18-344: Computer Systems and the Hardware-Software Interface ~ Fail 2025

133 :
LA : . —
» Vi : : s
: +fd fose]

bourse I]BSB[iDtiUII Lecture 6: Control Hazards and Branch Prediction

This course covers the design and implementation of computer systems from the perspective of the
hardware software interface. The purpose of this course is for students to understand the
relationship between the operating system, software, and computer architecture. Students that
complete the course will have learned operating system fundamentals, computer architecture
fundamentals, compilation to hardware abstractions, and how software actually executes from the
perspective of the hardware software/boundary. The course will focus especially on understanding
the relationships between software and hardware, and how those relationships influence the design
of a computer system's software and hardware. The course will convey these topics through a series

of practical, implementation-oriented lab assignments. Credit: Brandon Lucia

Recap: Pipelined Datapath Microarchitecture

* Understanding pipelining as a general microarchitectural optimization

* Data hazards and their effect on the pipelined microarchitectural
datapath

* Forwarding as a mitigation for data hazards in a pipelined architecture

A Simple Pipelined Processor Datapath

Instruction PC+4

Branch larget

PC Source Select (1 if branch taken)

Read Data C (Ld Only)

|

PC Source
Select

Instruction
Memory

Instruction Fetch

Control Signals:

Branch

Target

Offset Branch Target
Control Instruction
Signals PC+4
Read
Register Input Input
AR B Read Read
Select Reg A Reg B

Op select
op= [+r - X /]

e Execute

ALU: output C data
Memop: Effective Addr.
Branch: PC Source Select

Op.

Memory

Data
Reg B
(Ld Only)

Output/Read
RengeIect

Output/Read
Reg C Data

Register
Writeback

Write l Write
Reg C Reg C
Data Select

Register Write-Back

Read Regs A & B Data

Write Register C Select

Write Register C Data

Write Reg C Data

Types of Data Hazards

sub x6 x5 x4 sub x8 x16 x4 1w x6 0Oxabc
1w x1& Oxabc add x16/%6 x14 sub é@ xbh x4
add x12 "x6 x14 1w x16 Oxabc add x12 xb x14

Read-After-Write (RAW) Write-After-Read (WAR) Write-After-Write (WAW)

Only Read-After-Write (RAW) hazards are possible in our simple pipeline

Example: Pipelined Execution w/ RAW Hazard

add x12 x6 x14
reads the value of x6 from
sub x6 x5 x4

N x6 gets written back

add x12 x6 x14 1w x16 Oxabc Sub x6 x5 x4 here 2 cycles later!
‘ Register
Execute Memory ‘Write-Back \

Read-After-Write (RAW) Hazard:

Input register does not contain updated data during
register read cycle due to yet-to-be-completed
register writeback from older instruction

Fetch ‘ Decode

Example: Pipelined Execution w/ RAW Hazard

add x12 x6 x14 sub x6 x5 x4

Decode H Execute \‘ Memory

Register
Write-Back

Fetch ‘

Example: Pipelined Execution w/ RAW Hazard

add x12 x6 x14 sub x6 x5 x4

Decode H Execute \‘ Memory

Register
Write-Back

Fetch ‘

Example: Pipelined Execution w/ RAW Hazard

add x12 x6 x14 ” sub x6 x5 x4
Decode ‘ ‘ Execute \ ‘ Memory

Register
Write-Back

Fetch ‘

Example: Pipelined Execution w/ RAW Hazard

add x12 x6 x14 ” ” sub x6 x5 x4
‘ ‘ Register
Decode Execute Memory Write-Back

Fetch ‘

Example: Pipelined Execution w/ RAW Hazard

add x12 x6 x14 » »
‘ ‘ Register
Decode Execute Memory Write-Back

Fetch ‘

Example: Pipelined Execution w/ RAW Hazard

add x12 x6 x14 »
‘ ‘ Register
Decode Execute Memory Write-Back

Fetch ‘

Example: Pipelined Execution w/ RAW Hazard

add x12 xo x14

Register
Write-Back

Decode H Execute \‘ Memory

Fetch ‘

How do we avoid the stall cycles?

add x12 x6 x14 ” ” sub x6 x5 x4
‘ ‘ Register
Decode Execute Memory Werite-Back

Fetch ‘

Example: Pipelined Execution w/ RAW Hazard

add x12 x6 x14 sub x6 x5 x4

Decode H Execute \‘ Memory

Value of x6 is available after sub Executes
We can forward the value to the add!

Fetch ‘

Register
Write-Back

Forwarding to avoid a pipeline RAW Hazard

Value of x6 is available from EX/MEM
pipeline register!

add x12 x6 x14 sub x6 xb x4

Fetch ‘ ‘ Decode Memory

Register
Write-Back
AN X 6 44

We can forward the value in the EX/MEM
pipeline register from the sub back to Execute
to act as the input operand for the add

Execute ‘
_|

Forwarding to avoid a pipeline RAW Hazard

Can also forward if there are
intervening instructions

add x12 x6 x14 add x9 x8 x7 sub x6 x5 x4

l_ Register
Execute Memory Write-Back

\\X6II
Can forward the value in the MEM/WB pipeline
register from the sub back to Execute for the add
(going around the unrelated operation now in the
memory stage)

Fetch ‘ Decode

Immediately preceding & dependent on load = stall

lw x6 Oxabc
add x12 xo x14

Value of x6 is available from Memory!

add x12 x6 x14 ” lw x6 Oxabc
‘ ‘ ‘ Register \
Execute Memory _| Write-Back

We can forward the value in Memory’s pipeline register
from the lw back to Execute’s input for the add

Fetch ‘ ‘ Decode

(Still requires stalling...)

Adding Forwarding Support

Instruction PC+4

Mem/WB to Exec

Branch larget

PC Source Select (1 if branch taken)

Forward
Ex/Mem to Exec
orward

__.F4

PC Source
Select

Instruction
Memory

Instruction Fetch

Branch
Target
Offset

Instruction
PC+4

Control
Signals

Read
Register
ARB
Select

Control Signals:

Branch Target

B/Mem Fwd

Op.

Op select
op= [+r - X /]

e Execute

ALU: output C data
Branch: PC Source Select

Output/Read
RengeIect

Output/Read
Reg C Data

Register
Writeback

Write l Write
Reg C Reg C
Data Select

Register Write-Back

Read Regs A & B Data

Write Register C Select

Lead Data C (Ld)

Write Register C Data

Write Reg C Data

Exception Handling

Exception!

_ —t-
sw X6 (x14) invalid ins sw x0 (x13) 1w x12 (x15) add x7 x8 x9

‘ ‘ Register
Decode Execute Memory Write-Back

Basic Exception Idea: Nuke everything that started after the
current instruction, finish everything that started before the
current instruction, jump to exception handler

Fetch ‘

Today: More Pipelined Microarchitecture

* Quick recap of pipeline mechanics

* Introduction to structural hazards

* Introduction to control hazards on branches

* Simple approaches to handling control hazards
* Branch prediction for handling control hazards

Pipeline Control Signhals

Control signals also pipelined tfr

PC Source Select (1 if branch taken)

Instruction PC+4

Branch larget

rough stages

Branch Target

PC Source
Select

Write Reg C Data Mem
Output/Read Output/Read
Reg C Data RengeIect

Register

Writeback
Input
Read
Reg A Write l Werite
— Reg C Reg C
Reg 1 ontrol Signals Data Select
H =1 X, M Writ
Instruction Reg 2 p=l-x/] emWrite
Memory Reg 3 ALU: output C data
Reg 4 Branch: PC Source Select . .
Instruction Fetch M; r. Decode | |Execute Memory Register Write-Back
A
Read Regs A & B Data
Write Register C Select
Write Register C Data

Write Reg C Data ALU

Which pipeline control signals get set where?

PC Source Select (1 if branch taken)

Instruction PC+4

Branch larget

__.F4

PC Source
Select

Instruction
Memory

Instruction Fetch

I I Branch

Instruction Fetch:

Write Reg C Data Mem
Output/Read Output/Read
Reg C Data Regfelect

Register
Writeback

Instruction memory read control always asserted
PC write enable always asserted
no special control signal pipelining here

Branch: PC Source Select

eI IExecute I |Memory

Write l
Reg C
Data

Write
Reg C
Select

Register Write-Back

Read Regs A & B Data

Write Register C Select

Write Register C Data

Write Reg C Data ALU

Which pipeline control sighals get set where?

PC Source Select (1 if branch taken)

Instruction PC+4

Branch larget

Write Reg C Data Mem
I I I I tput/Read
ngeIect
PC Source
Select Instruction Decode (/ Register Read):
In RISCV, source registers always in same location in all
instruction formats. Write
No special control signal pipelining here either. Reg C
Select
Instruction
Memory
Reg 4 - -
Instruction Fetch In!s r. Decode | |Execute | |Memory | [Register Write-Back

A

Read Regs A & B Data

Write Register C Select

Write Register C Data

Write Reg C Data ALU

Recall: R-type Arithmetic Operations

Rva E I enc Dd in g https://metalcode.eu/2019-12-06-rv32i.html

[31:25] [24:20] [19:15] [14:12]

7 5 5 3

function 7 source 2 source 1 function 3 destination opcode
0000000 XR xL 000 : ADD xD 0110011 : OP
0100000 XR XL 000 : suB xD 0110011 : 0P
0000000 xR XL 001:SLL xD 0110011 : OP
000000D xR xL D10 :SLT xD 0110011 :0P
0000000 xR xL D11:5SLTU xD 0110011 : OP
000000D xR xL 100 : XOR xD 0110011 :0P
0000000 xR xL 101:SRL xD 0110011 : OP
0100000 xR XL 101 :SRA xD 0110011 : OP
0000000 xR xL 110:0R xD 0110011 : OP
0000000 xR XL 111 : AND xD 0110011 : 0P

Func7=32 regx5 regx6 SUB regx7 OP
X7 = X5 - X6 ‘ 0100000 ‘ 00101 ‘ 00110 ‘ 000 ‘ 00111 ‘ 0110011 ‘

Which pipeline control sighals get set where?

PC Source Select (1 if branch taken)

Instruction PC+4

Branch Target

Write Reg C Data Mem

PC Source
Select

Instruction
Memory

Instruction Fetch

Reg 1
Reg 2

Input
Read
Reg A

Control Signals:

Branch Target

Op select
op = [+I - X, /]

Reg 3

n

Reg 4

Str. becode
A

Immed.

Input
Read
Reg B
ALU Src
SelectI

ALU: output C data
Branch: PC Source Select

Execute / Address Generation:
ALU Op Select: selects the ALU operation
ALU Src Select: (previously omitted, added here)

selects between read register B and a sign-extended
immediate extracted from the bits of the instruction

IMemory | | Register Write-Back |

A

Read Regs A & B Data

Write Register C Select

Write Register C Data

Write Reg C Data ALU

Which pipeline control sighals get set where?

PC Source Select

Instruction PC+4

Branch larget

Write Reg C Data Mem

[IB.r.an.ch II

Memory (/ Branch Resolution):

PC Source Select: Set to 1 if instruction is a branch and
Select branch taken (e.g., if ALU output is 0)

MemRead: Use incoming address from Ex stage as a
read address

MemWrite: Use incoming address from Ex stage as a
write address

Instruction
Memory

Instruction Fetch

MemRead/
MemWrite

Output/Read Output/Read
Reg C Data

Regfelect

Register

Writeback
Writel Write
Reg C Reg C

Data Select

Register Write-Back

Read Regs A & B Data

Write Register C Select

Werite Register C Data

Write Reg C Data ALU

Which pipeline control sighals get set where?

PC Source Select

Instruction PC+4

Branch larget

PC Source
Select

MemOrALU: Select whether ALU result (from Ex) or
data from memory (from Mem) writes to register file

RegWrite: Enables register file write Writel

Write Reg C Data Mem
Wr Output/Read Output/Read
Data Reg C Data Regfelect

Register
Writeback

Write
Reg C Reg C
) D
Write Reg Select: Use instruction bits to cpodc}se write a2 Select
emnRea
: register :
Instruction Reg 2 g MemWrite
Memory ALU. UUlpPpUul L Uata
Branch: PC Source Select . .
Instruction Fetch| | Instr.Decode | |Execute Memory Register Write-Back

A

Read Regs A & B Data

Write Register C Select

Werite Register C Data

Write Reg C Data ALU

Which pipeline control sighals get set where?

PC Source Select

Instruction PC+4

Branch Target
Write Reg C Data Mem
_ Branch
Target Addr Wr Output/Read Output/Read
Offset Branch Target Data Reg C Data Reg|Select
Control ; Immed l

Signal . . .
Takeaway point on pipeline control:

Register

PC Source . . .
Select riag| Need to route signals to a pipeline stage (from the |ad” ek
Regist decoded instruction, or from an earlier stage) tac
ARB
% and .
Sellect] o) . Write Write
need to have sufficient signals available to control Reg C Reg C
Data Select

units in a pipeline stage.

Reg 1
Reg 2

Rl

Instruction e op=F %]] 7 MemWrite
Memory €8 ALU: output C data
Reg 4 Branch: PC Source Select . .
Instruction Fetch| | Instr.Decode | |Execute Memory Register Write-Back
A
Read Regs A & B Data
Write Register C Select
Werite Register C Data

Write Reg C Data ALU

More on Pipeline Hazards

Structural Hazards
Control Hazards

Structural Hazards

PC Source Select (1 if branch taken)

Instruction PC+4

Branch larget

__.F4

PC Sourdg
Select

Observation:

We have two memories, one for data, one for

Write Reg C Data Mem
Output/Read Output/Read
Reg C Data RengeIect

Register
Writeback

instructions. l
Write Write
Reg C Reg C
Data Select
. MemWrit
Instruction emvrite
;
Memory 8 ALU: output C data
Reg 4 Branch: PC Source Select . .
Instruction Fetch| | Instr.Decode | |Execute Memory Register Write-Back
A

Read Regs A & B Data

Write Register C Select

Werite Register C Data

Write Reg C Data ALU

Structural Hazards

PC Source Select (1 if branch taken)

Instruction PC+4

Branch larget

What happens when we make
this small change?

PC Source
Select

Instruction Fetch |

Write Reg C Data Mem
Branch
Target Addr Wr Output/Read Output/Read
Branch Target lData Reg C Data RengeIect

Input
Read
Reg A

Reg 1
Reg 2
Reg 3
Reg 4
nstr. Decode

p=[+l 'rxr/]

R

ALU: output C data
Branch: PC Source Select

Memory

Register
Writeback

Read

Data C

Writel Write
Reg C Reg C
Data Select

Register Write-Back

Unified

A

Read Regs A & B Data

Memory

1rd/ 1wr

Write Register C Select

Werite Register C Data

Write Reg C Data ALU

Structural Hazards

No software or clever architectural
mitigation. Need two memories or
two memory ports.

sub x6 x5 x4 sw x0 (x13) 1w x12 (x15) add x7 x8 x9

‘ Register
Decode Execute Memory Write-Back

Fetchis blocked with Load occupies unified
no access to read port memory read port

Fetch ‘

Control Hazards

beqg x16 x12 PC+1Z2
sub x6 x5 x4

add x12 x6 x14
add x12 x7 x9

Branch-induced Control Hazard

Example: Pipelined Execution w/ Branch

begq x16 x12 PC+12

NotTaken ..p x6 x5 x4
Problem: What to fetch next? ? add x12 x6 x14

-
aken _ 54 x12 %7 %9

‘ ‘ Register
Decode Execute Memory Write-Back

beqg x16 x12 PC+12

Fetch ‘

Example: Pipelined Execution w/ Branch
Option #1: Stall on Branch

» »beq x16 x12 PC+12
‘ Register
Decode Execute Write-Back

Proposal: We know the next PC only after beq finishes Ex
(What signals do we need to determine next PC?)

Fetch ‘

Memory

Determining the Nex

t PCin the Pi
o€ source sl (1 fbranch k) |

Instruction PC+4

Branch larget

PC Source
Select

peline

=[+; 'rxr/]

Reg 4
Instr. Decode
A

Instruction P

Memory

Instruction Fetch

ALU: output C data
Branch: PC Source Select

Memory

Write Reg C Data Mem
Output/Read Output/Read
Reg C Data RengeIect

Register
Writeback

MemWrite

Register Write-Back

A

Read Regs A & B Data

Write Register C Select

Write Register C Data

Write Reg C Data ALU

Example: Pipelined Execution w/ Branch
Option #1: Stall on Branch

sub x6 x5 x4 ” ” beq x16 x12 PC+12
‘ ‘ Register
Decode Execute Memory Write-Back

2 pipeline bubbles per branch!

Fetch ‘

Example: Pipelined Execution w/ Branch
Option #1: Stall on Branch

sub x6 x5 x4 ” ” beq x16 x12 PC+12
‘ ‘ Register
Decode Execute Memory Write-Back

2 pipeline bubbles per branch!
Can we do better than 2 bubbles?

Fetch ‘

Early Branch Resoluti

on

Instruction PC+4

Branch larget

PC Source
Select

Proposal: Resolve the branch
target and branch taken/not taken
outcome earlier than beq in Mem.

Write Reg C Data Mem

Output/Read Output/Read
Reg C Data RengeIect

Register

Writeback
Writel Write
Reg C Reg C
Data Select
H = » I A M Writ
Instruction P=[-/l emWrite
Memory ALU: output C data
Reg 4 Branch: PC Source Select . .
Instruction Fetch Instr. Decode Memory Register Write-Back
A

A

Read Regs A & B Data

Write Register C Select

Write Register C Data

Write Reg C Data ALU

E ‘ B h R | . Key Idea: Move Branch Target logic to ID
ar y ranc €50 Uthﬂ and add forwarding path for PC Source

Select from Ex for IF to use in same cycle.

Instruction PC+4

Branch Target

Write Reg C Data Mem

Output/Read Output/Read
Reg C Data RengeIect

PC Source
Select

Register
Writeback

Input
Read
Reg A

p select

Instruction p= [+I - X /] MemWrite
Memory ALU: output C data
o
Instruction Fetch| | Instr.Decode | |Execute Memory Register Write-Back

Read Regs A & B Data

Write Register C Select

Werite Register C Data

Fairly aggressive optimization in MIPS: resolve branch in EX in
first half of cycle, use PC Src Select in second half of cycle in IF
to fetch the correct instruction. Could limit clock frequency...

Write Reg C Data ALU

Example: Pipelined Execution w/ Early Resolution

beq x16 x12 PC+12

NotTaken | <1 »6 x5 x4
Problem: What to fetch next? ? add x12 x6 x14

Ta
ken .44 x12 x7 x9

‘ ‘ Register
Decode Execute Memory Write-Back

beqg x16 x12 PC+12

Fetch ‘

Example: Pipelined Execution w/ Early Resolution

”beq x16 x12 PC+12
Decode ‘ ‘ Execute \ ‘ Memory

We know the next PC when beq is in Ex

Register
Write-Back

Fetch ‘

Example: Pipelined Execution w/ Early Resolution

sub x6 x5 x4 » beq x16 x12 PC+12
Decode ‘ ‘ Execute \

1 pipeline bubble per branch!

‘ Register
Fetch Memory Write-Back

Example: Pipelined Execution w/ Early Resolution

sub x6 x5 x4 ” beq x16 x12 PC+12
‘ Register
Decode Execute Write-Back

Can we do even better than 1 stall per branch?

Fetch ‘

Memory

MIPS-style Delayed Branch Execution

Branch Delay Slot

sub x6 x5 x4 » beq x16 x12 PC+12
‘ Register
Decode Execute Write-Back

Branch takes an extra cycle to resolve, so how about
just fetching some instruction in the “delay slot”?

Fetch ‘ Memory

Filling Branch Delay Slots

begq x16 x12 PC+12
sub x6 x5 x4

Branch Delay Slot add x12 x6 x14
filled w/ not-taken add x12 x7 x9
instruction

sub x6 x5 x4 beq x16 x12 PC+12

‘ ‘ Register
Decode Execute Memory Write-Back

Only useful if branch ends up resolving not-taken
Otherwise, need to erase the effects of the sub when
branch finally resolves

Fetch ‘

Filling Branch Delay Slots

begq x16 x12 PC+12
sub x6 x5 x4

Branch Delay Slot add x12 x6 x14
filled w/ taken add x12 x7 x9
instruction

add x12 x7 x9 beqg xlo x12 PC+12

Decode H Execute \‘ Memory

Only useful if branch ends up resolving taken
Otherwise, need to erase the effects of the add when
branch finally resolves

Fetch ‘

Register
Write-Back

Filling Branch Delay Slots

mul x8 x15 x1 beg x16 x12 PC+12
beg x16 x12 PC+12 mul x8 x15 x1

sub x6 x5 x4 » sub x6 x5 x4
Branch Delay Slot add x12 x6 x14 add x12 x6 x14
filled w/ other add x12 x7 x9 add x12 x7 x9

independent insn Compiler reorders code to fill slot

mul x8 x15 x1 beqg xl16 x12 PC+12
Register
Write-Back

Fetch ‘

Decode H Execute \‘ Memory

Why is it OK for the compiler to reorder the mul and
the beq in this instance?

Fllllng BranCh DE‘ay SlOtS Compiler reorders code to fill slot

mul x8 x15 x1 begq x16 x12 PC+12
beg x16 x12 PC+12 mul x8 x15 x1

sub x6 x5 x4 » sub x6 x5 x4
B.ranch Delay Slot add x12 x6 x14 add x12 x6 x14
filled w/ other add x12 x7 x9 add x12 x7 x9

independent insn
mul x8 x15 x1 beqg xl16 x12 PC+12

‘ ‘ Register
Decode Execute Memory Write-Back

Why is it OK for the compiler to reorder the mul and the beq in
this instance?

* Data-independent and control-equivalent
* We will come back to compiler reordering in a few lectures
 Compiler knows about branch delay slot (it is architectural)

Fetch ‘

Filling Branch Delay Slots

beq x16 x12 PC+12
nop
sub x6 x5 x4

Branch Delay Slot add x12 x6 x14

filled w/ no
/ nop add x12 x7 x9
nop beg x16 x12 PC+12
‘ ‘ ‘ Register
Fetch Decode Execute Memory Write-Back

Not really sure what to put in the delay slot. Cannot (or do not
want to) slot in taken/not-taken conditional next instructions...
No data-independent, control-equivalent ops to put in slot

RISCV does not have/allow/require delay slots

Branch Delay Slot

sub x6 x5 x4 » beq x16 x12 PC+12
‘ ‘ Register
Decode Execute Memory Write-Back

From the RISCV RV32I Spec: “Control transfer instructions in
RV32| do not have architecturally visible delay slots.”

* What is “architecturally visible”?

 Why do they ban delayed branches at the ISA level?

Fetch ‘

Why do they ban delayed branches at the ISA level?

“For their first microprocessor with a 5-stage pipeline, this indecision
could have caused a one clock-cycle stall of the pipeline. MIPS-32 solved
this problem by redefining branch to occur in the instruction after the
next one. Thus, the following instruction is always executed. The job of the
programmer or compiler writer was to put something useful into the
delay slot. Alas, this “solution” didn't help later MIPS-32 processors with
Mmany more pipeline stages (hence many more instructions fetched
before the branch outcome is computed), but it made life harder for
MIPS-32 programmers, compiler writers, and processor designers ever
after, since incremental ISAs demand backwards compatibility (see
Section 1.2). In addition, it makes the MIPS-32 code much harder to
understand (see Figure 2.10 on page 29). While architects shouldn’t put
features that help just one implementation at a point in time, they also
shouldn't put in features that hinder some implementations.”

The RISC-V Reader: An Open Architecture Atlas [Beta edition, 0.0.1] 099924910X, 9780999249109
https:;//dokumen.pub/the-risc-v-reader-an-open-architecture-atlas-beta-edition-001-099924910x-9780999249109.htm|

Branch Prediction to avoid control hazards

beq x16 x12 PC+12
20% NotTaken ..., 5 «5 x4

add x12 xo6 x14
radd x12 x7 x9

Register
Write-Back

Fetch the best guess if we know
which way is most likely

Decode H Execute \‘ Memory

? 80% Taken

beqg x16 x12 PC+12

Fetch ‘

Branch Prediction to avoid control hazards

beq x16 x12 PC+12
20% NotTaken ..., 5 «5 x4

add x12 xo6 x14
radd x12 x7 x9

Register
Write-Back

Fetch the best guess if we know
which way is most likely

Decode H Execute \‘ Memory

How to guess about which way
a branch is most likely to resolve?

? 80% Taken

beqg x16 x12 PC+12

Fetch ‘

‘Il

There is “typical” branch behavior

begq x16 x12 PC+12 sub x6b x5 x4

sub x6 x5 x4 add x12 x6 x14
add x12 x6 x14 add x12 x7 x9

add x12 x7 x9 beq xl16 x12 PC-12

What will these programs tend to do?

‘Il

There is “typical” branch behavior

Most branch instructions jump forward Backward branch: 80% taken
beg x16 x12 PC+12 sub x6b x5 x4
sub x6 x5 x4 add x12 x6 x14
add x12 x6 x14 add x12 x7 x9
add x12 x7 x9 beq xl16 x12 PC-12

Forward and backward branches have different characteristics
2/3 of all branches are taken in general

Statically defined hints about branches?

beqg.t90 x16 x12 PC+12
sub x6 x5 x4

add x12 xo6 x14

add x12 x7 x9

From the RISCV RV32I Spec:

“We considered but did not include static branch hints
in the instruction encoding. These can reduce the
pressure on dynamic predictors, but require more
instruction encoding space and software profiling for
best results, and can result in poor performance if
production runs do not match profiling runs.”

sub x6 x5 x4

add x12 x6 x14

add x12 x7 x9
beq.nt90 x16 x12 PC-12

From the Intel's manual:

"Branch hint prefixes (2EH, 3EH) allow a program to give a hint to
the processor about the most likely code path for a branch. Use
these prefixes only with conditional branch instructions (Jcc).”
From the internet:

“gcc is right to not generate the prefix, as they have no effect for
all processors since the Pentium 4.”

Dynamically predicting branch behavior

0x100f

2 Branch Predictor

Outcome:

beqg x16 x12 PC+0xC

taken

Target: 0x10C

Fetch

Decode

H%I ‘ Memory

Register
Write-Back

Dynamically predicting branch behavior

Outcome:

Fetch the predicted instruction (sub,

Branch Predictor . .
here) and start executing with no delay.

0x10C| sub x6 x5 x4 0x100: beqg x16 x12 PC+0xC

‘ Register
Execute Memory Write-Back

A dynamic branch predictor is a circuit that learns the likely outcome of a
branch and keeps a record of its past target computations

Fetch ‘ Decode

Guess what happens after the current instruction and run speculatively.

Speculation entails guessing about what’s next

Outcome:

SENGRLEGIMGIAN Target :

Fetch more... Predicted taken Resolved not taken
0x110 0x10C 0x100

lw x6 Oxabc sub x6 x5 x4 beq x16 x12 PC+0xC

‘ ‘ Register
Decode Execute Memory Write-Back

Fetch ‘

Question: What do we do on a misprediction (also known as a branch mis-speculation)?

Recovering from branch misprediction

Outcome:

SENGRLEGIMGIAN Target :

Incorrectly predicted taken Resolved not taken
0x100
nop nop beq x16 x12 PC+0xC

‘ ‘ Register
Fetch Decode Execute Memory Write-Back

Recovery: Zero all control signals
(nop) & reset PC to PC+4 of beq

Recovery from mis-speculation entails wasted work in the pipeline.
What about other state? Register file? Anything else might end up
corrupted by speculative execution? Main cost? How cost scales?

Dynamically predicting branch behavior

O0x10C}:

Outcome:

SENGRLEGIMGIAN Target :

sub x6 x5 x4 0x100: beq x16 x12 PC+0xC

‘ Register
Execute Memory Write-Back

Question: where does the branch predictor live in our pipeline?

Fetch ‘ Decode

Branch Predictor in the pipelinge keyldea: Add predictor to fetch

Instruction PC+4

Branch larget

PC Source
Select

stage, allowing continuous fetch

Write Reg C Data Mem

Output/Read Output/Read
Reg C Data RengeIect

Register

Input Writeback
Read l
Reg A Write Write
Reg C Reg C
ontrol Signals Data Select
Dp select
H =1 X M Writ
Instruction P=lt =% /] emWrite
Memory ALU: output C data
Reg 4 . .
nstruction Fetc Instr. Decode | |Execute Memory Register Write-Back
A

Outcome:
Bra'nch Branch
Predictor
arget:

Branch Predictor

A

Read Regs A & B Data

Write Register C Select

Werite Register C Data

Write Reg C Data ALU

Dynamically predicting branch behavior

Outcome:
SERGNLEGMCIAY Target :

Branch
Address

Predictors learn from past behavior

Need to predict branch outcome: 0/1
Need to “predict” branch target: PC
Need to validate prediction

Need to update predictor

Many different types of predictor

Predicting Branch Outcomes

What info do we have?

Outcome: taken
Branch Predictor

0x100F beg xl6 x12 PC+0xC
Branch
Address

Predicting Branch Outcomes

What info do we have?

Outcome: taken * History of prior branch outcomes

Branch Predictor

0x100F beg xl6 x12 PC+0xC
Branch
Address

0x100: 1111111110111111171101111111110..

Predicting Branch Outcomes

Ox100¢
Branch
Address

Outcome:

Branch Predictor

beqg x16 x12 PC+0xC

taken

What info do we have?

* History of prior branch outcomes

* For every branch in the program

 Hardware idea: keep history in table
and choose most likely outcome

0x100:
0x10E:
0x200:
0x210:

Ox214:
0x220:

111111111011111111101111111110...
111001111011111111101100000110...
000000000011111111100000000000...
100011111011110001101111000110...

000000000000000000000000000000...
111000000010000000001000000000...

' - : : P l: St dictor state i
Branch Predictor in the pipeline teun stage with prediction logic

fetch stage with prediction logic

Instruction PC+4
Branch larget

Write Reg C Data Mem

Output/Read Output/Read
Reg C Data RengeIect

PC Source
Select

Register
Writeback

Input
Read
Reg A

Dp select

Instruction P=lt =% /]

MemWrite
Reg 3 ALU: output C data
Reg 4 . .
Instr. Decode | |Execute Memory Register Write-Back
A

101 QOIE 1110. Read Regs A & B Data
B ra‘nc h 10 11101100000110..,

0 18113 690d9000000..
Pradicten 090801111 000110..

Write Register C Select

a 0(%6 .
00000000000000000... . .
0x220: 111000000010000000001000000000.. Write Register C Data

Branch Predictor

Write Reg C Data ALU

Problems with this design?

Predicting Branch Outcomes

Making branch history implementable
* |dea 1: Hash table from PC to entry

* Eliminates table size = #tbranch insns.
Outcome: taken

Branch Predictor

Branch History Table (BHT)

Branch
Address

Branch PC
0x100

Predicting Branch Outcomes

Making branch history implementable
* |dea 2: Concise history of outcomes

* Eliminates entry size = #branch executions
Predicted
Outcome: T/NT

Branch Predictor

Two-bit saturating counter branch predictor

Branch History Table (BHT)

Branch
Address

Branch PC
0x100

Bimodal BHT Branch Predictor (Lab 1)

Making branch history implementable
* |dea 2: Concise history of outcomes

* Eliminates entry size = #branch executions
Predicted
Outcome: T/NT

Branch Predictor

Two-bit saturating counter branch predictor

Branch History Table (BHT)

Branch
Address

Branch PC
0x100

Example history - 0x100: 1010110110110110..

Bimodal BHT Branch Predictor

benchmark

description

doduc
eqntott
espress
fpppp
gcc

li
mat300
nasa’
spice
tomcatv

Monte Carlo simulation

conversion from equation to truth table
minimization of boolean functions
quantum chemistry calculations

GNU C compiler

lisp interpreter

matrix multiplication

NASA Ames FORTRAN Kernels
circuit simulation

vectorized mesh generation

Figure 2: SPEC Benchmarks Used for Evaluation

Conditional Branch Prediction Accuracy (%)

98 1
97 1
96 -
95 -
94 -
93 -
92 1
91 1
90 -
89 -

88

[“Combining Branch Predictors”, McFarling ‘93]

A — A yay A

A A bimodal

Y Ry T Iy B
32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K

Predictor Size (bytes)

Figure 3: Bimodal Predictor Performance

Predicting Branch Outcomes

Two-bit saturating counter branch predictor

Branch History Table (BHT)

Branch PC

Example history - 0x100: 1010110110110110..

Limitations of 2-bit BHT branch prediction

e Limitation 1: branch interference due to hash table collisions
e Limitation 2: single-branch decision making misses correlation
How to handle each of these problems?

Avoiding collisions

Branch History Table (BHT)
L 4
Two-bit saturating counter branch predictor

T T T
hash

Branch PC
0x100

16k Entries

Example history - 0x100: 1010110110110110..

Large table size (e.g., 16k entries) avoids collisions
* Each entry is small, making total cost tolerable (e.g., 32kb)
* Large enough table and collisions do not limit prediction accuracy

Catching correlated branches

Branch History Table (BHT)
4

if(a == 1){ a=0 } o hash 8
if(b == 1){ b=0 } %100 S
if(a '= b){ } <

There are correlation of the outcomes of consecutive branches
e The outcome of the third branch is correlated with the first two
* QOur per-branch predictor cannot capture this common pattern

Track history of outcomes of all branches executed in GHT

Two-Level Branch Predictor (Option for Lab 1):
GAp (Global Adaptive w/ per-address table)

Branch PC

if (a
if (b
if (a

Global History Table
10010110

== 1){ a=
== 1){ b
'= b) {

0
0

}
}
}

Per-address “pattern history table”

Use PC to select which PHT to use

Use global pattern history to index into PHT

Use PHT entry’s 2-bit counter to predict outcome

After each branch resolves, updated predictor in per-address
pattern history table & shift its outcome (T=1, NT=0) into GHT

16k Entries

Global Index Sharing Predictor

Branch History Table (BHT)
4

Global History Table

if(a — 1){ a=0 } 10010110 ,é

if(b == 1){ b=0 } — iz

if(a !'= b){ } | <
0x100

Branch PC

Index sharing predictor tracks local history in global context concisely
 XOR GHT with branch PC to select BHT

e Use 2-bit counter in BHT to make prediction for branch in GHT context
 XOR maps branches & contexts that matter to different BHTs

* Gshare combining addr bits with history bits often better

Local/Global Correlating Predictor (Optional for Lab 1):
PAg (Per-Address Adaptive global history table)

log n bits
(8 bits here) Global Pattern History Table
L 4

10010110
10010110

Branch PC

if(a == 1){ a=0
if (b == 1){ b=0
if(a '= b){

}
}
}

(256 entries here)

n entries

10010110
10010110

Per-PC Branch History Table

Use per-branch history to index into a global, shared table of
predictors. Per-PC branch history table stores history for that
branch only, not global history.

* Use PCto select which BHT to use

* Use branch history to index into global PHT

e Use PHT entry’s 2-bit counter to predict outcome

bimodal

Quantitying Predictor Accuracy gshare

mmmmm bimodal/gshare

Choose best option
doduc (ption)

eqntott
espress
foppp
gcc

I
mat300
nasa’
spice
tomcatv
average

80 82 84 8 8 90 92 94 96 98 100
Conditional Branch Prediction Accuracy (%)

Dynamically predicting branch behavior

0x100f

SRLEIERRLECECIMN Target : 0x10C

beq x16 x12 PC+0xC

Fetch

‘ ‘ Register
Decode Execute Memory Write-Back

Need to predict branch target

Target gets resolved only in Decode, which leads to 1-cycle stall
Predict outcome and target both in Fetch & avoid all stalls

Branch Target Buffer Implementation

Branch Target Buffer

hash()

BranchID
Ox1az2j100

Branch Tag

Target:
0x1A210C

Branch PC=Tag + ID

Tag Target

Branch Target Buffer (BTB) logs branch target

 BTBis associative memory table indexed by branch PC low order bits
* Need tag because some PCs do not point to branches

e Associative memory can be set-, fully-associative or direct-mapped

Putting it all together:
A Gshare branch predictor + BTB

Branch History Table (BHT)
L 4

Global History Table

10010110

Branch predictors resolve branches
in the fetch stage avoiding stalls
* Need misprediction detection
logic added to decode stage
Outcome : * Need logic to flush instructions
| Taken on predicted path after
Branch Target Buffer . .« L.
misprediction

Target: * Flushed instructions are
0x1A210C effectively stalls in the pipeline,

but worse: wasted work.

Xor

PXIOO

Branch PC

16k Entries

hash()

BranchiID

0x1aZ100
Branch Tag

Tag Target

Branch Predictor in the pipeline

Instruction PC+4

Branch larget

PC Source
Select

Instruction
Memory

Branch Predictor

-

Instruction Fetch

s

Input
Read
Reg A

Dp select

Write Reg C Data Mem

Output/Read Output/Read
Reg C Data RengeIect

Register
Writeback

p=[+-x/] MemWrite
ALU: output C data
Reg 4 . .
Instr. Decode | |Execute Memory Register Write-Back
A

A

Read Regs A & B Data

Write Register C Select

Werite Register C Data

Write Reg C Data ALU

What did we just learn?

* Control hazards introduce stalls because on a branch the pipeline
doesn’t know what to fetch next

e Single stall cycle with early branch resolution (in Decode)

* Branch delay slots and static prediction do OK, but still need stalls and
nops often

* Dynamic Branch Prediction uses per-branch information and global
branch outcome history information to predict outcomes and targets

* Branch predictor accuracies are in the 90+% in a lot of cases (you will
see these figuresin Lab 1)

What to think about next?

e Caches as a microarchitectural optimization (next time)
* Implementation of cache hierarchies
* Cache design tradeoffs

* Performance Evaluation (next next time)
* Design spaces, Pareto Frontiers, and design space exploration

	Slide 1
	Slide 2: Recap: Pipelined Datapath Microarchitecture
	Slide 3: A Simple Pipelined Processor Datapath
	Slide 4: Types of Data Hazards
	Slide 5: Example: Pipelined Execution w/ RAW Hazard
	Slide 6: Example: Pipelined Execution w/ RAW Hazard
	Slide 7: Example: Pipelined Execution w/ RAW Hazard
	Slide 8: Example: Pipelined Execution w/ RAW Hazard
	Slide 9: Example: Pipelined Execution w/ RAW Hazard
	Slide 10: Example: Pipelined Execution w/ RAW Hazard
	Slide 11: Example: Pipelined Execution w/ RAW Hazard
	Slide 12: Example: Pipelined Execution w/ RAW Hazard
	Slide 13: How do we avoid the stall cycles?
	Slide 14: Example: Pipelined Execution w/ RAW Hazard
	Slide 15: Forwarding to avoid a pipeline RAW Hazard
	Slide 16: Forwarding to avoid a pipeline RAW Hazard
	Slide 17: Immediately preceding & dependent on load = stall
	Slide 18: Adding Forwarding Support
	Slide 19: Exception Handling
	Slide 20: Today: More Pipelined Microarchitecture
	Slide 21: Pipeline Control Signals
	Slide 22: Control signals also pipelined through stages
	Slide 23: Which pipeline control signals get set where?
	Slide 24: Which pipeline control signals get set where?
	Slide 25: Recall: R-type Arithmetic Operations
	Slide 26: Which pipeline control signals get set where?
	Slide 27: Which pipeline control signals get set where? PC Source Select
	Slide 28: Which pipeline control signals get set where? PC Source Select
	Slide 29: Which pipeline control signals get set where? PC Source Select
	Slide 30: More on Pipeline Hazards Structural Hazards Control Hazards
	Slide 31: Structural Hazards
	Slide 32: Structural Hazards
	Slide 33: Structural Hazards
	Slide 34: Control Hazards
	Slide 35: Example: Pipelined Execution w/ Branch
	Slide 36: Example: Pipelined Execution w/ Branch Option #1: Stall on Branch
	Slide 37: Determining the Next PC in the Pipeline
	Slide 38: Example: Pipelined Execution w/ Branch Option #1: Stall on Branch
	Slide 39: Example: Pipelined Execution w/ Branch Option #1: Stall on Branch
	Slide 40: Proposal: Resolve the branch target and branch taken/not taken outcome earlier than beq in Mem.
	Slide 41: Early Branch Resolution
	Slide 42: Example: Pipelined Execution w/ Early Resolution
	Slide 43: Example: Pipelined Execution w/ Early Resolution
	Slide 44: Example: Pipelined Execution w/ Early Resolution
	Slide 45: Example: Pipelined Execution w/ Early Resolution
	Slide 46: MIPS-style Delayed Branch Execution
	Slide 47: Filling Branch Delay Slots
	Slide 48: Filling Branch Delay Slots
	Slide 49: Filling Branch Delay Slots
	Slide 50: Filling Branch Delay Slots
	Slide 51: Filling Branch Delay Slots
	Slide 52: RISCV does not have/allow/require delay slots
	Slide 53: Why do they ban delayed branches at the ISA level?
	Slide 54: Branch Prediction to avoid control hazards
	Slide 55: Branch Prediction to avoid control hazards
	Slide 56: There is “typical” branch behavior
	Slide 57: There is “typical” branch behavior
	Slide 58: Statically defined hints about branches?
	Slide 59: Dynamically predicting branch behavior
	Slide 60: Dynamically predicting branch behavior
	Slide 61: Speculation entails guessing about what’s next
	Slide 62: Recovering from branch misprediction
	Slide 63: Dynamically predicting branch behavior
	Slide 64: Branch Predictor in the pipeline
	Slide 65: Dynamically predicting branch behavior
	Slide 66: Predicting Branch Outcomes
	Slide 67: Predicting Branch Outcomes
	Slide 68: Predicting Branch Outcomes
	Slide 69: Proposal: Store predictor state in fetch stage with prediction logic
	Slide 70: Predicting Branch Outcomes
	Slide 71: Predicting Branch Outcomes
	Slide 72: Bimodal BHT Branch Predictor (Lab 1)
	Slide 73: Bimodal BHT Branch Predictor
	Slide 74: Predicting Branch Outcomes
	Slide 75: Avoiding collisions
	Slide 76: Catching correlated branches
	Slide 77: Two-Level Branch Predictor (Option for Lab 1): GAp (Global Adaptive w/ per-address table)
	Slide 78: Global Index Sharing Predictor
	Slide 79: Local/Global Correlating Predictor (Optional for Lab 1): PAg (Per-Address Adaptive global history table)
	Slide 80
	Slide 81: Dynamically predicting branch behavior
	Slide 82: Branch Target Buffer Implementation
	Slide 83: Putting it all together: A Gshare branch predictor + BTB
	Slide 84: Branch Predictor in the pipeline
	Slide 85: What did we just learn?
	Slide 86: What to think about next?

