
Fall 2025

Lecture 14: The Compiler Is Here To Help

Credit: Brandon Lucia



Today: The Compiler is Here to Help

•Next we will look to how the compiler represents and reasons about a 
program

•We will learn about compiler optimizations and how they get defined 
and applied

•Note: This lecture was intended to fall after VLIW and vector 
machines and before VM in the schedule, but was bumped back by 
one lecture to give you more time on the VM lab. 

• When studying later, you may want to review it at that point in your flow. 



Purpose & Operation of a Compiler

•Compilers process high-level 
language code to (eventually) 
produce machine code

•Organized into a front-end, 
“middle-end”, and back-end.

•Middle-end 
analyzes/transforms program 
represented as an 
“Intermediate 
Representation”



Front-end Phases in the Compiler

Scanning / Lexing Parsing
Semantic 
Analysis

Generation of 
Intermediate 

Representation 
(IR)

Input: High-level 
Language / C Program

Output: IR to process 
in middle-end



Scanning / Lexing: Reading in raw characters

• Process input string from 
code file into characters

• Use finite state machine to 
process characters into 
lexemes to match tokens

• Maximal Munch Rule: 
Always match longest 
available lexeme to token

• Output: series of tokens 
identified by a (string) name 
that can be parsed to give 
semantic meaning

“while (save[i] == k): 

i += 1;”

‘w’ ‘h’ ‘i’ ‘l’ ‘e’ ‘(‘

‘s’ ‘a’ ‘v’ ‘e’ ‘[‘ ‘I’

‘]’ ‘=‘ ‘=‘ ‘k’ ‘)’ 

‘:’

‘i’ ‘+’ ‘=‘ ‘1’ ‘;’

“while” “(“ “save” “[“

“]” “i” “==“ “k” “)”

“i” “+=“ “1” “;”

A “scanner” or “lexer” 
processes text into tokens



Parsing tokens

•Assemble tokens into an abstract 
syntax tree (AST) that represents 
the syntactic structure of the 
program

•Tree represents recursive 
substructure of program

• Includes sufficient information to 
assign semantics to components 
of the tree for analysis, 
optimization, and mapping to 
machine instructions



Semantic Checking & Analysis

• Programmatically examine the AST to 
find a broad class of common errors

• Creates a symbol table mapping names 
& types in program

• Type checking (most): make sure
computations only applied to correct 
kinds of values

• Ownership/Borrow Checking (some): 
make sure only zero or one writable 
reference to a memory location

• Data-race checking (some): make sure 
that no code allows data races

• Security / data integrity checking: 
make sure that non-trustworthy 
operations to do not see secret data

Type: 
integer

Type: 
integer

Type: 
(integer, 
integer)



Converting to Intermediate Representation 
(IR)

Purpose of IR: simple set of semi-universal, language- and
machine-independent operations to which to apply analysis & optimizations

Structure of IR: varies depending on the IR model used by compiler, usually 
looks assembly-ish & has hierarchical structure (functions, blocks, instructions)



IR: Linear View vs. Control-flow Graph View

Linear: Directly maps to high-level code, no recursive/hierarchical sub-structure

Control-flow Graph: Break code into basic blocks (linear, single entry point, 
single exit point) with arcs describing possible control flows



Single Static Assignment (SSA)

All registers in IR are 
“fresh” virtual registers, 
assigned to exactly once 
anywhere in the code.
These registers do not 
correspond to any 
machine.

Why?



SSA Makes Dependence Chains Easy

Definition – Use Chains (or 
Def-Use Chains) emerge 
directly from analysis of 
virtual register 
assignments and uses



Φ –nodes: Handling Control-flow Divergence

• When control paths diverge, 
need to re-converge eventually

• If single variable conditionally 
assigned on both sides of 
branch, how to decide its value?

x = 0;

if(cond){x+=1} 

else{x+=2};

y = x + 1;

r100 = 0
If cond

r101 = 
r100+1

r102 = 
r100+2

r103 = Φ
(r101,r102)

r104 = r103+1

without Φ, what 
value would we 
assign to r103?



Compiler Optimizations

• Local Optimization: optimize 
operations within a single 
basic block; “cleanup” before 
global optimizations

•Global Optimization: 
optimization across basic 
blocks

•Global register allocation: 
Register mapping pass 
required for making code fast



Optimization Example: Dead Code 
Elimination

x = 0;

if(x>0){x+=1}

else{x+=2}; 

y = x + 1;

x = 0;

x += 2;

y = x+1;

Why would you 
have a program 
with weird code 
like this in it?



Optimization Example: Constant / Copy 
Propagation

x=0 

x+=2

y = x+1

y = 3;

Significantly simplified 
from our original code 
by applying a 
sequence of 
optimizations

x = 0;

if(x>0){x+=1}

else{x+=2}; 

y = x + 1;



Optimization Example: Common 
Subexpression Elimination

x[i] = x[i] + 4

// x[i] + 4

la r100,x

ld r101,i

mul r102,r101,8 

add r103,r100,r102

ld r104, 0(r103)

//

addi r105, r104,4

la r106,x

ld r107,I

mul r108,r107,8 

add r109,r106,r107

sd r105,0(r109)

// x[i] + 4

la r100,x

ld r101,i

slli r102,r101,3 

add r103,r100,r102

ld r104, 0(r103)

// x[i] is in r104 

addi r105, r104,4 

sd r105, 0(r103)



Optimization Example: Strength Reduction

x[i] = x[i] + 4

// x[i] + 4 

la r100,x 

ld r101,i

mul r102,r101,8

add r103,r100,r102 

ld r104, 0(r103)

//

addi r105, r104,4 

la r106,x

ld r107,I

mul r108,r107,8

add r109,r106,r107 

sd r105,0(r109)

// x[i] + 4 

la r100,x 

ld r101,i

slli r102,r101,3

add r103,r100,r102 

ld r104, 0(r103)

// x[i] is in r104 

addi r105, r104,4 

sd r105, 0(r103)



Global Optimization Example:
Code Motion / Induction Variable Elimination

Code Motion: 
hoisted outside of 
the loop

addr = save + i*8 
via
ld 

slli 

addi

add 1 to I 
add 8 to addr

ld k every time 
around the loop

“while (save[i] == k): 

i += 1;”

add 1 to I

Global optimizations tend to be more complex and involve 
reasoning that is more difficult to prove correct

Induction Variable 
Elimination: Re-write 
induction variable 
update & address 
computation directly



Optimization Summary



Register Allocation: Eliminating Memory 
Loads and Stores

Load/Store 
temp 
variables 
before/after 
use

Register 
Allocation: 
Map to 
assembly/ 
machine 
registers

Load/Store Elimination: 
Remove loads 
from/stores to memory 
for vars in regs



Register Allocation: Algorithmically

Region-based Register Allocation – Finding Regions:
1. Choose a variable definition, d (assignment); add its basic 

block to region, R
2. Find uses, u_i of the definition d in other basic blocks, add 

those basic blocks to R; add any block on a path between a 
definition’s block and the use’s block to R too.

3. Find any other definitions that could affect u_i and add the 
blocks containing those definitions to R

4. Repeat steps 2 and 3 until you do not add any more regions 
to R.

Property of resulting set of blocks: if the variable subject to 
definition d is allocated in register in these blocks, then there is 
no need to load and store the variable after its initial 
load/definition
Proof Intuition: definitions flow through these and only these 
blocks along reachable paths to all possible uses. If all uses and 
defs use the same register name, no need to write to/read from 
memory).



Register Allocation: Algorithmically

Region-based Register Allocation – Mapping to machine registers:
1. Compute regions for each virtual/IR register in program
2. Construct region interference graph,

G=(V,E): V = {regions}, E = { (r1,r2) | r1 and r2 include a basic 
block in common}

3. Run graphColor(G) to assign a color to each region such that no 
adjacent vertices in G have the same color

4. If #colors <= #machine registers, assign one machine register per 
color and register allocate variables in regions.

5. If #colors > #machine registers, need to spill register to memory 
with load/store pair, essentially splitting regions until #colors <= 
#machine registers

Key property: regions that do not include overlapping basic blocks 
can use the same register for a different value/definition



Is the code you write the code you run?

while(save[i] == k]): 

x[i] = x[i] + 4

Key idea: optimize the inner loop automatically!
Inner loop in initial IR representation is 12 instructions long including 7 mem ops (long time if not cache hits). 
Inner loop in optimized version is 5 instructions including 1 mem op.



Intermediate Representation Design

•What properties are desirable 
in an IR? (what properties 
are undesirable in an IR?)

•How to select an IR if you are 
a compiler writer?

•What aspects of the IR do you 
care about if you’re a 
programmer?

•What aspects of the IR do you 
care about if you’re an 
architect?



Enter: LLVM the “new” great IR ca. 2004

• Designed to support transparent
program analysis and transformation 
for arbitrary programs

• Provide high-level information to
compiler at compile-time, link-time 
(and run-time); always have a CFG

• Language-independent type system

• Explicit support for typed address 
arithmetic

• Uniform abstraction for
exception-handling (setjmp / 
longjmp)

• Code representation based on Single
Static Assignment (SSA) with explicit 
phi nodes



Enter: LLVM the “new” great IR ca. 2004

• LLVM has remained the industry 
and research standard IR for 
making custom compilers for 
nearly two decades

•GCC, which you’re very familiar 
with also, is less extensible, but 
more robust and with a longer 
lifetime of community support

•Recently, new players with 
applications changing dramatically

what an awful logo!



Do we need a better IR?MLIR the 
Multi-Level Intermediate
Representation
• “The MLIR project is a novel approach to building reusable and extensible 

compiler infrastructure. MLIR aims to address software fragmentation, 
improve compilation for heterogeneous hardware, significantly reduce the 
cost of building domain specific compilers, and aid in connecting existing 
compilers together.”

• Features:
• Ability to represent dataflows directly (including TensorFlow for ML)
• Optimization over dataflow graphs directly
• high-performance-computing-style optimizations across compute kernels
• Hardware dependent features: DMA insertion, cache management, memory tiling 

mapping to vector hardware primitives
• Hardware accelerator specific operations

• Interesting to see where this project goes in the next year or two



Do we need an IR specifically made for 
machine learning computations?
•Relay IR for Machine Learning / 

Tensor processing frameworks

•Map from any high-level ML 
framework to IR

•Generate orthogonal control 
(runtime code) and scheduling / 
hardware mapping (data layout + 
operators)

•Highly specialized for ML & 
Tensor-specific optimization



What else can compilers do for you?

•Compilers do more than just map to machines and optimize for you

• Support for debugging and profiling instrumentation

•Analysis to check security properties



Compiling to profile (like gprof)

• Insert code that tracks 
transitions into every basic 
block
• (reality: track at path granularity 

to cut down on tracking code)

•Runtime: randomly sample 
using a timer which block active 
& make histogram
• More frequent block in histogram

== hot code/inner loop



Compiling to help with debugging: 
Concurrent Data Provenance Tracking
•Compiler inserts code on every 

write operation to dynamically 
track the last writer instruction 
and thread ID of a variable

•On crash or breakpoint, last 
writer table helps understand 
provenance of value in crash/op

•Useful for concurrency bug 
debugging

• https://github.com/blucia0a/CTraps-gcc



Information Flow Control Analysis for 
Security

• Non-privileged operations not allowed to 
access/be influenced by secret data

• Secret number should never flow to any 
operation unless we trust that operation 
with the secret (i.e., correct guess)

• Compiler uses “taint propagation” 
analysis to tag data and operations

• Rule: untrusted op never directly or 
indirectly affected by confidential data

• Equivalent rule: High-assurance op never 
directly or indirectly affected by 
untrusted data



What did we just learn?

•A whirlwind tour of compilers and their design and purpose

•Compilers analyze and translate code you write to be code you run

•Many types of optimization get applied to your code

•Register allocation (and other steps that we omitted) map your code 
down to the machine

•Compilers are good for a host of other interesting analysis

• Learning LLVM or another compiler-building framework is like a 
low-grade super-power. Very worth the effort!



What to think about next?

•Next up: Sparse problem optimization

• Further along: Parallelism/concurrency

REMINDER:

Today’s lecture logically falls after the advanced architecture 
lectures, including VLIW and Vector Machines, which we covered 
before break.

We intentionally misplaced it to let us cover VM and start the VM 
project earlier, just to give you a little more time on the project. 


	Slide 1
	Slide 2: Today: The Compiler is Here to Help
	Slide 3: Purpose & Operation of a Compiler
	Slide 4: Front-end Phases in the Compiler
	Slide 5: Scanning / Lexing: Reading in raw characters
	Slide 6: Parsing tokens
	Slide 7: Semantic Checking & Analysis
	Slide 8: Converting to Intermediate Representation (IR)
	Slide 9: IR: Linear View vs. Control-flow Graph View
	Slide 10: Single Static Assignment (SSA)
	Slide 11: SSA Makes Dependence Chains Easy
	Slide 12: Φ –nodes: Handling Control-flow Divergence
	Slide 13: Compiler Optimizations
	Slide 14: Optimization Example: Dead Code Elimination
	Slide 15: Optimization Example: Constant / Copy Propagation
	Slide 16: Optimization Example: Common Subexpression Elimination
	Slide 17: Optimization Example: Strength Reduction
	Slide 18: Global Optimization Example: Code Motion / Induction Variable Elimination
	Slide 19: Optimization Summary
	Slide 20: Register Allocation: Eliminating Memory Loads and Stores
	Slide 21: Register Allocation: Algorithmically
	Slide 22: Register Allocation: Algorithmically
	Slide 23: Is the code you write the code you run?
	Slide 24: Intermediate Representation Design
	Slide 25: Enter: LLVM the “new” great IR ca. 2004
	Slide 26: Enter: LLVM the “new” great IR ca. 2004
	Slide 27: Do we need a better IR?MLIR the Multi-Level Intermediate
	Slide 28: Do we need an IR specifically made for machine learning computations?
	Slide 29: What else can compilers do for you?
	Slide 30: Compiling to profile (like gprof)
	Slide 31: Compiling to help with debugging: Concurrent Data Provenance Tracking
	Slide 32: Information Flow Control Analysis for Security
	Slide 33: What did we just learn?
	Slide 34: What to think about next?

