18-344: Computer Systems and the Hardware-Software Interface Fai 2025

; : FergT
: s s ST FEhEE . S—
™ MR
o FEN 3

Gourse I]BSC”D"U" Lecture 12: On-Chip Interconnect

This course covers the design and implementation of computer systems from the perspective of the
hardware software interface. The purpose of this course is for students to understand the
relationship between the operating system, software, and computer architecture. Students that
complete the course will have learned operating system fundamentals, computer architecture
fundamentals, compilation to hardware abstractions, and how software actually executes from the
perspective of the hardware software/boundary. The course will focus especially on understanding
the relationships between software and hardware, and how those relationships influence the design
of a computer system's software and hardware. The course will convey these topics through a series
of practical, implementation-oriented lab assignments.

Credit: Lightly updated from Phillip Gibbons and Omar Multu, 15-740-F18

On-chip Interconnect

On-chip interconnect in a multicore

Shared Memory
Shared I&hared
Memo emo
Shared Contro Contro
Interconnect
\
\
s 4
=} &
- -
o o
o
M
\§ =
o)
] =
s 3 T
< I Y
Shared
Storage
Shared Shared
Memory Memory
Control Control
Shared Memory

Where is interconnect used?

To connect components

Processor-to-processor
Processor-to-cache
Cache-to-cache
Cache-to-memory
|/O-to-memory

Etc.

Why is interconnect important?

Affects scalability of the system
> How large a system can you build?
> How easily can you add more processors/caches?

Affects performance & energy efficiency
o How fast can processors, caches, memories communicate? (longer than cache access)
> How much energy is spent on communication? (10-35%)

Interconnect basics

Topology
> How switches are wired to each other
o Affects routing, reliability, throughput, latency, cost

Routing (algorithm)
> How does a message get from source to destination?

o Static vs adaptive

Buffering and flow control
o What do we store within the network? (Packets, headers, ...?)
> How do we throttle when oversubscribed?
o Tightly coupled with routing

Interconnect topologies

Bus (simplest)

Point-to-point (ideal and most costly)
Crossbar (less costly)

Ring

Mesh

Tree

Omega

Hypercube

Torus

Butterfly

Interconnect metrics

Cost (area)

Latency (hops, cycles, nanoseconds)
Contention

Energy

Bandwidth (“bisection” b/w)

End-to-end system performance

Bus

+ Simple

+ Cost-effective for small number of nodes

+ Easy to implement coherence (global broadcast)
- Poor scalability (electrical limitations)

- High contention

‘ Core \ ‘ Core \ ‘ Core \ ‘ Core \

Point-to-point

Every node connected directly to every other

+ Lowest contention
+ Lowest latency (maybe—wire length, wasted area)

+ Ideal except for cost

Core Core
- Highest cost Core Core

> O(N?) links

- Not scalable

- Physical layout??

Crossbar

Every node connected to every other, but only one at a time

Concurrent communication to different destinations

Good with few nodes

+ Low latency & high throughput

- Expensive

- Doesn’t scale -- O (N?) switches

Used in many designs (e.g., Sun UltraSPARC T1)

- Difficult to arbitrate with many nodes -

Buffered crossbar

+ Simpler arbitration & scheduling | il (M

‘ >

+ Efficient support for variable sized %
packets o
- Requires O(N?) buffers (| = >
>

Can we scale the interconnect : .

without contention?

iBufferI!d;s (o8
 Crossbar

Multistage networks

Idea: log N switches between nodes

+ Cost O(N'logN)

Each switch is a 2x2 crossbar
Many variations (Omega, Butterfly, Benes, Banyan, ...) /

000 000
001 001
010 010
011 011
100 100
101 101
110 110
111 111

CONTENTION!

Handling contention

Two packets try to use same link at the same time

Core Core Core Core

What do you do?

o Buffer one

o Drop one

o Misroute one (deflection)

Let’s assume buffering for now

Ring

Unidirectional or bidirectional

Core Core Core Core

+ Cheap O(N) switches

+ Simple switches =2 Low hop latency
- High latency O(N)

- Not scalable; bisection bandwidth is constant

Used in many commercial systems today; Core Core Core Core
recently Intel switched to “ring of rings”
topology

Scalable Ring On-die Interconnect

e Ring-based interconnect between Cores, Graphics, Last

Level Cache (LLC) and System Agent domain
e Composed of 4 rings

- 32 Byte Data ring, Request ring, Acknowledge
ring and Snoop ring

- Fully pipelined at core frequency/voltage:
bandwidth, latency and power scale with cores

e Massive ring wire routing runs over the LLC
with no area impact

e Access on ring always picks the shortest
path - minimize latency

e Distributed arbitration, sophisticated ring
protocol to handle coherency, ordering, and
core interface

e Scalable to servers with large number of
processors

High Bandwidth, Low Latency, Modular

IDF2010

Credit: https://www.anandtech.com/show/3922/intels-sandy-bridge-architecture-exposed/4

2D Mesh

+ O(N) cost
+ O(+/N) average latency

+ Natural physical layout

+ Path diversity: Many routes between most sources & destinations
o Potentially lower contention

+ Decent bisection bandwidth
- More complex routers =» Higher hop latency

Used in Tilera 100-core chip & most research prototypes

Intel Xeon Phi / Skylake Server

« Vertical and
horizontal half
rings

* Route first
vertically, then
horizontally

* Return path may
be different

Credit: https://en.wikichip.org/wiki/intel/mesh_interconnect_architecture

Tilera Pro Mesh Interconnect

{?

ﬁ

s i

j}I PCle 0

UART,
? JTAG,

I2C, SPI

g

ol
j}Flei:c(inle |¢3 =

J)I PCle 1

DDR2 Controller 0 DDR2 Controller 1
1 [&
" - " .] - .

C:> i |

() xauio I}t
=

DDR2 Controller 3

DDR2 Controller 2

g4 L0 L

L5

4L

Credit: https://en.wikipedia.org/wiki/TILEPro64

Trees

Planar, hierarchical topology
+ O(log N) latency

+ O(N) cost

+ Easy to layout

- Root is bottleneck; constant bisection bandwidth

Trees common for local communication; e.g., banks of single cache

Bisection bandwidth mitigated by “fat trees”, at add’|l cost
o |dea: Make bandwidth at the top “fatter”
o |dea: Replicate root node, randomize routing (Used in Thinking Machines CM-5 circa 1991)

Flow control methods

Circuit switching

Packet switching
> Store and forward

° Virtual cut-through
> Wormhole

Circuit switching

Pre-allocate resources across multiple switches

Requires “probe” ahead of message

+ No need for buffering

+ No contention (after circuit established)
+ Handles arbitrary message sizes

- Low link utilization

- Delay to set up circuit

Store and forward

Copy entire packet between switches

+ Simple
- High per-packet latency

- Requires big buffers / small messages

Virtual cut-through

Start forwarding as soon as header is received

+ Dramatic reduction in latency vs store and forward

- Still buffers entire message in worst case: requires large buffers / small messages

Wormhole

Break packets into much smaller “flits”
Pipeline delivery: Each flit (“flow control digit”) follows its predecessor through network

If head is blocked, rest of packet waits in earlier switches

+ No large buffering in network
+ Latency independent of distance for large messages

- Head-of-line blocking

Wormhole

Source

Busy Link Busy Link

One Packet

Busy Link

Destination

Credit: 15-418, Spring 2023, Lecture 14

Routing algorithms

Deterministic: Simplest, high contention
o Dimension-order (e.g., XY)
o Deadlock-free

Oblivious: Simple, mitigates contention
o Valiant’s algorithm: Route deterministically via a random node
o Balances network load, adds latency
o Optimization: Use only at high load

Adaptive: Complex, most efficient
o Minimal adaptive: Always route closer to destination on least-contended port

o Fully adaptive: “Misroute” packets to optimize overall network load

o Must guard against livelock
o How to coordinate overall network state?

	Slide 1
	Slide 2: On-chip Interconnect
	Slide 3: On-chip interconnect in a multicore
	Slide 4: Where is interconnect used?
	Slide 5: Why is interconnect important?
	Slide 6: Interconnect basics
	Slide 7: Interconnect topologies
	Slide 8: Interconnect metrics
	Slide 9: Bus
	Slide 10: Point-to-point
	Slide 11: Crossbar
	Slide 12: Buffered crossbar
	Slide 13: Multistage networks
	Slide 14: Handling contention
	Slide 15: Ring
	Slide 16
	Slide 17: 2D Mesh
	Slide 18: Intel Xeon Phi / Skylake Server
	Slide 19: Tilera Pro Mesh Interconnect
	Slide 20: Trees
	Slide 21: Flow control methods
	Slide 22: Circuit switching
	Slide 23: Store and forward
	Slide 24: Virtual cut-through
	Slide 25: Wormhole
	Slide 26: Wormhole
	Slide 27: Routing algorithms

