18-344: Computer Systems and the Hardware-Software Interface ~ Fail 2025

13 T
ki T = e
i § I ! ‘_%i._l 5k
#1 i el ghadT el —_
LA o Al

Gourse Description Lecture 13: Virtual Memory

This course covers the design and implementation of computer systems from the perspective of the
hardware software interface. The purpose of this course is for students to understand the
relationship between the operating system, software, and computer architecture. Students that
complete the course will have learned operating system fundamentals, computer architecture
fundamentals, compilation to hardware abstractions, and how software actually executes from the
perspective of the hardware software/boundary. The course will focus especially on understanding
the relationships between software and hardware, and how those relationships influence the design
of a computer system's software and hardware. The course will convey these topics through a series

of practical, implementation-oriented lab assignments. Credit: Brandon Lucia

Today (& Next Time): Virtual Memory

* Basic dimensions of a virtual memory system: paging, protections,
process isolation, address mapping

* Working through operation of a virtual memory system example,
including page fault handling and page table walking

e Start looking at hardware support for virtual memory (TLB)

What is virtualization?

dqy? © | -
\ .
' — ! o

Virtualization - Purpose

* Expose abstraction of abundant resource despite limited resource
* Expose abstraction of uniform resource despite heterogeneity of resource
* Expose abstraction of isolated resource despite sharing of resource

Virtualization — What resources?

e Entire machines (VMMs)
* Storage (Disk controllers / Flash controllers)
* Memory (Virtual Memory)

* Network connectivity / bandwidth (Software-defined Networks)

Memory Virtualization

Virtual Memory — Abstraction of Abundance

OXFFFF

OXFFFF OXFFFF

0x0000 0x0000 0x0000

Process 1 Process 2 Process 3

Virtual Memory — Abstraction of Uniformity

OXFFFF

OXFFFF OXFFFF

0x0000 0x0000 0x0000

Process 1 Process 2 Process 3

Virtual Memory — Abstraction of Isolation*

OXFFFF OXFFFF OXFFFF

0x0000 0x0000

Process 1 Process 2 Process 3

Virtual Memory — Thinking about mechanism

OXFFFF OXFFFF
First obvious problem:
Two processes access same location
sw OXEFFF sw OXEFFF violates isolation abstraction
0x0000 0x0000

Process 1 Process 2

Virtual Memory — Thinking about Mechanism

OXFFFF OXFFFF

First obvious problem:
sw OxXFFFF
Two processes access same location

sw 0x1000 violates isolation abstraction

sw OxEFFF

sw 0x0000
Second obvious problem:

Two processes access #bytes > total memory size
violates abundance abstraction (and isolation)

0x0000 0x0000

Process 1 Process 2

F|rSt Attempt StatIC Pa rtlthﬂIﬂg [Opal, SASQOS, bare-metal micros]

OxFFFF OXFFFF
Statically partitioning the address space
Process 1 violates abundance and uniformity (but not isolation)
stack
Process 2
stack
Process 1
code
Process 2
code
Process 2
heap
Process 2
heap
0x0000 0x0000

Process 1 Process 2

First Attempt: Static Partitioning

OxFFFF OXFFFF
Statically partitioning the address space
Prockess 1 violates abundance and uniformity
stac

Also need to be sure that neither process will go and

Process 2 mess around with the other process’ address ranges
stack
Process 1
code
Process 2
code
Process 2
heap
Process 2
heap

0x0000 0x0000

Process 2
Process 1

“ess 1

First Attempt: Static Partitioning

OXFFFF

0x0000

Process n-1

OXFFFF

0x0000

Process n

Statically partitioning the address space

Need to be sure that neither process will go and mess
around with the other process’ address ranges
(isolation)

Need to use increasingly tiny partitions per process
(abundance)

Need to know where your tiny partition starts so you
can use it (uniformity)

First Attempt: Static Partitioning

OXFFFF OXFFFF

Statically partitioning the address space

Need to be sure that neither process will go and mess
around with the other process’ address ranges
(isolation)

Need to use increasingly tiny partitions per process
(abundance)

Need to know where your tiny partition starts so you
can use it (uniformity).

Machine code can never refer to an address without
knowing mix of other programs running on machine
& where process loaded (uniformity, isolation)

0x0000 0x0000

“ess 1 Process n-1 Process n

Second Attempt: Segmented Memory (3086, IBM AS/400]

Ox7FFF

Process 1 Process 1
Segment O Segment 1
Process 1 Process 1
code code
Process 2 Process 2
heap 0/1 heap
Active Segment
0x0000

Process 1 Process 2

Second Attempt: Segmented Memory

Process 1
stack

Segment 1

Process 1
code

Process 2
0/1 heap

e Segment

Process 2

Segment up the memory address space and switch
segments

Benefit: Limited address size can address more
memory (switch segment, another 16b space).
Abstraction of abundance.

Benefit: Processes can choose a segment and use
predictable addresses off of that segment. Abstraction
of uniformity.

Benefit: If processes use independent segments, no
interference.

Caveat: 8086 & others did not check permissions,
segments could overlap. (isolation, abundance...)

Caveat: need to select segment; how to choose
which? (uniformity)

Second Attempt: Segmented Memory

Abstraction of abundance, uniformity in segment relative
addressing, and the ability to address a very large address
space is a key advantage of segmentation in memory

OXFFFF

Process 1

stack

Segment O Segment 1 Segment 2 Segment 3 Segment 4

Process 1
code
Process 2
heap A
2 16 segs Each segment only needs 16bit addresses, combined
Active Segment with a single 16bit segment reg, have 4GB addressed.
0x0000

Why did they not just use 32bit addresses instead?

Process 1

Virtual Memory: Software Dynamic Address

Translation (and Permission Cweck ng)
OX7FFF T] —] Ox7FFF
Process 1 Process 1
S ><
RS
O
c
Process 1 2 Q Process 1
code é’ = code
(- c | — |
g L =
Process 2 Process 2
heap heap
0x0000 . - L ___] 0x0000
Process 1 Physical Memory Process 2

Virtual Memory: Software Dynamic Address

Trans

Physical Memory

atlo

<

Process

n and Permission Checking

Key ideas behind virtual memory:

1.

2.

Physical memory acts like a cache of data that are
mapped into process address space

Accesses always refer to VAs and VM translates
them to usable physical addresses

Mapping makes a virtual address range accessible
& unmapped regions are inaccessible

Virtual memory happens at granularity of pages
(i.e., 4kB chunks of memory)

Page table entry per page contains: (1) isit in
physical memory? (2) at what address? (3) with
what access permissions?

Virtual Memory: Software Dynamic Address

Trans

Physical Memory

atlo

Process

n and Permission Checking

On every memory access, translate memory address
from virtual address to physical address

Benefit: Arbitrary hierarchy of memories / storage can
back program data Abstraction of abundance.

Benefit: All processes have identical linear virtual
address space that can use predictable addresses

always. Abstraction of uniformity.

Benefit: Per-process address space are private by
default. Abstraction of isolation.

Caveat: need mechanism for mapping data in

Caveat: translation & permissions are dynamic

Caveat: translation granularity (i.e., page size) is a
system-wide parameter

Mapping Data Into Virtual Address Space

Virtual Memory: Mapping Data into Virtual
Address Space

OXFFFFFFFF

Hard Drive /
Backing Storage

0x00000000
4GB of
Physical Memory

64-bit Address

Space
OXFFFFFFFFFFFFFFFF

Define a new operation map(data, size, mode)

Data: ID of file on disk to map into address
space (or “anonymous” for blank memory)
Size: How many bytes in the address space to
map

Mode: Readable, writeable, executable

Semantics of map: Mapped addresses in virtual
address space become accessible and if file-

backed, correspond to file’s data

What does it mean to “become accessible”?

o 0Ox0000000000000000
Process

Virtual Memory: Mapping Data into Virtual
Address Space

OXFFFFFFFF

Hard Drive /
Backing Storage

0x00000000
4GB of
Physical Memory

64-bit Address

Space
OXFFFFFFFFFFFFFFFF

o 0Ox0000000000000000
Process

Define a new operation
map(addr, data, size, mode)

Data: file descriptor to map into address space
(or “anonymous” for just memory)

Size: How many bytes to map

Mode: Readable, writeable, executable

Semantics of map: Mapped addresses in virtual
address space become accessible and if file-
backed, correspond to file’s data

What does it mean to “become accessible”?
executing memory access to address in range is
no longer illegal; corresponds to data, either file
or anonymous buffer

Virtual Memory: Mapping Data into Virtual
Address Space

OXFFFFFFFF

a.out

Hard Drive /
Backing Storage

0x00000000
4GB of
Physical Memory

()

Y4

(®]

O

P

(@)

(7))

c

ie))
=

a ©
(7))

g c

) =

o -

64-bit Address

Space
OXFFFFFFFFFFFFFFFF

0x1000

0x3000

0Ox0000000000000000
Process

int fd; open(/foo/bar/baz/a.out);
Map(0x1000, fd, 7500 Bytes, RWX)

Update translation function
Update permissions entry
Reserve virtual address range
DO NOT move data anywhere

P wnN e

Virtual Memory: Accessing Data Mapped into
the Virtual Address Space

OXFFFFFFFFFFFFFFFF

Access to unmapped region:
1. Attempt to translate address
2. Find unmapped: Segmentation Fault.

OXFFFFFFFF

—O| 0x1000
a.out ®

0x3000

Access to mapped region:

1. Attempt to translate address, find mapped
2. Check permissions

3. Locate data

Permissions Check

Translate

sw 0x2500

Hard Drive /
Backing Storage

0x00000000
4GB of
Physical Memory _— 0x0000000000000000
Process

sw 0x3500

Virtual Memory: Shared Mapping of File-backed
Data into Address Space by Multiple Processes

OXFFFFFFFF

Hard Drive /
Backing Storage

0x00000000
4GB of
Physical Memory

Permissions Check

Translate

OXFFFFFFFFFFFFFFFF

0x1000
Map (0x1000, fd, 7500 Bytes, RX)

0x3000

Map (0x2500, £d, 7500 Bytes,

STILL DO NOT move data!
(shared read mapping)

0x0000000000000000
Process 1

int fd; open(/foo/bar/baz/a.out);

0x2500

int fd; open(/foo/bar/baz/a.out)

0x4500

OXFFFFFFFFFFFFFFFF

RX)

mapped
(a.out)

0x0000000000000000
Process 2

Virtual Memory: Shared Mapping of Anonymous
Data into Address Space by Multiple Processes

OXFFFFFFFF

Permissions Check 0

Hard Drive /
Backing Storage

0x00000000
4GB of

Translate

Physical Memory

OXFFFFFFFFFFFFFFFF OXFFFFFFFFFFFFFFFF

0x1000

int fd = memfd create(/usr/mem, ..)
Map (0x1000, fd, 7500 Bytes, RX)

0x2500

int fd = memfd create (/usr/mem) ;
Map (0x2500, f£d, 7500 Bytes, RX)

0x3000

mapped
(anon)

0x4500

Can share non-file-backed
memory w/ memfd_create;
all refs close? mem disappears

0x0000000000000000
Process 2

0x0000000000000000
Process 1

Page Granularity for Translation (&
Permissions)

Virtual Memory: Translation & Permissions at
Page Granularity

OXFFFFFFFF

a.out

Hard Drive /
Backing Storage

0x00000000
4GB of
Physical Memory

()

Y4

(®]

O

P

@)

v

c

ie))
=

a ©
(7))

g c

) =

o -

OXFFFFFFFFFFFFFFFF

0x0000000000000000
Process

Still not talking about getting actual data yet;
first need to translate (we will talk about how
data moves in a few slides)

Translation happens at page granularity
Pages are usually 27212 = 4096 bytes
Memory access:

1. Look up translation for page virtual address
2. Find & fetch data after translation

Virtual Me

mory: Translation and

Outcome

OXFFFFFFFF

a.out

Hard Drive /
Backing Storage

0x00000000
4GB of
Physical Memory

1: Page Not in Physica

Permissions Check 0

Translate

Virtual Memory

-inding Data

“Translate Virtual
Page Number
0x2000, please!” 0x1000

Memory

OXFFFFFFFFFFFFFFFF

0x2000

lw 0x2500

0x0000000000000000
Process

Virtual Me

mory: Translation and

Outcome

OXFFFFFFFF

a.out

Hard Drive /
Backing Storage

0x00000000
4GB of
Physical Memory

1: Page Not in Physica

VM.
“Mapped, but
not in physical

“““

e®
st
Py
a®
Py
a®
Py
a®
.
e®
st

Permissions Check

Translate

Virtual Memory

-inding Data

“Translate Virtual
Page Number
0x2000, please!” 0x1000

Memory

OXFFFFFFFFFFFFFFFF

0x2000

lw 0x2500

0x0000000000000000
Process

Virtual Me

mory: Translation and

Outcome

a.out

Move page from
disk into memory
on access:
“demand paging”

OXFFFFFFFF

Hard Drive /
Backing Storage

0x00000000
4GB of
Physical Memory

1: Page Not in Physica

VM.
VM:

“Translation updated.
Page in memory for

.
.
.
*

o
.
ot
.
.
.
o
.
.
%
ot
.
.
%
**
.

Permissions Check

Translate

Virtual Memory

“Demand Paging” — bring into physical memory on first access

-inding Data

“Page Fault.
Try again.’

Memory

OXFFFFFFFFFFFFFFFF

0x1000

U

0x2000

lw 0x2500

0x0000000000000000
Process

Virtual Memory: Translation and Finding Data
Outcome #2: Page in Physical Memory

OXFFFFFFFFFFFFFFFF

OXFFFFFFFF “Translate Virtual
Page Number
1” 0x1000
a.out 0x2000, please!
O
0x2000

=
O
Q
<
O
c
.S)
2 o
= c
T ©

Hard Drive / o =

Backing Storage lw 0x2500
0x00000000
4GB of
Physical Memory 1 0x0000000000000000

Virtual Memory Process

Virtual Memory: Translation and Finding Data
Outcome #2: Page in Physical Memory

OXFFFFFFFFFFFFFFFF

OXFFFFFFFF VM: VT'V' ed.
“Virtual 0x2000 . ;aongoa_e '
corresponds to . OXFOOO”—> 0x1000
SHO Physical Page o) * X
Number 0xFO00” ,.-*" 0x2000

""" ~
o** O
o** <))
o*° =
“““ O
o** (%))
* (e

.9 @

2| |=

£ c

gl |

Hard Drive /
Backing Storage Iw 0x2500
0x00000000
4GB of
Physical Memory] L 0x0000000000000000

Virtual Memory Process

Virtual Me
Outcome

mory: Trans
2:PageinP

OXFFFFFFFF

a.out

O0xFO00

Hard Drive /
Backing Storage

0x00000000
4GB of
Physical Memory

Virtual Memory

ation and Finding Data

nysical Memory

Permissions Check Q)

O

Translate

OXFFFFFFFFFFFFFFFF

0x1000

0x2000

0x3000

CPU Memory Unit: lw 0x2500
“Data at physical page MEM:
number 0xFOO0O, Iw OxF500

physical page offset
0x500, please”

0x0000000000000000
Process

Virtual Memory: Translation and Finding Data

Outcome #2: Page in Physical Memory

a.out

OXFFFFFFFFFFFFFFFF

OXFFFFFFFF

@) 0x1000

0x2000 [mblelEe

o
L (a.out)
<))
L=
bt 0x3000
Memory Hierarchy: E o
“Data at OxF500: 21 |z lw 0x2500
<data>" % = MEM:
Hard Drive / - = lw 0xF500

Backing Storage

0x00000000 S
4GB of
Physical Memory

] 0x0000000000000000
Virtual Memory Process

The Translation Function & Its Use

Virtual Memory: The Translation Function
Page Table Stores Translation for Paged-In Data

OXFFFFFFFFFFFFFFFF

Page Table
OxFFFFFFFF
a.out Page
=lE 0x2000 - OxFOOO O
Entry o
O
()
<
o 0x3000
C
ke, @
2 || = sw 0x2500
(%)
= -
ollc
Hard Drive / “ 1~
Backing Storage
0x00000000
4GB of
Physical Memory B 0x0000000000000000
Virtual Memory Process

PPN: Physical Page Number VPN: Virtual Page Number

Virtual Memory: The Translation Function
Page Table Holds Disk Location for Paged-Out Data

OXFFFFFFFFFFFFFFFF
Page Table = [
OXFFFFFFFF
PPN
a.out Page Paged Out
ut:
—»> Table| (0)@1e[0[0) Jowap/a.out O
Entry
-z
(@]
()]
i
o 0x3000
C
.S)
w0 +
2113 sw 0x2500
e c
) =
Hard Drive / i | ke
Backing Storage
0x00000000
4GB of
Physical Memory B) 0x0000000000000000

Virtual Memory Process

Virtual Memory: The Translation Function
Page Table Holds No Entry for Unmapped Data

OXFFFFFFFFFFFFFFFF
Page Table [
OXFFFFFFFF A
PPN S
QS
S 0x1000
a.out Page l Paged Out: 6\- '
Table | 0)@Aee]6 Jowap/a.out O
Entry
=
O
Q
<
O
c
No .g 9
=11 | SegFault sw 0x7522
£ c :
S || | deliveredto
Hard Drive / 117 | program
Backing Storage
0x00000000
4GB of
Physical Memory I 0x0000000000000000

Virtual Memory Process

Physical Memory as a Cache of Data on Disk:
Cache Miss Means Page Fault (1/2)

Page Table
PPN

a.out
Paged Out:
/swap/a.out

OXFFFFFFFF

Hard Drive /
Backing Storage

0x00000000
4GB of
Physical Memory

“Demand Paging” — bring into physical memory on first access

Permissions Check Q)

Translate

Virtual Memory

OXFFFFFFFFFFFFFFFF

0x0000000000000000
Process

sw 0x2522

Physical Memory as a Cache of Data on Disk:
Cache Miss Means Page Fault (2/2)

Page Table
OXFFFFFFFF

Ox1EO0O0O0

a.out

Hard Drive /
Backing Storage

0x00000000
4GB of

Permissio/s Check Q

Physical Memory

OXFFFFFFFFFFFFFFFF

Translat

» sw 0x2522

Virtual Memory Process

Virtual Memory Translation Algorithmically

vmTranslate (vaddr) {
//Compute Virtual Page Number & Virtual Page Offset
//from vaddr assuming 2712 page size
(VPN,VPO) = (vaddr[63:12],vaddr[11:0])
PPN = PT.lookup (VPN)

if PPN == UNMAPPED:
kill (SIGSEGV)
else if PPN == PAGEDOUT(@<diskloc>:
MMU.pageIn (VPN, PPN,<diskloc>) // move diskloc data to
// phys @ PPN, update PTE for VPN
MMU.raiseInterrupt (PAGE FAULT, ..)
//Semantics of interrupt: replay instruction that caused interrupt

//In Lab 3 emulation: page data in, record page fault

else
return PPN //PTE contained usable VPN; hooray! MMU tells CPU the PPN

Permissions Checking

Permissions Checking Happens with Page
Translation (Compare access type to permissions)

OXFFFFFFFFFFFFFFFF

Page Table

OXFFFFFFFF
VPN PPN Perms

a.out

0x2000 Ox1E000 ol
N
O
()
<
O
(%)
S
— 0}
é = N sw 0x2522
C
| Dx1E000 o E Permise:
Hard Drive / Violar Ions
Backing Storage trieda:mn =
O wrij
0x00000000 Read-on,y?’te
4GB of ate
Physical Memory B 0x0000000000000000

Virtual Memory Process

Page Cache Placement / Replacement

Physical Memory as a Cache of Data on Disk:
Cache Placement / Replacement Policy

OxFFFFFFFF
Placement Policy? Where to put a new page?

a.out

Hard Drive /
Backing Storage

0x00000000
4GB of
Physical Memory
Acts as cache for disk

Physical Memory as a Cache of Data on Disk:
Cache Placement / Replacement Policy

Hard Drive /
Backing Storage

OXFFFFFFFF

0x00000000
4GB of
Physical Memory
Acts as cache for disk

Placement Policy:

Fully associative — need flexibility to put any
page anywhere in physical memory via
arbitrary mapping function. Next available
location works fine.

Replacement Policy?

Physical Memory as a Cache of Data on Disk:
Cache Placement / Replacement Policy

a.out

Hard Drive /
Backing Storage

OXFFFFFFFF

0x00000000
4GB of
Physical Memory
Acts as cache for disk

Placement Policy:

Fully associative — need flexibility to put any
page anywhere in physical memory via
arbitrary mapping function. Next available
location works fine.

Replacement Policy?

Physical Memory as a Cache of Data on Disk:
Cache Placement / Replacement Policy

OXFFFFFFFF

Placement Policy:
Fully associative — need flexibility to put any

a.out . . .
- page anywhere in physical memory via
arbitrary mapping function. Next available

location works fine.

Replacement Policy:

Can be complicated...

* Variants of LRU & approximations
* Not Recently Used (like Bit-PLRU)

Hard Drive / * Not Frequently Used
Backing Storage * Re-reference-Distance-Based Policies
0x00000000
4GB of In Lab 3 we handle placement & replacement
Physical Memory so you can focus on translation & mapping

Acts as cache for disk

Page Tables: Another Look at the Translation
-unction

Page Translation and Its Implementation

48-bit Virtual Address (like AMD)
36 bits 12 bits

Page Table

PPN Perms/Flags

Translate

(0)'@A0]0]0] 0x123000

0x3000 Paged Out:

/swap/a.out

36 bits 12 bits
OxFOO00 OxFFFOF000

Page Table Entry — 6 Bytes
PPN Perms/Flags Ox 126F000 0x11212000

36 bits 12 bits

OxFFFFFFF FFOOO 0x45454000 R/ oW
Q: Why can store flags in

lower 12 bits of PTE?

Table stores 236
entries in it for virtual
pages 0x000000000000
up to OxFFFFFFFFFO00
™ which span the entire
48-bit address space.

Implementation
Issues?

Page Translation and Its Implementation

48-bit Virtual Address (like AMD)
36 bits 12 bits

Page Table

PPN Perms/Flags

Translate

0x2000 0x123000
0x3000 Paged Out:

/swap/a.out

36 bits 12 bits
OxFOO00 OxFFFOF000

Page Table Entry — 6 Bytes
PPN Perms/Flags Ox 126F000 0x11212000

36 bits 12 bits

OXFFFFFFF FFO0O 0x45454000 R/ COW

Table stores 236
entries in it for virtual
pages 0x000000000000
up to OxFFFFFFFFFO00

™ which span the entire

48-bit address space.
Dense, linear table
stores 236 * 6B PTEs:
550.8GB of Page Tables

Most PTEs Empty!!!

Hierarchical Page Tables

7 PTAddr
PTAddr

PTAddr

L 2Ag PTES = 219 PTEs PTAddr

Page Table Entry — 6 Bytes

Page Table Addror PPN Perms/Flags AECEISN L 2ng PTES

36 bits 12 bits

= 279 PTEs

Multi-level / hierarchical page tables are enormously more space efficient. If an entire
sub-tree of addresses in hierarchy of tables contain no mapped VAs, then entire tables
not stored anywhere in memory!

Translation Using Hierarchical Page Tables

48-bit Virtual Address

) . a) . a) . I /]) . I) .
9 bifs bits 9 bits 9 bits 12 bits
L1 PTab L2 PTab L3 PTab L4 PTab

Register CR3
Page Table Base

Mapping Using Hierarchical Page Tables

48-bit Virtual Address

L1 PT Offset L2 PT Offset L3 PT Offset L4 PT Offset
9 bits) bits 9 bits 9 bits 12 bits
P | Add P | AddC
ST Add : Initialize PPN to show
paged out.
P | AdC
~ PlAQAd
L1 PTab L2 PTab L3 PTab L4 PTab

Register CR3 \ W
Page Table Base

L1 Table Always Exists Table not allocated? Create & fill entry

(New) Intel 57-bit Virtual, 52-bit Physical, 5-level
Translation Using Hierarchical Page Tables (2019)

57-bit Virtual Address
Reserved LO PT Offset

7 bits 9 bits

Register CR3
Page Table Base

PTAddr

PTAddr

LO PTab

L1 PT Offset

9 bits 9 bits

PTAddr ‘

PTAddr

L1 PTab

L2 PT Offset

PTAddr
PTAddr

L2 PTab

L3 PT Offset L4 PT Offset VPO

9 bits 9 bits 12 bits

/.

PTAddr

L3 PTab L4 PTab

Why not do something with those top 7 bits?

(New) Intel 57-bit Virtual, 52-bit Physical, 5-level
Translation Using Hierarchical Page Tables (2019)

57-bit Virtual Address
Reserved LO PT Offset

7 bits 9 bits

Register CR3
Page Table Base

PTAddr

PTAddr

LO PTab

L1 PT Offset

9 bits

PTAddr

PTAddr

L1 PTab

L2 PT Offset

9 bits

/.

PTAddr
PTAddr

L2 PTab

L3 PT Offset

9

Why not do something with those top 7 bits?
Intel checks that addresses are “canonical”, meaning sign extended to 64 bits & if not, then
SEGFAULT. Allows future architecturs to use 64b addrs if they want to!

Dits

L4 PT Offset VPO
9 bits 12 bits

/.

PTAddr

L3 PTab L4 PTab

What part of the pipeline manipulates the page tables?

Instruction PC+4

Branch Target

L- PC Source Select (1 if branch taken)

WB/Exec Forward

Mem/Exec Forward

PC Source
Select

Instruction
Memory

Branch

Target
Offset

Instruction
PC+4

Reg A pC
g ouome S
RegB N ogic Select

Read
Register

Branch
Target

Control Signals:

Ex Fwd

Op select
op= [+r - X /]

Execute

ALU: output C data

Exec/Exec Forward

B/Mem Fwd
Mem/Mem Fwd

Op.

WB/Mem Forward
|
Output/Read Output/Read
Reg C Data Regfelect

Register

Writeback
Write l Write
Reg C Reg C
Data Select

Register Write-Back

Branch Predictor

Instruction Fetch

Read Regs A & B Data

Write Register C Select

TRead Data C (Ld)

Werite Register C Data

Write Reg C Data

MMU has fast access to memory and TLB for translation

Instruction PC+4

Branch Target

L- PC Source Select (1 if branch taken)

WB/Exec Forward

Mem/Exec Forward

PC Source
Select

Instruction
Memory

Branch

Target
Offset

Instruction
PC+4

Reg A pC
g ouome S
RegB N ogic Select

Read
Register

Branch
Target

Control Signals:

Op select
op= [+r - X /]

Execute

ALU: output C data

Exec/Exec Forward

B/Mem Fwd
Mem/Mem Fwd

Data
Memory

Memory

WB/Mem Forward
|
Output/Read Output/Read
Reg C Data RengeIect

Register
Writeback

Write l Write
Reg C Reg C
Data Select

Register Write-Back

Branch Predictor

Instruction Fetch

Read Regs A & B Data

Write Register C Select

Lead Data C (Ld)

Werite Register C Data

Write Reg C Data

Key idea: page table walk entails extra memory

operations not extra memory instructions

Performance and Storage Overhead Analysis of
Translation with Page Tables

Page Tables Stored in Virtual Memory and
Paged in and out Like Other Data

OXFFFFFFFF

First level page table always in physical memory at address in Register CR3.
Other levels of page table can be paged out to make space for other data.

Register CR3

All paged & page table data moves through cache hierarchy like any other data

I\

Question: How much space overhead to store
hierarchical vs. linear page tables?

Question: How much time overhead to access
hierarchical vs. linear page tables?

0x00000000
4GB of
Physical Memory
Acts as cache for disk

Space Overhead Analysis of Page Tables

4 Levels of Page Tables How much space for tables vs. mapped data? Compared to linear?

8bytes / PTE
(sign extend to
64-bit word size) /l

Space Overhead Analysis of Page Tables

4 Levels of Page Tables

8bytes / PTE
(sign extend to
64-bit word size)

Table Size = Page Size
273 bytes / PTE * 279 PTEs / Table = 212 = 4kB / Table

Pictured Example page tables size:
9 * 4kB = 36kB of page tables

Possible to map every page in last level PT:
4 last level tables exist * 512 entries * 4kB / page =
2723B mappable with just these page tables

Overhead:
36kB / 2723B = 36kB / 2213kB = 0.004x overhead

Linear page tables:
550GB of page tables
With 2723B of data to map, 65565x overhead

Performance Analysis of Page Tables

What is the time cost per memory access to use a
hierarchical page table structure?

/'/}/.‘ sw 0x2000
13.1
N

Performance Analysis of Page Tables

Time Overhead Summary:
Worst: >60-100x overhead

Best:

~2x overhead

What is the time cost per memory access to use a hierarchical
page table structure?

sw 0x2000

Plus four more memory accesses:

* one memory access per page table level

» three of which levels may be swapped out / page fault
* all of which can be a cache miss

Worst case time overhead:

Word at 0x2000 is an L1 cache hit, all page table data except
first level table misses in cache & page faults

1 cycle L1 hit becomes 3 cache misses & 3 page faults (DRAM
~20 cycles) = 60-100 (or more) cycles overhead on 1 cycle L1 hit

Minimum(-ish) Overhead:

Access to word at 0x2000 (L1 miss, say), all page table accesses
hit in cache & no page faults

3 cycle L1 miss becomes 3 cache hits and a cache miss (1 cycle
cache hits) = 3 cycles overhead on 3 cycle L1 miss

Hierarchical Page Tables Trade Time to Save
Space

Time overhead:

From 2x constant time overhead
to a variable overhead that can
be upwards of 100x!

Space Savings:
From 65565x space overhead
to a 0.001x space overhead

Key Insight:
Use microarchitectural support in the form of a Translation
Lookaside Buffer to eliminate the time cost of most translations

Translation Lookaside Buffers: Hardware
Support for Caching Page Address Translations

Translation Lookaside Buffer: Basic Idea (Hit)

Page Table

OXFFFFFFFF

0x2000 Ox1E000

x1E000

0x00000000
4GB of
Physical Memory

Permissions Check o

Translate

Virtual Memory

OXFFFFFFFFFFFFFFFF

TLB: On-core Hardware

Cache of Translations
0x1000

0x2000

0x3000

0x2000 => 0x1EQQD

0x0000000000000000
Process

» sw 0x2522

Translation Lookaside Buffer: Basic Idea (Hit)

OXFFFFFFFFFFFFFFFF

TLB: On-core Hardware

Cache of Translations
0x1000

0x2000 [l
(a.out)

Awesome property of the TLB:

On a TLB Hit, no need to run translation function, access 0x3000
page tables, traverse page table hierarchy, experience a page

fault, access the page table again, and return a translation 0x2000 => 0x1E000

sw 0x2522

Translation stays core-local, extra memory accesses

0x0000000000000000
Process

Translation Lookaside Buffer: Basic |dea

OXFFFFFFFF

TLB
trans

x1E000

0x00000000
4GB of
Physical Memory

VPN

0x2000

Page Table

TLB Miss (4): cache
0x2000 => Ox1EOO00 in TLB

PPN

Ox1EO0O0O0

Permissions Chech

Translate

OXFFFFFFFFFFFFFFFF

0x1000

TLB: Translatio

mapped
(a.out)

0x2000
0x3000

Virtual Memory

0x0000000000000000
Process

sw 0x2522

Translation Lookaside Buffer: Basic Idea (Hit)

OXFFFFFFFFFFFFFFFF

TLB: On-core Hardware

Cache of Translations
0x1000

0x2000 [l

On the next access to same page: OX2000 2o
TLB Hit! Subsequent accesses to TLB Hit: 0x3000
0x2000 => Ox1E000
same page cost of page sw 0x2522

table “walk”

0x0000000000000000
Process

Hardware Support for Virtual Memory:
Translation Lookaside Buffers in Intel Core i7

Processor package

Core x4
Registers Instruction _
T J‘% '
L1 d-cache L1 i-cache L1 d-TLB L1i-TLB i
32 KB, 8-way 32 KB, 8-way 64 entries, 4-way 128 entries, 4-way

L2 unified cache
256 KB, 8-way

L2 unified TLB
512 entries, 4-way

QuickPath interconnect

4 links @ 25.6 GB/s
102.4 GB/s total

L3 unified cache

8 MB, 16-way
(shared by all cores)

The Core i7 memory system.

DDR3 memory controller
3 x 64 bit @ 10.66 GB/s
32 GB/s total (shared by all cores)

Main memory

1> To other
I cores
L To 1/0
i bridge

Separate L1 data & instruction (L1) TLB

MMU / Size? Reach? Why i-TLB larger?

Unified (L2) TLB
512 entries: total size? total reach?

Hardware Support for Virtual Memory:
Translation Lookaside Buffers in Intel Core i7

Processor package

| Core x4 Separate L1 data & instruction (L1) TLB
Registers Instruction " {\/"VlUI . i Size: 64 * 8B = 5123; 128 * 8B = 1024B
T L(a — J‘// Data Reach: 64 * 4kB = 256kB data
L1 d-cache L1 i-cache L1d-TLB L1i-TLB COde ReaCh: 128 * 4kB = 512kB COde
32 KB, 8-way 32 KB, 8-way 64 entries, 4-way 128 entries, 4-way | | !
L2 unified cache L2 unified TLB e~ i
256 KB, 8-way 512 entries, 4-way ;
| Unified (L2) TLB
Cinks @256 GBle N Size: 512 * 8B = 4kB
1024 GB/stotal [L 1o Il Reach: 512 * 4kB = 2721 = 2MB code+data
i bridge
L3 unified cache DDR3 memory controller '
8 MB, 16-way 3 x 64 bit @ 10.66 GB/s |
(shared by all cores) 32 GB/s total (shared by all cores) | ! Awesome Pro pe rty of the TLB:

Main memory

The Core i7 memory system.

With a 3MB-ish working set of data + code, can run
without ever running virtual memory translation

Hardware Support for Virtual Memory:
Translation Lookaside Buffers in Intel Core i7

Processor package

Core x4 Separate L1 data & instruction (L1) TLB
— Instruction MMU Size: 64 * 8B = 512B; 128 * 8B = 1024B
fetch (addr translation)
/ Data Reach: 64 * 4kB = 256kB data
L1 d-cache L1 i-cache L1 d-TLILBj L1i-TLB Code Reach: 128 * 4kB = 512kB code
32 KB, 8-way 32 KB, 8-way 64 entries, 4-way 128 entries, 4-way
L2 unified cache L2 unified TLB |
256 KB, 8-way 512 entries, 4-way A K e
| Unified (L2) TLB
QuickPath interconnect | To other ize:* * =
4 links @ 25.6 GB/s peeres Size: 512 * 8B = 4kB
102.4 GB/s total ~Tol/o Reach: 512 * 4kB = 2/21 = 2MB code+data
i bridge
L3 unified cache DDR3 memory controller
8 MB, 16-way 3 x 64 bit @ 10.66 GB/s
(shared by all cores) 32 GB/s total (shared by all cores)

Main memory

The Core i7 memory system.

Awesome Property of the TLB?
What if my working set is, like, 58GB?
Question: How do we increase TLB Reach?

Revisiting the Assumption of Page Granularity

OXFFFFFFFF

a.out

Hard Drive /
Backing Storage

0x00000000
4GB of
Physical Memory

()
Y4
(®]
O
P
(@)
(7))
c
ie))
=
a ©
(7))
g c
) =
o -

OXFFFFFFFFFFFFFFFF

0x40000000

elep jo §91

0x80000000

0x0000000000000000
Process

What if a page were large
(2MB) or huge (1GB)?

Hardware Support for Virtual Memory:
Translation Lookaside Buffers in Intel Core i7

Processor package

. Instruction Mgy
Registers tetch (addr translation)

Separate L1 data & instruction (L1) TLB
Size: 64 * 8B =512B; 128 * 8B = 1024B

L2 unified cache L2 unified TLB |
256 KB, 8-way 512 entries, 4-way (o

4 links @ 25.6 GB/s

102.4 GB/s total
L3 unified cache DDR3 memory controller
8 MB, 16-way 3 x 64 bit @ 10.66 GB/s
(shared by all cores) 32 GB/s total (shared by all cores)

Main memory

The Core i7 memory system.

Code Reach: 128 * 4kB = 512kB code
Implication of this TLB organization

/ Max Data Reach: 64 * 1GB = 64GB data
L1 d-cache L1 i-cache L1 d-TLB L1i-TLB :
32 KB, 8-way 32 KB, 8-way 64 entries, 4-way 128 entries, 4-way i

\ Unified (L2) TLB
QuickPath interconnect Igrgtsher Size: 512 * 8B = 4kB

L To 0 Max Reach: 512 * 1GB = 512GB code+data

1 bridge

Awesome Property of the TLB!
Huge pages make reach of L1TLB be 64GB!

Increasing Page Size to Increase TLB Reach

OXFFFFFFFFFFFFFFFF Moder Oses support large

OXFFFFFFFF

a.out

Hard Drive /
Backing Storage

0x00000000
4GB of
Physical Memory

Permissions Check

Translate

0x40000000

0x80000000

pages and huge pages via
mmap (& other ways).

IA-64 (Itanium) had 8 page
sizes 4kB — 256 MB

ejep jo goT

Can mix different page sizes
w/ hardware support

round_to_huge page size(n * (T)),

0x0000000000000000

Process

Increasing Page Size to Increase TLB Reach

OXFFFFFFFFFFFFFFFF
“Transparent” huge pages
OXCFEFRFFEE allow the OS to promote a
- —pO | oxa0000000 normal page to HUGE status
a.out
(
S &
Q > madvise(...,)5
b g
c &
2 8 Not guaranteed to Huge-ify.
£l |2 If aligned more likely to be huge
3 C | oxg0000000
a —
Hard Drive / posix_memalign(
Backing Storage alignment,
0x00000000
4GB of
Physical Memory e — 0x0000000000000000

Process

Increasing Page Size to Increase TLB Reach

OXFFFFFFFF

a.out

Hard Drive /
Backing Storage

0x00000000
4GB of
Physical Memory

()
Y4
(®]
O
P
(@)
(7))
c
ie))
=
a ©
(7))
g c
) =
o -

OXFFFFFFFFFFFFFFFF

0x40000000

elep jo §91

0x80000000

0Ox0000000000000000
Process

Risks / Costs of Increasing Page
Size?

Increasing Page Size to Increase TLB Reach

OXFFFFFFFF

a.out

Hard Drive /
Backing Storage

0x00000000
4GB of
Physical Memory

Permissions Check

Translate

OXFFFFFFFFFFFFFFFF

0x40000000

ejep jo goT

0x80000000

0x0000000000000000
Process

Risks / Costs of Increasing Page

Size?

* High cost to page in/out on
page fault (eek!)

 Wasting memory if hugeness
is useless

* Internal page fragmentation

* Need HW to track page sizes

* Potential for programmer
error w/ changing sizes

* High cost to zero a page

Use at your own risk! Try it out!

How Do Virtual Memory and Caching Interact?

Reca

ically separate cache data & tags et indor
O0x01111111111111110000000001Q410011
Way 0 Way 1 Way 2 Way 3 tag bits block

offset

L3$

Cache Tag Array

Reca ‘ : Question: Virtual or Physical Address?

Physically separate cache data & tags \ et index

O0x011111111111111100000000019410011
Way 0 Way 1 Way 2 Way 3 tag bits block
offset

L3$

Cache Tag Array

Physical Cache: Translate First Then Access Cache

Tag bits change with translation b/c

cache uses physical addresses but

L3

Set 2 Set1 Set0

Set3

Physical Address

VPN VPO

Virtual Address 0x01111111111111110000000001010011

PPN PPO

0x01100001111011100001001101010011

Way 0

Way 1

Way 2

tag

S,
Qx /}701
1

Cache Data Array

Translate

Issues with the physical cache approach?

Physica
(PIPT: P

Cache: Translate First Then Access Cache

nysically

Tag bits change with translation b/c

cache uses physical addresses but

PPN PPO

0x01100001111011100001001101010011

L3

Set 2 Set1 Set0

Set3

Physical Address

ndexed, Physically Tagged)

\Y; VPO
Virtual Address 0x01111111111111110000000001010011

tag

S,
Qx /}701
1

Way 0

Way 1

Way 2

Translate

Issues with the physical cache approach?

* Translation is on the L1 critical path!

Cache Data Array

* Even w/ TLB hit, increases L1 hit time
e Limits cycle time & performance

Virtual Cache: Access Cache Then Translate
(VIVT: Virtually Indexed, Virtually Tagged)

Benefits of the virtual cache approach?
* Parallelize cache lookup & translate
Costs of the virtual cache approach?

* Synonyms & homonyms

VPN VPO /—\
Virtual Address 0x01111111111111110000000001010011 E

tag

Way 0 Way 1 Way 2 Way 3 \

| | e | physicaadiress ooy PPO
0x01100001111011100001001101010011

S,
Qx /}701
1

L3

Set0
=
gr—

Set1

Translate

Set2

Set3

Cache Data Array

* To: lower caches & memory

Virtual Caches: The Synonym Problem

Problem: two VAs refer to the same PA. Cached

Process 1: . .
separately, in memory as a single block.

Virtual Address 1 VPN VPO
OXOl\llllll11111111000011100@10010

Process 2:
Virtual Address 1 VPN VPO
0x0J111111111111110000000000110011

/

Way 0 Way 1 Way 2 Way 3

Translate

Physical Address ppp \ PPO
0x01100001111011100001001101010011

* To: lower caches & memory

Cache Data Array Cache Tag Array

Virtual Caches: The Homonym Problem

Problem: Same VA refers to two different PAs. Same

Process 1: block in cache, but distinct in memory.

Virtual Address 1 VPN VPO
OXOﬂ@lllll111111110000011009910011

Process 2:
Virtual Address 2 VPN VPO
0x()4111111111111110000000000110011

/

Way 0 Way 1 | Way 2 Way 3

Translate

Physical Address 1
0x011000011110111000@/001101010011

Physical Address 2

0x0100000011111000001001101010011

* To: lower caches & memory

Cache Data Array Cache Tag Array

Virtually Indexed, Physically Tagged Caches

Use index bits from VPO and
use tag bits from PPN. Overlap
set indexing w/ translation

VPN VPO
Virtual Address O0x01111111111111110000000001010011

S,
r /})O/
S

PPN PPO
Physical Address 0x01100001111011100001001101010011

Way 0 Way 1 Way 2 Way 3

L3

Set0
=
gr—

Set1

il RS i Translate

| -
I — E— — .
| | e — E— For what cache organizations does VIPT work?

Cache Data Array Cache Tag Array

Set2

Set3

Virtually Indexed, Physically Tagged Caches

L3

Set 2 Set1 Set0

Set3

Virtual Address O0x01111111111111110000000001010011

Physical Address

0x01100001111011100001000001010011

Use index bits from VPO and

VPO use tag bits from PPN. Overlap

PPN PPO

set indexing w/ translation

Ky
r /})O/
S e

Way 0

Way 1

Way 2

Way 3

Line

Cache Data Array

o i Translate

Requires #VPO bits > #cache block offset + #cache set
index bits (why?)
* Page size > block size * (cachesize / assoc = #isets)

Cache Tag Array

Virtual Caches vs. Physical Caches

* Virtual Cache: uses virtual address to do cache lookups
* Physical Cache: uses physical address to do cache lookups

e Virtually-Indexed, Physically-Tagged (VIPT): uses virtual set index bits
to do set lookup, uses physical tag bits to do tag comparison

What did we just learn?

* Virtual memory, from the ground up

 Partitioning & segmentation: partial solutions

* Dynamic, software mapping, translation, and permissions checking
* Page tables & hierarchical page tables

e TLBs for accelerating translation

* Caches & VM together

	Slide 1
	Slide 2: Today (& Next Time): Virtual Memory
	Slide 3: What is virtualization?
	Slide 4: Virtualization - Purpose
	Slide 5: Virtualization – What resources?
	Slide 6: Memory Virtualization
	Slide 7: Virtual Memory – Abstraction of Abundance
	Slide 8: Virtual Memory – Abstraction of Uniformity
	Slide 9: Virtual Memory – Abstraction of Isolation*
	Slide 10: Virtual Memory – Thinking about mechanism
	Slide 11: Virtual Memory – Thinking about Mechanism
	Slide 12: First Attempt: Static Partitioning [Opal, SASOS, bare-metal micros]
	Slide 13: First Attempt: Static Partitioning
	Slide 14: First Attempt: Static Partitioning
	Slide 15: First Attempt: Static Partitioning
	Slide 16: Second Attempt: Segmented Memory [8086, IBM AS/400]
	Slide 17: Second Attempt: Segmented Memory
	Slide 18: Second Attempt: Segmented Memory
	Slide 19: Virtual Memory: Software Dynamic Address Translation (and Permission Checking)
	Slide 20: Virtual Memory: Software Dynamic Address Translation and Permission Checking
	Slide 21: Virtual Memory: Software Dynamic Address Translation and Permission Checking
	Slide 22: Mapping Data Into Virtual Address Space
	Slide 23: Virtual Memory: Mapping Data into Virtual
	Slide 24: Virtual Memory: Mapping Data into Virtual
	Slide 25: Virtual Memory: Mapping Data into Virtual
	Slide 26: Virtual Memory: Accessing Data Mapped into the Virtual Address Space 0xFFFFFFFFFFFFFFFF
	Slide 27: Virtual Memory: Shared Mapping of File-backed Data into Address Space by Multiple Processes
	Slide 28: Virtual Memory: Shared Mapping of Anonymous Data into Address Space by Multiple Processes
	Slide 29: Page Granularity for Translation (& Permissions)
	Slide 30: Virtual Memory: Translation & Permissions at Page Granularity 0xFFFFFFFFFFFFFFFF
	Slide 31: Virtual Memory: Translation and Finding Data Outcome #1: Page Not in Physical Memory 0xFFFFFFFFFFFFFFFF
	Slide 32: Virtual Memory: Translation and Finding Data Outcome #1: Page Not in Physical Memory 0xFFFFFFFFFFFFFFFF
	Slide 33: Virtual Memory: Translation and Finding Data Outcome #1: Page Not in Physical Memory 0xFFFFFFFFFFFFFFFF
	Slide 34: Virtual Memory: Translation and Finding Data Outcome #2: Page in Physical Memory 0xFFFFFFFFFFFFFFFF
	Slide 35: Virtual Memory: Translation and Finding Data Outcome #2: Page in Physical Memory 0xFFFFFFFFFFFFFFFF
	Slide 36: Virtual Memory: Translation and Finding Data Outcome #2: Page in Physical Memory 0xFFFFFFFFFFFFFFFF
	Slide 37: Virtual Memory: Translation and Finding Data Outcome #2: Page in Physical Memory 0xFFFFFFFFFFFFFFFF
	Slide 38: The Translation Function & Its Use
	Slide 39: Virtual Memory: The Translation Function Page Table Stores Translation for Paged-In Data 0xFFFFFFFFFFFFFFFF
	Slide 40: Virtual Memory: The Translation Function Page Table Holds Disk Location for Paged-Out Data
	Slide 41: Virtual Memory: The Translation Function Page Table Holds No Entry for Unmapped Data 0xFFFFFFFFFFFFFFFF
	Slide 42: Physical Memory as a Cache of Data on Disk: Cache Miss Means Page Fault (1/2) 0xFFFFFFFFFFFFFFFF
	Slide 43: Physical Memory as a Cache of Data on Disk: Cache Miss Means Page Fault (2/2) 0xFFFFFFFFFFFFFFFF
	Slide 44: Virtual Memory Translation Algorithmically
	Slide 45: Permissions Checking
	Slide 46: Permissions Checking Happens with Page Translation (Compare access type to permissions) 0xFFFFFFFFFFFFFFFF
	Slide 47: Page Cache Placement / Replacement
	Slide 48: Physical Memory as a Cache of Data on Disk: Cache Placement / Replacement Policy
	Slide 49: Physical Memory as a Cache of Data on Disk: Cache Placement / Replacement Policy
	Slide 50: Physical Memory as a Cache of Data on Disk: Cache Placement / Replacement Policy
	Slide 51: Physical Memory as a Cache of Data on Disk: Cache Placement / Replacement Policy
	Slide 52: Page Tables: Another Look at the Translation Function
	Slide 53: Page Translation and Its Implementation
	Slide 54: Page Translation and Its Implementation
	Slide 55: Hierarchical Page Tables
	Slide 56: Translation Using Hierarchical Page Tables
	Slide 57: Mapping Using Hierarchical Page Tables
	Slide 58: (New) Intel 57-bit Virtual, 52-bit Physical, 5-level Translation Using Hierarchical Page Tables (2019)
	Slide 59: (New) Intel 57-bit Virtual, 52-bit Physical, 5-level Translation Using Hierarchical Page Tables (2019)
	Slide 60: What part of the pipeline manipulates the page tables?
	Slide 61: MMU has fast access to memory and TLB for translation
	Slide 62: Performance and Storage Overhead Analysis of Translation with Page Tables
	Slide 63: Page Tables Stored in Virtual Memory and Paged in and out Like Other Data
	Slide 64: Space Overhead Analysis of Page Tables
	Slide 65: Space Overhead Analysis of Page Tables
	Slide 66: Performance Analysis of Page Tables
	Slide 67: Performance Analysis of Page Tables
	Slide 68: Hierarchical Page Tables Trade Time to Save Space
	Slide 69: Translation Lookaside Buffers: Hardware Support for Caching Page Address Translations
	Slide 70: Translation Lookaside Buffer: Basic Idea (Hit)
	Slide 71: Translation Lookaside Buffer: Basic Idea (Hit)
	Slide 72: Translation Lookaside Buffer: Basic Idea
	Slide 73: Translation Lookaside Buffer: Basic Idea (Hit)
	Slide 74: Hardware Support for Virtual Memory: Translation Lookaside Buffers in Intel Core i7
	Slide 75: Hardware Support for Virtual Memory: Translation Lookaside Buffers in Intel Core i7
	Slide 76: Hardware Support for Virtual Memory: Translation Lookaside Buffers in Intel Core i7
	Slide 77: Revisiting the Assumption of Page Granularity
	Slide 78: Hardware Support for Virtual Memory: Translation Lookaside Buffers in Intel Core i7
	Slide 79: Increasing Page Size to Increase TLB Reach
	Slide 80: Increasing Page Size to Increase TLB Reach
	Slide 81: Increasing Page Size to Increase TLB Reach
	Slide 82: Increasing Page Size to Increase TLB Reach
	Slide 83: How Do Virtual Memory and Caching Interact?
	Slide 84: Recall: Physically separate cache data & tags
	Slide 85: Recall:
	Slide 86: Physical Cache: Translate First Then Access Cache
	Slide 87: Physical Cache: Translate First Then Access Cache (PIPT: Physically Indexed, Physically Tagged)
	Slide 88: Virtual Cache: Access Cache Then Translate (VIVT: Virtually Indexed, Virtually Tagged)
	Slide 89: Virtual Caches: The Synonym Problem
	Slide 90: Virtual Caches: The Homonym Problem
	Slide 91: Virtually Indexed, Physically Tagged Caches
	Slide 92: Virtually Indexed, Physically Tagged Caches
	Slide 93: Virtual Caches vs. Physical Caches
	Slide 94: What did we just learn?

