18-344: Computer Systems and the Hardware-Software Interface ~ Fail 2023

433 T
it : : -
» Vi : : s
g i 5 [2]

bourse I]BSB[i[]tiUII Lecture 3: Computer Architecture Basics

This course covers the design and implementation of computer systems from the perspective of the
hardware software interface. The purpose of this course is for students to understand the
relationship between the operating system, software, and computer architecture. Students that
complete the course will have learned operating system fundamentals, computer architecture
fundamentals, compilation to hardware abstractions, and how software actually executes from the
perspective of the hardware software/boundary. The course will focus especially on understanding
the relationships between software and hardware, and how those relationships influence the design
of a computer system's software and hardware. The course will convey these topics through a series

of practical, implementation-oriented lab assignments. Credit: Brandon Lucia

What did we talk about last time?

Hardware vs. software tradeoffs

* von Neumann vs. Harvard architecture and the beginnings of a design space

An optimization exercise by example

Amdahl’s Law (and Gustafson’s Law, by contrast)

What is a Computer Architecture?

e Building up to our first architecture
Defining the ISA: Architecture vs. Microarchitecture
* RISCvs. CISC ISAs

RISCV ISA

Recall:
The Von Neumann Computing Model

CPU

John von Neumann’s Big Idea:

Programs are data.

f
|

B ——
—
= ——
b —
———
——
e —
——
—_———
——
— N
v 4

.

)
.
X

Unified Bus

Memory

Recall: the Harvard Architecture

CPU

* Split bus architecture
provides simultaneous access
to program and to data

Instruction Bus Data Bus
Memory

Either Way:
Our CPU from last time is incomplete

CPU

What’s missing?

Basic Architecture: State + processing
elements

ALU/processing state

Process Maintain State
(combinational > (sequential

logic) logic)

control

Building up to our first architecture: ALU

Building up to our first architecture: ALU

Design choice — what operations
do we support here?

Basic Architecture: State + processing
elements

ALU/processing state

S|
21>
9|
%‘5
S'n
\<control

\\\\\\7

28 Maintain State
(sequential
logic)

Input B

Input A

Basic Architecture: State + processing
elements

ALU/processing Register File state

Reg 1
I Reg 2

Reg 3

Input B

Reg 4

Input A

Building up to our first architecture: ALU +
Registers

Input A
Register
Control

Input B
Register
Control

Input A register select
Input B register select

Register File

Input A

Opcode select
op= [+I - X /]

Output C

Output register select

»
P
—n
L

Output
Register
Control

Building up to our first architecture: ALU +

Registers

Input A register select
Input B register select

Ian‘Jt A Input B
Register .

Register
Control

Control

=. Register File

&
«

Input A

Opcode select
op= [+: - X /]

Output register select

Output C

Output
Register
Control

Stateful Elements plus control required to access them, providing
inputs to operations and storing outputs of operations

Building up to our first architecture: ALU +

Registers

Ian_Jt A Input B
Register Regi
Control egister
P Control
Input A register select «
Input B register select _ Need to activate control |0gIC to

Register File

Input A

Opcode select
op = [+: = X, /]
Output C

Output register select

Registers are named & explicit.
Implication of explicit names?

select right register for a particular
operation. How?

Output
Register
Control

Design choice — how many stateful
elements / registers do we support?

Building up to our first architecture: Control

Inpl,JtA Input B
Register .
Register
Control
T4 P Control
.) <
Instruction g In Areg select=- .
'w)l In B reg select - . .
Program Fetch 8 > Register File
Counter(PC) S Input A
e
. Op select
Instruction il S Eaa
p -
Memory n Output C
i< Outreg select
Output
Register
Control

Instruction gets decoded into signals that
control the other parts of the system (more on
encoding / decoding in a few slides)

Building up to our first architecture: Control

Inpl,JtA Input B
Register .
Register
T Control
il P Control
.] <
Instruction g In Areg select=. .
'w)l In B reg select - . .
Program Fetch 8 > Register File
I tA
Counter(PC) S nputA|
e
. Op select
Instruction il S Eaa
p -
Memory n Output C
i< Outreg select
Output
Register
Control

Instruction memory holds all of the bits of all of
the instructions that we might ever use to
control other units.

Design choice: Need to think about where we
put this memory (and its hierarchy of caches)

Building up to our first architecture: Control

Inpl,JtA Input B
Register .
Register
Control
T4 P Control
.) <
Instruction g In Areg select=. .
'w)l In B reg select - . .
Program Fetch 8 > Register File
Counter(PC) = Input A|
e
. Op select
Instruction il S Eaa
p -
Memory n Output C
i< Outreg select
Output
Register
Control

Instruction fetch logic refers to PC, loads
instruction from instruction memory and sends
to decode.

Design choices: how much to fetch at once?
What to fetch next (not always obvious)?

Building up to our first architecture: Control

Inpl,JtA Input B
Register .
Register
T Control
il P Control
.] <
Instruction g In Areg select=- .
'w)l In B reg select - . .
Program Fetch 8 > Register File
Counter(PC) S Input A
e
. Op select
Instruction il S Eaa
p -
Memory n Output C
i< Outreg select
Output
Register
Control

Remember our fetch optimization from last time? That
would go here. Specialized instruction memory access
logic. (Physical memory may be the same, though)

Building up to our first architecture: Control

Input A
Register
Control

Input B
Register
Control

’

S

Instruction < LENG-EEEEN

o >
'w)l In B reg select . .
Program Fetch 8 Register File
Counter(PC) S Input A
e
. Op select
Instruction il S Eaas
p -
Memory n Output C
i< Outreg select
Output
Register
Control

Sequential Control:
Each cycle, update the PC by adding 4.
Implication for software of our current design?

Building up to our first architecture: Control

Decoding a fetched operation breaks it from a blob of
bits into a set of signals that we can use to configure
the rest of the units in this diagram

Input A
Register
Control

Input B
Register
Control

=. Register File

&
l

’

S

Instruction o LENEEECEEN
Fetch 'w)l In B reg select

Program

Counter(PC) Input A

Op select

Instruction
Memory

Output C

Out reg select

Instruction Deco

Output
Register
Control

Key Idea: What we encode here has implications for other units and software layers above

the instruction definition level.
Mechanism of decoding and content of encoded/decoded instructions are orthogonal

concepts. How? vs what?.

Building up to our first architecture: Memory

Input A Input B
Register Register
h : Control ~ Control
0 afl In A reg select
- =)l In B reg select . .
Program it Register File
Counter(PC) = Input A
Output
. Op select N Register
op=[+-x,/ Control
Mo ALU: output C
Out reg select
Op select - Id: data st: data
op = [Id,st] <

Id/st: address

Building up to our first architecture: Memory

Inpl.’tA Input B
Register Register
h Control ~ Control
0 '. In A reg select
O >
- In B reg select . .
Program it Register File
Counter(PC) Input A

Output
Register
Control

Op select
op= [+I - X, /

ALU: output C

Out reg select

Id: data

Op select
op = [ld,st]

st: data
Id/st: address

AA

Decoded instruction now needs to
select: ALU op or Mem op?

Building up to our first architecture: Memory

Program
Counter(PC)

Input A
Register
Control

q
0 afl In A reg select

> I reg select

_ Control

Input B
Register

Input A

Op select
op= [+I - X, /

Out reg select

ALU: output C

Register File

Output
Register
Control

Op select
op = [ld,st]

Id: data

st: data

AA

Id/st: address

T

Here: address assumed to come from register directly

Building up to our first architecture: Memory

Program
Counter(PC)

Input A Input B
Register Register
Control ~ Control
0 '. In A reg select <
A =
In B reg select - Regi Eil
; eglster lne Address
Input A :
= Output mode bits
- Op select N Register from
op=[+-x,/ Control
ALU: output C > decoded
Out reg select > n instruction
Op select - \d: data st: data
op = [ld,st] « Address bits

Id/st: address

from register

A

Reality: ALU may crunch reg vals to generate address

Building up to our first architecture: Memory

Program
Counter(PC)

Input A
Register
Control

q
0 afl In A reg select

> I reg select

_ Control

Input B
Register

Input A
@

Op select
op= [+I - X, /

Out reg select

ALU: output C

Op select
op = [ld,st]

Register File Address
Output mode bits
Register from
Control decoded
. instruction
Id: data
< st: data]
< Id/st: address Address bits

from register

A

Design choice:

How many ways do we have to compute an address?
How many ways should we have?

Guess at implications of more ways?

Building up to our first architecture: Memory

Input A

i Input B
Register Register
h : Control ~ Control
0 afl In A reg select
- > I reg select . i
Program i Register File
Counter(PC) Input A
O Output
. Op select N Register
op=[+-x,/ Control
eMmaO ALU: output C

Id: data \
st: data

AN

Id/st: address \

Op select
op = [ld,st]

AA

state

Building up to our first architecture: Memory

Program
Counter(PC)

Input A
Register
Control

q
0 afl In A reg select

> I reg select

_ Control

Input B
Register

Input A

Op select
op= [+I - X, /

Out reg select

ALU: output C

Register File

Output
Register
Control

Op select
op = [ld,st]

Id: data

st: data

AA

Id/st: address

Are register files and memory two
varieties of the same basic thing?

Building up to our first architecture: Branching

PC+4
Input A Input B
Register Register
Control Control
N '. In A reg select <
- #1 In B reg select - . .
Program & > Register File
5 Counter(PC) = Input A
T Output
(%]
Y - Op select N Register
g op=[+-x,/ Control
8 emao ALU: output C
a Out reg select
Branch Target Address Offset Op select P \d: data st: data

op = [ld,st] Id/st: address

Building up to our first architecture: Branching

PC+4

Instruction
Fetch

If PC Source Select not asserted PC=PC+4

Program
Counter(PC)

Alowa|p
weJl3o.d

If PC Source Select asserted PC=PC+off

Instruction
Memory

Q
©
(@)
O
)
()
C
0
)
O
-}
| -
o+
(%)
1=

PC Source Select

Branch Target Address Offset

Building up to our first architecture: Branching

PC+4
Input A Input B
Register Register
Control Control
N '. In A reg select
- #1 In B reg select . .
Program & Register File
g Counter(PC) Input A
E ® Output
Y 5 Op select N Register
g op=[+-x,/ Control
n MmO ALU: output C
& Out reg select
Branch Target Address Offset Op select P \d: data st: data

\ op = [ld,st] Id/st: address

Where does our branch target
offset originate?

Alternative design choices? How
are each of those used in code?

Building up to our first architecture: Branching

PC+4

Input A
Register

Input B
Register

Control Control
N '. In A reg select <
- #1 In B reg select - . .
Program & > Register File
5 Counter(PC) Input A
A ~ Output
Y - Op select N Register
g op=[+-x,/ Control
8 eMmao ALU: output C
a Out reg select
Branch Target Address Offset Op select ld: data st: data

AA

op = [ld,st] Id/st: address

How do we decide taken vs. not
taken via PC Source Select?

Building up to our first architecture: Branching

PC+4
Inpl.’tA Input B
Register Register
Control ~ Control
0 '. InAreg select‘
- 1 InB reg select . .
Program q Register File
A ()
Counter(PC) Input A
O Output
- Op select N Register
op=[+-x,/ Control
MmO ALU: output C
Out reg select
Branch: PC Source Select
Id: data
Branch Target Address Offset Op select st: data

AA

op = [ld,st]

Id/st: address

Design Choice:

ALU output determines PC source select
when branch condition evaluates
Alternative Design?

A Complete (but slightly messy) RISCV-ish Datapath

PC+4

Program
Counter(PC)

Branch: PC Source Select

Input A
Register
Control

In A reg select

InBreg select

Input B
Register
_ Control

Input A

Op select N

op = [+I N} xl7

Out reg select

hl
>
<

»

»

ALU: output C

Branch Target Address Offset

Op select

Id: data

Register File

Output
Register
Control

st: data

op = [ld,st]

AA

Id/st: address

A “single-cycle” design Clock

PC+4
Inpl_’tA Input B
Register Register
Control ~ Control
0 '. InAreg select‘ <
- #1l In B reg select - . .
Program q > Register File
A ()
Counter(PC) Input A
O Output
. Op select N Register
op=[+-x,/ Control
eMmaO ALU: output C
Out reg select
Branch: PC Source Select
Id: data
Branch Target Address Offset Op select st: data

AA

op = [ld,st] Id/st: address

A “single-cycle” design

Clock

PC+4

Input A
Register
Control

q
0 ol INnAreg select‘

1 InB reg select

_ Control

Input B
Register

hl

Program .
Counter(PC) Input A

Op select N
op= [+I - X /

Out reg select

>
<
»
»

ALU: output C

Register File

Output
Register
Control

Branch: PC Source Select

Op select
op = [ld,st]

Branch Target Address Offset

Key Idea:

Single-cycle design goes from reading an instruction
out of memory all the way to writing results back to
registers before the next clock edge.

Id: data

st: data

AA

Id/st: address

Thinking about latency: ALU Operations

PC+4

q
O O
\ 4

Program &
Counter(PC) =

0

eMma
Branch: PC Source Select

Branch Target Address Offset

ALU Operation Latency:
Circuit delay of ALU operations is (mostly) low.
Why?

Input A
Register
Control

In A reg select

) In B reg select

_ Control

Input B
Register

hl

Input A

Op select N

op = [+I N} xl7

Out reg select

>
<
»
»

ALU: output C

Register File

Output
Register
Control

Op select
op = [ld,st]

Id: data

st: data

Address
mode bits
from
decoded
instruction

AA

Id/st: address

A

Address bits
from register

Thinking about latency: ALU Operations

PC+4

Input A
Register
Control

_ Control

Input B
Register

hl

e <1l In A reg select
A 4 S .
. In B reg select
Program ;
Counter(PC) e e
. Op select N
Instruction op=[+-x/

Memory

Out reg select

>
<
»
»

ALU: output C

Register File

Output
Register
Control

Branch: PC Source Select

Branch Target Address Offset

ALU Operation Latency:
Circuit delay of ALU operations is (mostly) low.
Sum of delay of 5 or 6 units depending on impl.

Need to fetch, decode, register access (in 1), reg access

(in 2), ALU function, register writeback

Op select
op = [ld,st]

Id: data

st: data

Address
mode bits
from
decoded
instruction

AA

Id/st: address

A

Address bits
from register

Thinking about latency: Memory

PC+4
Inpl.’tA Input B
Register Register
Control ~ Control
0 '. In A reg select <
A\ 4 O »
- In B reg select - . .
Program k! ” Register File Address
Counter(PC) InputA mode bits
O Output
- Op select N Register from
op=[+-x,/ Control
eMmaO | ALU: output C decoded
Out t i i
Branch: PC Source Select HLIEESEEC - Instruction
Id: data
Branch Target Address Offset Op select P st: data
op = [Id,st] < Address bits

Id/st: address

from register

A

Memory Latency:
Memory accesses are pretty slow. Why?

Thinking about latency: Memory

PC+4
Inpl,]tA Input B
Register Register
Control ~ Control
0 .. In A reg select .:
\ 4 o >
- In B reg select - . .
Program k! ” Register File Address
Counter(PC) Input A mode bits
= Output
q 0] lect Regist
Instruction e a— egister from
p=[+-x/ Control decoded
Memory | ALU: output C
Out t H H
Branch: PC Source Select Wi TER SEIet - Instruction
Branch Target Address Offset Op select P \d: data st: data
- = [Id,st < i
Memory Latency - Critical Path: op = [ldst] [d/st: address Address bits

Memory accesses are pretty slow in our datapath. from register

Sum of delay of 7 or 8 units depending on counting
Need to fetch, decode, register access (addr part 1),
reg access (addr part 2), alu (addr gen), memory
unit, memory bank, register write

A

Implication of operation latencies?

* Single-cycle design means that the cycle time for the system is
defined by the latency of the longest-latency operation

* In our case, that would be the memory latency (and ALU latency has
some slack from the cycle time)

* If every operation is not a memory operation, then we have over-
provisioned the cycle time of the system

Where is the HW/SW Interface in the Datapath?

PC+4
Inpl_’tA Input B
Register Register
Control ~ Control
0 '. InAreg select‘ <
- 1 InB reg select - . .
Program q > Register File
A ()
Counter(PC) Input A
O Output
. Op select N Register
op=[+-x,/ Control
eMmaO ALU: output C
Out reg select
Branch: PC Source Select
Id: data
Branch Target Address Offset Op select - st: data

op = [ld,st] Id/st: address

Where is the

PC+4

This is where

software begins!

Input A
Register
Control

q
Si\nAreg select‘

W/SW Interface?

Input B
Register
_ Control

- .
- B reg select ‘. . .
Program q > Register File
A ()
Counter(PC) Input A
O Output
. Op select N Register
op=[+-x,/ Control
eMmaO ALU: output C
Out reg select
Branch: PC Source Select
N\ /| Id: data
Branch Target Address Offset \/ Op select — st: data
op = [Id,st] <

Id/st: address

Instruction memory holds software

c
0
"C;CIJ
S5 ©
c O
D D
£ 0

Big Idea: Instruction Bits are Control Signals

Input Register 1

Input Register2 (»

Operation Type [+

C
ke,
o

O

>

-
o

(%)

C

Output Register [

PC Source Select [+

Jump Target [y

Big Idea: Instruction Bits are Control Signals

Input Register 1 | InputRegister 2 | Output Register | Operation Type

00000100 00001000 00001001 00000001

C
ke,
o

O

>

-
o

(%)

C

Big Idea: Instruction Bits are Control Signals

C
ke,
o

O

>

-
o

(%)

C

Input Register 1 | InputRegister 2 | Output Register | Operation Type
00000100 00000011 00000010 00000001
Register r4 Register r3 Register r2 Multiply

Binary encoded: signals
directly interface to datapath

Instruction Set Architecture

The ISA defines the architecture of the machine

C
ke,
o

O

>

-
o

(%)

C

Any implementation of the architecture must
support the features exposed through the ISA

(why?)
Input Register 1 | InputRegister 2 | Output Register | Operation Type
00000100 00000011 00000010 00000001
Register r4 Register r3 Register r2 Multiply

Binary encoded: signals
directly interface to datapath

B

Architecture vs. Microarchitecture

The ISA defines the architecture of the machine

C
ke,
o

O

>

-
o

(%)

C

A microarchitecture implements the features of

the architecture

Input Register 1 | InputRegister 2 | Output Register | Operation Type
00000100 00000011 00000010 00000001
Register r4 Register r3 Register r2 Multiply

B

Architecture vs. Microarchitecture

The ISA defines the architecture of the machine

A microarchitecture implements the features of
the architecture

Input Register 1 | InputRegister 2 | Output Register | Operation Type

Architecture:
00000100 00000011 00000010 00000001 Register-register ALU ops, registers numbering 0-4

Register r4 Register r3 Register r2 Multiply

Microarchitecture:
One ALU containing a multiplier,
physical register file with registers numbering 0-3

’i

Architecture vs. Microarchitecture

Input Register 1 | InputRegister 2 | Output Register | Operation Type
00000100 00000011 00000010 00000001
Register r4 Register r3 Register r2 Multiply

For a given architecture there are many perfectly
good microarchitectural implementations

Architecture:
Register-register ALU ops, registers numbering 0-4

X

ALU

Microarchitecture:
One ALU containing an adder; multiply w/ iterated addition,
physical register file with registers numbering 0-3

A

Architecture vs. Microarchitecture

Architecture:

For a given architecture there are many perfectly
good microarchitectural implementations

Sequentially-numbered, general-purpose registers

Regi

A

s

A

Microarchitecture:

Two SRAM banks storing regs based on parity

Register-register ALU ops, registers numbering 0-4

X

Input Register 1 | InputRegister 2 | Output Register | Operation Type
Architecture:
00000100 00000011 00000010 00000001
Register r4 Register r3 Register r2 Multiply
ster File [v v ALU
SRAM Bank #1 SRAM Bank #2

Microarchitecture:

One ALU containing an adder; multiply w/ iterated addition,
physical register file with registers numbering 0-3

Instruction Set Architecture

The ISA is the vocabulary of the machine

C
ke,
o

O

>

-
o

(%)

C

The ISA/vocabulary determines the types of
programs/sentences that it is possible to write

Input Register 1 | InputRegister 2 | Output Register | Operation Type
00000100 00000011 00000010 00000001
Register r4 Register r3 Register r2 Multiply

Binary encoded: signals
directly interface to datapath

B

What should go in the ISA?

Reduced Instruction Set Computer Complex Instruction Set Computer
Simple primitives: Simple & complex operations:
Let software compose complex operations Hardware provides complex functionality
Register operands: Many operations:
Decouple functionality from memory accesses Often several ways to do the same thing

Few total operations:
Usually only one way to do something

K4

Register and memory operands:
Operations may directly manipulate memory

What should go in the ISA?

Reduced Instruction Set Computer

rd
rd
rd
rd

Simple primitives:
Let software compose complex operations

Register operands:
Decouple functionality from memory accesses

Few total operations:
Usually only one way to do something

Few cases to map to control signals
in microarchitecture

M[imm]
M[regqg]
M[reg + imm]
M[PC + imm]

Complex Instruction Set Computer

Simple & complex operations:

Hardware must support complex functionality

Many operations:

Often several ways to do the same thing

Register and memory operands:
Operations may directly manipulate memory

Many cases to map to control
signals in microarchitecture

Source Dest Src,Dest

Reg movg $0x4,%rax
Imm
Mem movg $-147, (%rax)

movq Reg Reg
Mem movqg %rax, (%rdx)

movqg %$rax, $rdx

Mem Reg movqg (%rax), %rdx

C Analog I?@

temp = 0x4;
*p = -147;

temp2 = templ;
*p = temp;

temp = *p;

Plus all of these combinations

D(Rb,Ri,S)

Mem|[Reg[Rb]+S*Reg[Ri]+ D]

What should go in the ISA?

Reduced Instruction Set Computer Complex Instruction Set Computer

Simple & complex operations:

Simple primitives: . .
plep Hardware must support complex functionality

Let software compose complex operations

Register and memory operands:

Regist ds: . . .
eglster operands Operations may directly manipulate memory

Decouple functionality from memory accesses

Many operations:

Few total operations: .
P Often several ways to do the same thing

Usually only one way to do something

What are the pros and cons of each?

How does RISC vs. CISC affect the microarchitecture,
compiler, program, programmer?

Principles of ISA Design

General Principles

Regularity — “Law of least astonishment”
Orthogonality — keep separable concerns separate
Composability — regular, orthogonal ops combine easily

Specific Principles

One vs. All - precisely one way to do it, or all ways should be possible
Primitives, not solutions — solve by coding, compiling, & synthesizing

“Blatant opinions” (matters of taste)

Addressing — not limited to simple arrays, etc.
Environment Support — exceptions, processes, debugging, etc

Deviations — deviate from these rules only in implementation-specific ways

An examination of the relation between architecture and compiler
design leads to several principles which can simplify compilers
and improve the object code they produce.

Compilers and Computer Architecture

William A. Wulf
Carnegie-Mellon University

The interactions between the design of a computer’s
instruction set and the design of compilers that generate
code for that computer have serious implications for
overall computational cost and efficiency. This article,
which investigates those interactions. should ideallv be

o , | . Some architectures have provided direct
Designing irregular structures at the chip level implementations of high-level concepts. In
IS very expensive. many cases these turn out to be more trouble

than they are worth.

simplify com; =
programs the
are absolutel
ever, they leac
neonle have ¢

.
<“.'

What did we just learn?

* Computer architectures define the HW/SW interface through the ISA
* There is a difference between architecture and microarchitecture

* Many valid microarch. implementations of an architecture exist

e RISC vs. CISC architectures are extrema on a spectrum

* Principles of ISA design (Wulf)

What to think about next?

* The basics of the RISCV-RV32l ISA and some other hw/sw interfaces

* More microarchitectural concepts
* Pipelining our microarchitecture & instruction-level parallelism
* Control hazards & branch prediction

	Slide 1
	Slide 2: What did we talk about last time?
	Slide 3: What is a Computer Architecture?
	Slide 4: Recall: The Von Neumann Computing Model
	Slide 5: Recall: the Harvard Architecture
	Slide 6: Either Way: Our CPU from last time is incomplete
	Slide 7: Basic Architecture: State + processing elements
	Slide 8: Building up to our first architecture: ALU
	Slide 9: Building up to our first architecture: ALU
	Slide 10: Basic Architecture: State + processing elements
	Slide 11: Basic Architecture: State + processing elements
	Slide 12: Building up to our first architecture: ALU + Registers
	Slide 13: Building up to our first architecture: ALU + Registers
	Slide 14: Building up to our first architecture: ALU + Registers
	Slide 15: Building up to our first architecture: Control
	Slide 16: Building up to our first architecture: Control
	Slide 17: Building up to our first architecture: Control
	Slide 18: Building up to our first architecture: Control
	Slide 19: Building up to our first architecture: Control
	Slide 20: Building up to our first architecture: Control
	Slide 21: Building up to our first architecture: Memory
	Slide 22: Building up to our first architecture: Memory
	Slide 23: Building up to our first architecture: Memory
	Slide 24: Building up to our first architecture: Memory
	Slide 25: Building up to our first architecture: Memory
	Slide 26: Building up to our first architecture: Memory
	Slide 27: Building up to our first architecture: Memory
	Slide 28: Building up to our first architecture: Branching
	Slide 29: Building up to our first architecture: Branching
	Slide 30: Building up to our first architecture: Branching
	Slide 31: Building up to our first architecture: Branching
	Slide 32: Building up to our first architecture: Branching
	Slide 33: A Complete (but slightly messy) RISCV-ish Datapath
	Slide 34: A “single-cycle” design
	Slide 35: A “single-cycle” design
	Slide 36: Thinking about latency: ALU Operations
	Slide 37: Thinking about latency: ALU Operations
	Slide 38: Thinking about latency: Memory
	Slide 39: Thinking about latency: Memory
	Slide 40: Implication of operation latencies?
	Slide 41: Where is the HW/SW Interface in the Datapath?
	Slide 42: Where is the HW/SW Interface?
	Slide 43: Instruction memory holds software
	Slide 44: Big Idea: Instruction Bits are Control Signals
	Slide 45: Big Idea: Instruction Bits are Control Signals
	Slide 46: Big Idea: Instruction Bits are Control Signals
	Slide 47: Instruction Set Architecture
	Slide 48: Architecture vs. Microarchitecture
	Slide 49: Architecture vs. Microarchitecture
	Slide 50: Architecture vs. Microarchitecture
	Slide 51: Architecture vs. Microarchitecture
	Slide 52: Instruction Set Architecture
	Slide 53: What should go in the ISA?
	Slide 54: What should go in the ISA?
	Slide 55: What should go in the ISA?
	Slide 56: Principles of ISA Design
	Slide 57: What did we just learn?
	Slide 58: What to think about next?

