temporal locality hints, branch prediction hints, thread-scheduling hints, security tags,

N Ot i n R | f ; ( :V (y et) I and instrumentation flags for simulation/emulation.
[ ]

Instruction | Constraints Code Points | Purpose
LUI rd=x0 g
AUIPC rd=x0 D
ADDI rd=x0, and either 917 _ 1
RISCV Specification: ' rs1#x0 or imm#£0 -
“RV32l reserves a large encoding space for g?{? - rjfxg ;1:
HINT instructions, which are usually used to XORI :d;zo ST7
communicate performance hints to the ADD rd=x0 - Reserved for future standard use
microarchitecture. HINTs are encoded as SUB rd=x0 7
integer computational instructions with AND rd=x0 212
rd=x0. Hence, like the NOP instruction, HINTs ggﬁ :Zzg 310
do not change any architecturally visible STL o 510
state, except for advancing the pc and any SRL rd=x0 g
applicable performance counters. SRA rd=x0 2"
Implementations are always allowed to SLTI rd=x0 2"
ignore the encoded hints.” LTI Pi=x0 2
SLLI rd=x0 G
SRLI rd=x0 R Reserved for custom use
SRAI rd=x0 e
SLT rd=x0 o
SLTU rd=x0 229

Table 2.3: RV32I HINT instructions.



Scratchpad Memories

Memory unit can load from and Byte 5.0 Byte S.N

store to SP separately from Mem Byte M

sE 3
ZEa ¢ : .
: 5 : é Write Buffer Memory Unit controls loading
= s|< @ , data from memory to SP
g3 2 £ WB drains to...
...cache if write-back :
Read & not non-temporal :...memory, if write-through Byte OxF
Cont. Data C Memory unit can read : . .
Sigs. X from write buffer :or non-temporal instruction Byte OxE
o, NI (|7 0 M 0 s
Select p I Byte OxD
[Ld/St] Byte OxC
Memory
Cache Byte 2
. Byte 1
Scratchpad Memory: Software controlled memory with Byte 0

explicit, scratch-pad-private physical memory space



Scratchpad Memories

Memory unit can load from and Byte 5.0 Byte S.N

store to SP separately from Mem Byte M

LE é :,E, é Write Buffer Memory Unit controls loading
= s|<) @ , data from memory to SP
g3 2 £ WB drains to...
...cache if write-back :
Read & not non-temporal :...memory, if write-through Byte OxF
Cont. Data C Memory unit can read : . .
Sigs. 2 from write buffer :or non-temporal instruction Byte OxE
Op. I Byte OxD
Select 4
[Ld/St] Byte OxC
Memory
Cache Byte 2
Byte 1
Why would you use a scratchpad when a cache makes Byte 0

everything transparent to software and automatic???



Scratchpad Memories

Most often manipulated by accessing Byte 5.0 Byte S.N

special range of addresses mapped to SP Byte M
g2 3l
c E L g . Memory Unit controls loading
£ S £ 2 Write Buffer
gz g3 data from memory to SP
€5 £ i
23 3§ WB drains to...
...cache if write-back :
ont Read Mbmony unit ban rad & not non-temporal :-..memory, if write-through Byte OxF
o Data C S watte buffer :or non-temporal instruction Byte OxE
(S)epl.ect £ l | | | Byte OxD
[Ld/St] Byte OxC
Memory

Cache Byte 2
Byte 1

Most important thing about scratchpads: Byte 0

Software control is as good (or bad) as the programmer.




Review Questions to Ponder: The Memory
Hierarchy and the Hardware Software Boundary

Part of the architecture: Cache? Scratchpad? Replacement
policy?
Part of the HW/SW boundary: Cache? Scratchpad?

Replacement policy?
What does a programmer need to know about how the

cache works?
What does the architect need to know about how the

machine will be used?



What did we just learn?

* Replacement is a one of the key dimensions of cache design
* Different replacement algorithms present different design trade offs
* Optimal replacement is infeasible, practical replacement is non-optimal

* Many microarchitectural and architectural choices make up a memory
hierarchy and the architect and programmer need to share information



What to think about next?

e Performance Evaluation (next time)
* Design spaces, Pareto Frontiers, and design space exploration

* Miscellaneous (micro)architectural tricks & optimizations (future)
* Vector processors, SIMD/SIMT, dataflow



What to think about next?

e Caches as a microarchitectural optimization (next time)
* Implementation of cache hierarchies
* Cache design tradeoffs

* Performance Evaluation (next next time)
* Design spaces, Pareto Frontiers, and design space exploration

* Miscellaneous (micro)architectural tricks & optimizations (future)
 Vector processors, SIMD/SIMT, dataflow
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