18-344: Computer Systems and the Hardware-Software Interface ~ Fail 2025

133 :
LA : . —
» Vi : : s
: +fd fose]

bourse I]BSB[i[]tiUII Lecture 7: Caches and the Memory Hierarchy

This course covers the design and implementation of computer systems from the perspective of the
hardware software interface. The purpose of this course is for students to understand the
relationship between the operating system, software, and computer architecture. Students that
complete the course will have learned operating system fundamentals, computer architecture
fundamentals, compilation to hardware abstractions, and how software actually executes from the
perspective of the hardware software/boundary. The course will focus especially on understanding
the relationships between software and hardware, and how those relationships influence the design
of a computer system's software and hardware. The course will convey these topics through a series

of practical, implementation-oriented lab assignments. Credit: Brandon Lucia

Today: Caches and the Memory Hierarchy

* Introduction to caches and cache organization
* Caches in the memory hierarchy

* Cache implementation choices

* Cache hardware optimizations

* Software-managed caches & scratchpad memories

Memory is a big list of M bytes

Byte M

lw x6 0xC

Decode H Execute \‘ Memory

Byte OxF
Byte OxE
Byte OxD
Byte OxC

Register
Write-Back

Fetch ‘

Byte 2
Byte 1
Byte O

Memory is conceptually far away from CPU

Byte M
lw x6 0xC Y
B ©
ER D -
SfY Sgo
£ s £ 8
EE EE
m§ o ¢ ©

What does this “distance” entail for a Byte OXF

E.C;Zt Memory DEZLe hardware / software interface? Byte OXE
Op.

o T Byte OxD
[Ld/St] Byte OxC
Memory

Byte 2
Byte 1
Byte O

Memory is conceptually far away from CPU

1w x6 0xC

e

3i 3E

= £ w e

ES 52
SIS

': mg

S| &

Cont.
Sigs.:
Op.

Select
[Ld/St]

Memory

What does this “distance” entail for a hardware / software
interface?

* Need to be judicious with 1w & sw

* Compiler & programmer must carefully lay out memory

* Worth spending hardware resources to optimize

* Need hardware and software to co-optimize data re-use

* Data movement is a fundamental limit on speed & energy

Byte M

Byte 2
Byte 1
Byte O

Byte OxF
Byte OxE
Byte OxD
Byte OxC

Memory hierarchy: large & slow vs. small & fast

3 .3 Byte I1
e 2%
ES¥ 53
;lg : ;{g Byte M3
S| g
. Byte M2 Byte OXF
ont.
Sigs.: JUSTIEY | pata ¢ L1DS Byte OxE
Soepl.ect Byte OxD
[Ld/St] I Byte OxC
Memory Byte 2
or . Byte 1
Capauty mversely proportlonal to access cost Bvte O
yte

M>M3>M2>M1

A

Recall: Memory A Hierarchy from 18x13

Regs CPU registers hold words retrieved
Smaller, h from the L1 cache.
faster, L1: L1 cache
and (SRAM) L1 cache holds cache lines retrieved
i from the L2 cache.
(COStI::rt | 12 L2 cache
er e
Per by (SRAM) |
storage L2 cache holds cache lines
devices retrieved from L3 cache.
L3: L3 cache
(SRAM)
L3 cache holds cache lines
retrieved from main memory.
Larger,
slower, L4: Main memory
and (DRAM)
cheaper Main memory holds disk blocks
(per byte) retrieved from local disks.
storage | 5. Local secondary storage
devices (SSD/Disk)
Local disks hold files
retrieved from disks
on remote servers.
L6: Remote secondary storage

(e.g., Web servers)

Recall from 18x13: The Working Set

The data that is presently being use is called the Working Set.

Imagine you are working on 18x13. Your working set might include:
* The lab handout
* Aterminal window for editing
* Aterminal window for debugging
* A browser window for looking up man pages

If you changed tasks, you’d probably hide those windows and open new
ones

The data computer programs use works the same way.

Recall from 18x13: Guesstimating the Working Set

« How does the memory system (cache logic) know the working set?
 Thisis tricky. There is no way it can really know what data the program needs or
will need soon.
* |t could even be totally dynamic, based upon input.

* It approximates it using a simple heuristic called locality:
 Temporal locality: Data used recently is likely to be used again in the near future

(local in time).
e Spatial locality: Data near the data used recently is likely to be used soon (local in

space, e.g. address space).

* The memory system will bring and keep the Most Recently Used (MRU) data and data
near it in memory to the higher layers while evicting the Least Recently Used (LRU)
data to the lower layers.

What's New Since 18x137

« We want to think about a cache built natively in real hardware vs a software
simulation of a cache

e The 18x13 cache was a software simulation of a somewhat ideal LRU cache
 Consider how you built an LRU cache simulator in 18x13:
 Alinked list- based queue?

* A copy-to-shift array-based queue?

 Time for the “18-240 Thinking Cap”: Consider the implementation of LRU in hardware
 (Canthe 18x13 approach be translated to real hardware in a practical way?

Locality is the key to cache performance

Spatial Locality Temporal Locality

Why do we see locality? What are some examples of each?

A

Memory hierarchy: Unified vs. Split ICache & DCache

1w x6 0xC
T o
ER D -
u.g ‘o
5§28 §3.
2| g = EE
m§ 0| @

il Vemory
Sigs.:

Op.
Select T
[Ld/St]

L1IS

Byte 11

L1DS

Memory

Byte M2

Byte M3

L1 Instruction & L1 Data cache often separate (why?)
Lower levels of cache are unified (why?)

Byte M

Byte 2
Byte 1
Byte O

Byte OxF
Byte OxE
Byte OxD
Byte OxC

Review: Anatomy of a set-associative cache

Way 0

Way 1

Way 2

Way 3

Typical Parameters
Line contains 16-64 bytes of data
1-8 number of sets

1 set contains all lines?
All sets contain 1 line?
Total size varies by level:
L1: 1kB — 32kB

L3: a few kB — 48MB

Valid

Dirty Tag

B bytes data

Anatomy of a Line

Review: Accessing the cache

Way 0 Way 1 Way 2 Way 3

Step 1: Partitioning the address

1b x6 0x7ff£f0053

l set index

0x01111111111111110000000001010011

tag bits block
offset

Valid | Dirty Tag 32 bytes data

Total cache size = 32B x 4 sets x 4 ways = 512B

Review: Accessing the cache Ib %6 Ox7TEEL0053

Way 0 Way 1 Way 2 Way 3

Step 2: Select the set

set index
OxOl111111111111110000000001_010011
tag bits block
offset

set 2

Review: Accessing the cache - Hit

1,0,0x7fff10,... 1,0,0x000000,... 1,1,0x001e00,...

Tag match, valid

1,1,0x7fff00,...

1b x6 O0x7f££f0053

Step 3: Check valid, compare tags

set index

0x01111111111111110000000001010011

tag bits

block
offset

Valid

Dirty

Tag

32 bytes data

Review: Accessing the cache - Hit b X6 0x7EEE0053

Step 4: Fetch cache block for memory unit via cache controller

Way 0 Way 1 Way 2 Way 3

0x01111111111111110000000001010011

block offset
= byte 19 L3S

B N D

Reg A

|V_VB[Mem Fwd

1b

._\MB[Mem Fwd
DataReg B

Read

Cont. Data C

Sigs.: —

Soepl;ect 1,0,0x7ff10,.. 1,0,0x000000,... 1,1,0x001e00,... 1,1,0x7f£f00, ..
[Ld/St]

ISingIe Byte of
Data @

Memory

Review: Accessing the cache - Miss | ™ f7eee00%

Step 3: Check valid, compare tags

No tag match, or invalid

set index
OxOl111111111lllllOOOOOOOOOliolOOll
tag bits block

offset
1,0,0x7fff10,... 1,0,0x000000,... 1,1,0x001e00,... 0,1,0x7fff00,...

Valid | Dirty Tag 32 bytes data

1b x6 O0x7f££f0053

Review: Accessing the cache - Miss

D011 Byte M

Way 0 Way 1 Way 2 Way 3

fset

32 Byte Block
@ Ox7fffO000

1,0,0x7fff10,... 1,0,0x000000,... 1,1,0x001e00,... 1,0,0x7fff00,...

Byte 2

B N D Byte

Byte O

Review: Accessing the cache - Miss | ™ f7eee00%

Step 5: Fetch cache block for memory unit via cache controller

Way 0 Way 1 Way 2 Way 3

0x01111111111111110000000001010011

block offset
= byte 19 L3S

B N D

Reg A

|V_VB[Mem Fwd

1b

._\MB[Mem Fwd
DataReg B

Read

Cont. Data C

Sigs.: —

Soepl;ect 1,0,0x7ff10,.. 1,0,0x000000,... 1,1,0x001e00,... 1,0,0x7f£f00, ..
[Ld/St]

ISingIe Byte of
Data @

Memory

Why do we miss in the cache?

Why do we miss in the cache?

e The 3 C’s of misses

 Compulsory
* Conflict
* Capacity

Why miss? Compulsory misses

First access to any block of memory is always a miss; these misses are compulsory

Why miss? Capacity misses

Working set of program contains more data than can be cached at one time.
By the pigeonhole principle caching all data requires missing at least once

Why miss? Conflict misses

Multiple blocks of memory map to the same location in the cache
and conflict, even if there is still some empty space in the cache
L3S

How many bits in tag/index/offset?

Way 0

Way 1

Way 2

Way 3

1b x6 0x7f££f£f0053

!

OXOlll1111111111110000000001_010011

set index

tag bits

block
offset

Why these numbers of bits?

Valid

Dirty

Tag

32 bytes data

Total cache size = 32B x 4 sets x 4 ways = 512B

How many bits in tag/index/offset?

Way 0 Way 1 Way 2 Way 3 1b x6 0x7fff0053

l set index

O0x01111111111111110000000001010011
tag bits block
offset
Enough block offset bits to count block bytes
Enough set index bits to count the sets
All left-over bits are tag bits
Question: what do tag bits mean?

Valid | Dirty Tag 32 bytes data

Total cache size = 32B x 4 sets x 4 ways = 512B

How many sets should your cache have?

1,0,0x7fff10,...

#Ways parallel tag matches per lookup

1,0,0x000000,...

1,1,0x001e00,... 0,1,0x7fff00,...

Set Associative Cache Design Procedure
1.Select total cache size

2.Select implementable #ways

3.cache size = #sets x #ways x #block_bytes
4 #sets = cache size / (#ways x #block_bytes)

What is an implementable # of ways?

What is an implementable # ways?

n-way set associative cache:
Need n parallel comparators for tag match

1,0,0x7fff10,... 1,0,0x000000,... 1,1,0x001e00,... 0,1,0x7fff00,...

What is an implementable # ways?

Fully-associative cache:
comparators = # lines in entire cache

L3S

BE N D

1,0,0x7fff10,... 1,0,0x000000,... . 1,1,0x001e00,... 0,1,0x7fff00,...

What is an implementable # ways?

Direct mapped cache:
1 comparator because each set
contains a single line

1,0,0x7fff10,... 1,0,0x000000,... 1,1,0x001e00,... 0,1,0x7fff00,...

Physical implementation separates data & tags

set index
Ox01111111111111110000000000Q10011
Way 0 Way 1 Way 2 Way 3 tag bits block
offset

L3$

Cache Tag Array

Sequential Tag Lookup & Data Lookup N

O0x011111111111111100000000001#10011

Way 0 Way 1 Way 2 Way 3 tag bits block
134 offset
2-bit set 2-bit set
select I
Line it block selec select
2-bit way
select
L13$

tag0 tagl tag 2 tag3

Sequentially access tag array first, then access the data array using the result of the tag
lookup.

Question: Can you think of an alternative scheme to optimize tag/data lookup?

Cache Data Array Cache Tag Array

Parallel Tag Lookup & Data Lookup

T set index
Ox01111111111111110000000000H100112
=[e ele tag bits block

13$ 2-bit way offset

select 2-bit set
Line select
L13$

Fetch all ways in set in parallel with tag matching and use the way index of tag to select
the one data block that was fetched.

Question: Pros & cons of parallel lookup?

Cache Data Array

Cache Tag Array

Way Prediction: Cost Like Sequential, Performance
Like Parallel Tag Lookup =z

(L El o) 01111111111111110000000000410011

set index

Way 0 Way 2 Way 3 tag bits block
138 way offset
oredictor | 2-bit set 2-bit set
: -bit block se select select
Line
L3$
t tag0 tag tag ag

Send some tag bits and set index bits to fast way predictor, output of which is 4-bit block
select, like in sequential. Fetch way of matched tag and send to prediction validation
logic. If correct predict: use block. If incorrect predict: discard block and refetch.

Cache Tag Array

Moritz Lipp, Vedad Hadzi¢, Michael Schwarz, Arthur L 2000 - 7 Non-colliding addresses
Perais, Clémentine Maurice, and Daniel Gruss. 2020. g 1,500] Colliding addresses
Take A Way: Exploring the Security Implications of £ 1,000

AMD's Cache Way Predictors. In Proceedings of the %3 500 ﬂﬂ

15th ACM Asia Conference on Computer and 0

Communications Security (ASIA CCS '20). Association 0 50 100 150 200
for Computing Machinery, New York, NY, USA, 813— Access time (increments)

825. https://doi.org/10.1145/3320269.3384746

Figure 2: Measured duration of 250 alternating accesses to
addresses with and without the same pTag.

- ¥ ;l
Way1 .. Wayn | l @ LN £

‘ ‘ 27 | 26 | 25 | 24 ‘ 23 ‘ 22 ‘ 21 ‘ 20 ‘ 19 | 18 ‘ 17 ‘ 16 ‘ 15 ‘ 14 ‘ 13 ‘ 12 ‘
e [e] — 3 ;
: - ;
b P j{g

... () Zen, Zen+, Zen 2

{ fi
*[%F ----------------------- {%] =k
f) L i
D f
D f
Way Prediction Early Miss | I S ('? Jfrg

4 ‘ | 27 | 26 | 25 \ 24 ‘ 23 ’ 22 ‘ 21 | 20 l‘9 V 18 \ 17 \ 16 \ 15 ‘ 14 ‘ 13] 12 |

L1D L2
(b) Bulldozer, Piledriver, Steamroller
Figure 1: Simpllﬁed illustration of AMD’s way predictor. Figure 3: The recovered hash functions use bits 12 to 27 of

the virtual address to compute the yTag.

Cost of Associativity

512 Bytes, 256-bit (32B) lines, 1-way

$./destiny config/SRAM 512 1 256.cfg

Read Latency = 55.4943ps

Tag Read Latency = 277.84ps
Write Latency = 54.7831ps
Tag Write Latency = 212.575ps

Read Bandwidth = 674.493GB/s
Write Bandwidth = 633.944GB/s

Tag Read Dynamic Energy = 0.281324p)
Tag Write Dynamic Energy =0.222833p]J

512 Bytes, 256-bit (32B) lines, 4-way

$./destiny config/SRAM 512 4 256.cfg

Read Latency = 83.4307ps
Tag Read Latency = 293.516ps
Write Latency = 83.1343ps
Tag Write Latency = 226.518ps

Read Bandwidth =480.942GB/s
Write Bandwidth = 500.715GB/s

Tag Read Dynamic Energy = 1.01651p)
Tag Write Dynamic Energy = 0.758075p)

Higher associativity avoids conflict misses at an additional cost in hit latency & energy

Write-Allocate: Stores go to cache
Write-No-Allocate: Stores do not go to cache

Write Policies - Allocation

Way 0 Way 1 Way 2 Way 3 Byte M

L3S

sb x6 O0x7f£f£f0053

WB[Mem Fwd
|WB[Mem Fwd

Cont. Data C
Sigs.: —>

Op.
Select
[Ld/St]

Byte 2

Memory Byte 1

? Byte O

. | . _ Write-Back: Wait until line evicted to writeback
W I Ite P O | C e S Write-Through: Writeback immediately on store

Propagation

Way 0 Way 1 Way 2 Way 3 Byte M

L3S

sb x6 0x7f££f0053

Cont. Data C
Sigs.: —
Op.

Select
[Ld/St]

Memory

Recall 18x13: Snoopy Caches

Tag each cache block with state

Invalid Cannot use value
Shared Readable copy
Exclusive Writeable copy

Thread1 Cache
E|l a: 2

inta=1;
int b =100;

N

Threadl:
Wa: a=2;
Rb: print(b);

Thread2:
Whb: b = 200;
Ra: print(a);

Thread2 Cache

E |b:200

a: 1

Main Memory

b:100

Recall 18x13: Snoopy Caches

Tag each cache block with state

Invalid Cannot use value
Shared Readable copy
Exclusive Writeable copy

Thread1 Cache
S| a:2
S| b:2Q0

inta=1;

int b =100;
Threadl: Thread2:
Wa: a=2; Wb: b =200;

Rb: print(b); Ra: print(a);

Thread2 Cache

S| a2

S40:200

a: 1

\\rvrmmme/mcg

b:100

print 2
print 200

m When cache sees request for
one of its E-tagged blocks

m Supply value from cache
(Note: value in memory
may be stale)

m Settagto$S

Recall 18x13: Typical Multicore Processor

i Core O Core n-1
Regs Regs
L1 L1 L1 L1 |
d-cachq | i-cache d-cachg | Ii-cache| | 1| Propagation Policy v. Multicore Cache Coherency
.| » What is required for a snooping?
L2 unified cache L2 unified cache | | 1 | = How does propagation policy facilitate or impede this?
' |+ What does this suggest about cache policy by level?

L3 unified cache
(shared by all cores)

Main memory

Cache Hierarchy Performance Measurement

Average Memory Access Time (AMAT):
Measuring the performance of a memory hierarchy

1w x6 0xC L11S Byte M
_ 3 .3 Byte I1
ZE< 2%
E3® §2
S S|
glé g 2{5 Byte M3

Byte M2

Cont Read Byte OxF
ont.

Sigs.: SRR Datac L1DS Byte OxE
Op.

Select ! Byte OxD
[Ld/St] Byte OxC
Memory

Byte 2

Compute the time taken by the average Byte 1

access based on miss rate, hit latency, and Byte O
miss penalty at each level

Average Memory Access Time (AMAT):
Measuring the performance of a memory hierarchy

1w x6 0xC Miss rate = 0.01 Z'ins
- - Hit time = 1.28ns atency
3 LE 32 Miss rate = 0.02 Miss time = 485ps
E S E é Access time = 461ps
£ = SIS o . . _
22 2{5 ' Miss rate = 0.1 Miss time = 395ps
Access time = 322ps
Miss time = 305ps Byte OxF
Cont DataC B
Sigs.: yte OxE
Op.
Seplect " Byte OxD
[Ld/St] Byte OxC
4KkB,
4way
Memor
Y 64kB, Byte 2
. 8way
Compute the time taken by the average 1MB, Byte 1

access based on miss rate, hit latency, and 8way Byte O
miss penalty at each level

Average Memory Access Time (AMAT):
Measuring the performance of a memory hierarchy

lw x6 0xC Miss rate = 0.01 Z'ins
- - Hit time = 1.28ns arency
3 LE 32 Miss rate = 0.02 Miss time = 485ps
E S E é Access time = 461ps
£ = SIS o . . _
S 2 2{5 ' Miss rate = 0.1 Miss time = 395ps

Access time = 322ps
Miss time = 305ps Byte OxF
Byte OxE
Byte OxD

[Ld/St] Byte OxC

4KkB,
4way

64kB,

Memory 8way

AMAT = L1HitRate x L1AccTime + L1MissRate x (LLMissTime +
L2HitRate x L2ZAccTime + L2ZMissRate x (L2ZMissTime +
L3HitRate x L3AccTime + L3MissRate x (L3MissTime +

DRAM Latency)))

Byte 2

1MB, Byte 1
3way Byte O

Computing the AMAT 1/2/4/23 90% hits

Miss rate = 0.1 Miss rate = 0.02 Miss rate = 0.01
Access time = 322ps Access time = 461ps Hit time = 1.28ns
(1 cycle @ 3GHz) (2 cycles @ 3GHz) (4 cycles @ 3GHz)
Miss time = 305ps Miss time = 395ps Miss time = 485ps

0.322ns x 0.9 + 0.1 x (0.305ns +
0.461ns x 0.98 + 0.02 x (0.395ns +
1.28ns x 0.99 + 0.01 x (0.485ns +
7.5ns)))

1x09+0.1x(1+
2x0.98+0.02x(2+
4x0.99+0.01x(2+
23)))

DRAM Latency
7.5ns (CAS latency)
(23 cycles @ 3GHz)

AMAT in Seconds

AMAT in Cycles

Computing the AMAT

Miss rate = 0.1 Miss rate = 0.02

Access time = 322ps Access time = 461ps

Miss time = 305ps Miss time = 395ps
0.322ns x 0.9 + 0.1 x (0.305ns + 0.461ns x 0.98 + 0.02 x X Q
Q Al Q Shopping [& Images & News © Maps ¢ More Tools

About O results (0.52 seconds)

(0.322 ns x 0.9) + (0.1 x ((0.305 ns) + (0.461 ns x 0.98) + (0.02 x ((0.395 ns) + (1.28 ns
x 0.99) + (0.01 x ((0.485 ns) + (7.5 ns))))))) =

0.3689621 nanoseconds

Miss rate = 0.01 DRAM Latency
Hit time = 1.28ns 7.5ns (CAS latency)

Miss time = 485ps

1%0.9+ 04 Xi(T + 2x098+0.02x(2+ X O\
Q All { Shopping EJ Images & News [»] Videos ¢ More Tools
About 5,550,000 results (1.24 seconds)
o) (1x0.9)+ (0.1 x (1 + (2 x0.98) + (0.02 x (2 + (4 x 0.99) + (0.01 x (2 + 23)))))) =
cycles

Computing the AMAT —2/5/10/30 90% hits

Miss rate = 0.1
Access time = 2 cycles
Miss time = 2 cycles

2x09+0.1x(2+

Miss rate = 0.01
Hit time = 10 cycles
Miss time = 10 cycles

Miss rate = 0.02
Access time =5 cycles
Miss time =5 cycles

DRAM Latency
30 cycles

5x0.98+0.02x(5+ AMAT in cycles
10 x 0.99 + 0.01 x (10 +

30))) = 2.52 cycles = 3 cycles

Computing the AMAT —2/5/10/30 80% hits

Miss rate = 0.2
Access time = 2 cycles
Miss time = 2 cycles

2x0.8+0.2x(2+

Miss rate = 0.01
Hit time = 10 cycles
Miss time = 10 cycles

Miss rate = 0.02
Access time =5 cycles
Miss time =5 cycles

DRAM Latency
30 cycles

5x0.98+0.02x(5+ AMAT in cycles
10 x 0.99 + 0.01 x (10 +

30))) = 3.04 cycles = 4 cycles = 2 x L1 latency!

he ABCs of Optimizing a Cache

Associativity vs. Block Size vs Cache Size

Many complex inter-dependent factors
determine cache performance

* Associativity

* Block Size

 CacheSize

* Replacement Policy

* Write allocation policy

* Write propagation policy

Associativity

Best option depends on workload!

* Factors will sometimes work against
one another, where improving
degrades another. (we will study this
next week)

Replacement Policies

Replacement Policies

)011

1b x6 O0x7f££f0053

Way 0 Way 1 Way 2 Way 3

fset

B N D

Which block in the set should we evict
to make space for the new block?

Byte M

1,0,0x7fff10,... 1,0,0x000000,... 1,1,0x001e00,... 0,0,0x7fff00,...

32 Byte Block

Byte 2
Byte 1
Byte O

@ Ox7fff0000

Replacement Policies — Round Robin | 7= &7

D011 Byte M

Way 0 Way 1 Way 2 Way 3

fset

B N D

5 8
23
188 B
T T—T—T— = &
Evict o £
Next N
N
mn S

1,0,0x7fff10,... 1,0,0x000000,... 1,1,0x001e00,... 0,0,0x7fff00,...

Byte 2

B N D Byte

Byte O

Replacement Policies — Round Robin | 7= &7

D011 Byte M

Way 0 Way 1 Way 2 Way 3

fset

B N D

58
S o

B e | ———— 3 &
O &=

Evict | I s &

Next S

ex a

N e®

1,0,0x7fff10,... 1,0,0x000000,... 1,1,0x001e00,... 0,0,0x7fff00,...

Byte 2

B N D Byte

Byte O

Replacement Policies — Round Robin | 7= &7

D011 Byte M

Way 0 Way 1 Way 2 Way 3

fset

B N D

5 8
o o
T T 3 S
Evict NN ;E
0o
Next 2
mn S

1,0,0x7fff10,... 1,0,0x000000,... 1,1,0x001e00,... 0,0,0x7fff00,...

Byte 2

B N D Byte

Byte O

Replacement Policies — Round Robin | 7= &7

D011 Byte M

Way 0 Way 1 Way 2 Way 3

fset

B N D

5 8

o o

I S s | — —] . E— z 8
Evict NNEIEGEGEG -'G;J“E

Next 20

mn S

1,0,0x7fff10,... 1,0,0x000000,... 1,1,0x001e00,... 0,0,0x7fff00,...

Byte 2

B N D Byte

Byte O

Replacement Policies — Round Robin | 7= &7

Byte M
)011

Way 0 Way 1 Way 2 Way 3

fset

S 3
= S
a————T————T—— 11— — = g
Evict gé
Next 58

1,0,0x7fff10,... 1,0,0x000000,... 1,1,0x001e00,... 0,0,0x7fff00,...

Byte 2

B N D Byte

Byte O

Replacement Policies — Round-Robin Analysis

1b x6 Oxe @
1lb x6 0Oxb

w 1b %6 0xc
1b x6 0xd

1b x6 0Oxa

Set 0
Q)

Advantage: Simple to implement and understand
Disadvantage: Hopefully the next to evict isn’t going to be the next to be accessed...

Replacement Policies — Round-Robin Analysis

1b x6 0Oxe
1b x6 Oxb @

1b x6 0xd

1b x6 Oxa

Set 0
Q)
()

Advantage: Simple to implement and understand
Disadvantage: Hopefully the next to evict isn’t going to be the next to be accessed...

Replacement Policies — Round-Robin Analysis

1b x6 O0Oxe
1b x6 0Oxb

& b x6 Oxc @
1b x6 0xd

1b x6 Oxa

Set 0
Q)
()
O

Advantage: Simple to implement and understand
Disadvantage: Hopefully the next to evict isn’t going to be the next to be accessed...

Replacement Policies — Round-Robin Analysis

1b x6 O0Oxe
1b x6 0Oxb
1b x6 0Oxc

:

b x6 0xd @

Set

1b x6 Oxa

Advantage: Simple to implement and understand
Disadvantage: Hopefully the next to evict isn’t going to be the next to be accessed...

Replacement Policies — Round-Robin Analysis

1b x6 O0Oxe
1b x6 0Oxb

a b x6 ox
1b x6 0xd

1b x6 0Oxa PS

Set 0
o

Advantage: Simple to implement and understand
Disadvantage: Hopefully the next to evict isn’t going to be the next to be accessed...

Replacement Policies — Round-Robin Analysis

1b x6 O0Oxe
1b x6 0Oxb

a b %6 oxc
1b x6 0xd

1b x6 0Oxa

Set 0
o
Q)

Advantage: Simple to implement and understand
Disadvantage: Hopefully the next to evict isn’t going to be the next to be accessed...

Minimum Number of Misses?

What is the best replacement strategy to minimize misses & why?

- B o § c J <
1b

1b
1b
1b

X0
X6
X0

X6
X0

Oxe
Oxb
Oxc

Oxd

Oxa

Minimum Number of Misses?

:

Set

1b
1b
1b

1b
1b

X0
X0
X0

X0
X0

Oxe @
Oxb

Oxc

Oxd

Oxa

When are we going to re-use cached data?

1b x6 0xe Miss
1b x6 0Oxb Hit
1b x6 0Oxc Hit

1b x6 0xd Hit
b x6 0Oxa Miss

Set O
D
O
o
o

Replacement decisions must be informed by the next reuse of a block of data.
Think: what is an optimal policy? How far in the future is something going to be used again?

What did we just [earn?

* Memory has a high access cost; memory hierarchy mitigates that cost
e Caches make locality exploitable to optimize for data reuse

* Review of the basics of cache operation, address decomposition, set
associative caches

* Miss types
* The costs of associativity & tag storage arrays
* What to do about writes?

* The replacement problem

What to think about next?

* More caches (next time)
* Replacement from the ground up

* Caching optimizations: victim caches, write buffers & lockup-free caches,
prefetching, way partitioning, banking & bank conflicts

 Scratchpads vs. Caches & their relation to the HW/SW interface

* Performance Evaluation (next next time)
* Design spaces, Pareto Frontiers, and design space exploration

* Miscellaneous (micro)architectural tricks & optimizations (future)
* Vector processors, SIMD/SIMT, dataflow

What to think about next?

e Caches as a microarchitectural optimization (next time)
* Implementation of cache hierarchies
* Cache design tradeoffs

* Performance Evaluation (next next time)
* Design spaces, Pareto Frontiers, and design space exploration

* Miscellaneous (micro)architectural tricks & optimizations (future)
 Vector processors, SIMD/SIMT, dataflow

	Slide 1
	Slide 2: Today: Caches and the Memory Hierarchy
	Slide 3: Memory is a big list of M bytes
	Slide 4: Memory is conceptually far away from CPU
	Slide 5: Memory is conceptually far away from CPU
	Slide 6: Memory hierarchy: large & slow vs. small & fast
	Slide 7: Recall: Memory Hierarchy from 18x13
	Slide 8: Recall from 18x13: The Working Set
	Slide 9: Recall from 18x13: Guesstimating the Working Set
	Slide 10: What’s New Since 18x13?
	Slide 11: Locality is the key to cache performance
	Slide 12: Memory hierarchy: Unified vs. Split ICache & DCache
	Slide 13: Review: Anatomy of a set-associative cache
	Slide 14: Review: Accessing the cache
	Slide 15: Review: Accessing the cache
	Slide 16: Review: Accessing the cache - Hit
	Slide 17: Review: Accessing the cache - Hit
	Slide 18: Review: Accessing the cache - Miss
	Slide 19: Review: Accessing the cache - Miss
	Slide 20: Review: Accessing the cache - Miss
	Slide 21: Why do we miss in the cache?
	Slide 22: Why do we miss in the cache?
	Slide 23: Why miss? Compulsory misses
	Slide 24: Why miss? Capacity misses
	Slide 25: Why miss? Conflict misses
	Slide 26: How many bits in tag/index/offset?
	Slide 27: How many bits in tag/index/offset?
	Slide 28: How many sets should your cache have?
	Slide 29: What is an implementable # ways?
	Slide 30: What is an implementable # ways?
	Slide 31: What is an implementable # ways?
	Slide 32: Physical implementation separates data & tags
	Slide 33: Sequential Tag Lookup & Data Lookup
	Slide 34: Parallel Tag Lookup & Data Lookup
	Slide 35: Way Prediction: Cost Like Sequential, Performance
	Slide 36
	Slide 37: Cost of Associativity
	Slide 38
	Slide 39: Write Policies - Propagation
	Slide 40: Recall 18x13: Snoopy Caches
	Slide 41: Recall 18x13: Snoopy Caches
	Slide 42: Recall 18x13: Typical Multicore Processor
	Slide 43: Cache Hierarchy Performance Measurement
	Slide 44: Average Memory Access Time (AMAT): Measuring the performance of a memory hierarchy
	Slide 45: Average Memory Access Time (AMAT): Measuring the performance of a memory hierarchy
	Slide 46: Average Memory Access Time (AMAT): Measuring the performance of a memory hierarchy
	Slide 47: Computing the AMAT 1/2/4/23 90% hits
	Slide 48: Computing the AMAT
	Slide 49: Computing the AMAT – 2/5/10/30 90% hits
	Slide 50: Computing the AMAT – 2/5/10/30 80% hits
	Slide 51: The ABCs of Optimizing a Cache
	Slide 52: Associativity vs. Block Size vs Cache Size
	Slide 53: Replacement Policies
	Slide 54: Replacement Policies
	Slide 55: Replacement Policies – Round Robin
	Slide 56: Replacement Policies – Round Robin
	Slide 57: Replacement Policies – Round Robin
	Slide 58: Replacement Policies – Round Robin
	Slide 59: Replacement Policies – Round Robin
	Slide 60: Replacement Policies – Round-Robin Analysis
	Slide 61: Replacement Policies – Round-Robin Analysis
	Slide 62: Replacement Policies – Round-Robin Analysis
	Slide 63: Replacement Policies – Round-Robin Analysis
	Slide 64: Replacement Policies – Round-Robin Analysis
	Slide 65: Replacement Policies – Round-Robin Analysis
	Slide 66: Minimum Number of Misses?
	Slide 67: Minimum Number of Misses?
	Slide 68: When are we going to re-use cached data?
	Slide 69: What did we just learn?
	Slide 70: What to think about next?
	Slide 71: What to think about next?

