
Fall 2025

Lecture 12: On-Chip Interconnect

Credit: Lightly updated from Phillip Gibbons and Omar Multu, 15-740-F18

On-chip Interconnect

On-chip interconnect in a multicore

Where is interconnect used?
To connect components

Processor-to-processor

Processor-to-cache

Cache-to-cache

Cache-to-memory

I/O-to-memory

Etc.

Why is interconnect important?
Affects scalability of the system
◦ How large a system can you build?

◦ How easily can you add more processors/caches?

Affects performance & energy efficiency
◦ How fast can processors, caches, memories communicate? (longer than cache access)

◦ How much energy is spent on communication? (10-35%)

Interconnect basics
Topology
◦ How switches are wired to each other

◦ Affects routing, reliability, throughput, latency, cost

Routing (algorithm)
◦ How does a message get from source to destination?

◦ Static vs adaptive

Buffering and flow control
◦ What do we store within the network? (Packets, headers, …?)

◦ How do we throttle when oversubscribed?

◦ Tightly coupled with routing

Interconnect topologies
Bus (simplest)

Point-to-point (ideal and most costly)

Crossbar (less costly)

Ring

Mesh

Tree

Omega

Hypercube

Torus

Butterfly

…

Interconnect metrics
Cost (area)

Latency (hops, cycles, nanoseconds)

Contention

Energy

Bandwidth (“bisection” b/w)

End-to-end system performance

Bus
+ Simple

+ Cost-effective for small number of nodes

+ Easy to implement coherence (global broadcast)

- Poor scalability (electrical limitations)

- High contention

LLC

Core

LLC

Core

LLC

Core

LLC

Core

Point-to-point
Every node connected directly to every other

+ Lowest contention

+ Lowest latency (maybe—wire length, wasted area)

+ Ideal except for cost

- Highest cost
◦ 𝑂(𝑁2) links

- Not scalable

- Physical layout??

LLC

Core

LLC

Core

LLC

Core

LLC

Core

Crossbar
Every node connected to every other, but only one at a time

Concurrent communication to different destinations

Good with few nodes

+ Low latency & high throughput

- Expensive

- Doesn’t scale -- 𝑂 𝑁2 switches

- Difficult to arbitrate with many nodes

Used in many designs (e.g., Sun UltraSPARC T1)

Buffered crossbar
+ Simpler arbitration & scheduling

+ Efficient support for variable sized
packets

- Requires 𝑂(𝑁2) buffers

Can we scale the interconnect
without contention?

Multistage networks
Idea: log 𝑁 switches between nodes

+ Cost 𝑂 𝑁 log 𝑁

Many variations (Omega, Butterfly, Benes, Banyan, …)

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

CONTENTION!

Each switch is a 2x2 crossbar

Handling contention
Two packets try to use same link at the same time

What do you do?
◦ Buffer one

◦ Drop one

◦ Misroute one (deflection)

Let’s assume buffering for now

LLC

Core

LLC

Core

LLC

Core

LLC

Core

Ring
Unidirectional or bidirectional

+ Cheap 𝑂(𝑁) switches

+ Simple switches ➔ Low hop latency

- High latency 𝑂(𝑁)

- Not scalable; bisection bandwidth is constant

Used in many commercial systems today;
recently Intel switched to “ring of rings”
topology

LLC

Core

LLC

Core

LLC

Core

LLC

Core

LLC

Core

LLC

Core

LLC

Core

LLC

Core

Credit: https://www.anandtech.com/show/3922/intels-sandy-bridge-architecture-exposed/4

2D Mesh
+ 𝑂(𝑁) cost

+ 𝑂(𝑁) average latency

+ Natural physical layout

+ Path diversity: Many routes between most sources & destinations
◦ Potentially lower contention

+ Decent bisection bandwidth

- More complex routers ➔ Higher hop latency

Used in Tilera 100-core chip & most research prototypes

Intel Xeon Phi / Skylake Server

• Vertical and

horizontal half

rings

• Route first

vertically, then

horizontally

• Return path may

be different

Credit: https://en.wikichip.org/wiki/intel/mesh_interconnect_architecture

Tilera Pro Mesh Interconnect

Credit: https://en.wikipedia.org/wiki/TILEPro64

Trees
Planar, hierarchical topology

+ 𝑂(log 𝑁) latency

+ 𝑂(𝑁) cost

+ Easy to layout

- Root is bottleneck; constant bisection bandwidth

Trees common for local communication; e.g., banks of single cache

Bisection bandwidth mitigated by “fat trees”, at add’l cost
◦ Idea: Make bandwidth at the top “fatter”

◦ Idea: Replicate root node, randomize routing (Used in Thinking Machines CM-5 circa 1991)

Flow control methods
Circuit switching

Packet switching
◦ Store and forward

◦ Virtual cut-through

◦ Wormhole

Circuit switching
Pre-allocate resources across multiple switches

Requires “probe” ahead of message

+ No need for buffering

+ No contention (after circuit established)

+ Handles arbitrary message sizes

- Low link utilization

- Delay to set up circuit

Store and forward
Copy entire packet between switches

+ Simple

- High per-packet latency

- Requires big buffers / small messages

Virtual cut-through
Start forwarding as soon as header is received

+ Dramatic reduction in latency vs store and forward

- Still buffers entire message in worst case: requires large buffers / small messages

Wormhole
Break packets into much smaller “flits”

Pipeline delivery: Each flit (“flow control digit”) follows its predecessor through network

If head is blocked, rest of packet waits in earlier switches

+ No large buffering in network

+ Latency independent of distance for large messages

- Head-of-line blocking

Wormhole

Credit: 15-418, Spring 2023, Lecture 14

Routing algorithms
Deterministic: Simplest, high contention
◦ Dimension-order (e.g., XY)
◦ Deadlock-free

Oblivious: Simple, mitigates contention
◦ Valiant’s algorithm: Route deterministically via a random node
◦ Balances network load, adds latency
◦ Optimization: Use only at high load

Adaptive: Complex, most efficient
◦ Minimal adaptive: Always route closer to destination on least-contended port
◦ Fully adaptive: “Misroute” packets to optimize overall network load

◦ Must guard against livelock
◦ How to coordinate overall network state?

	Slide 1
	Slide 2: On-chip Interconnect
	Slide 3: On-chip interconnect in a multicore
	Slide 4: Where is interconnect used?
	Slide 5: Why is interconnect important?
	Slide 6: Interconnect basics
	Slide 7: Interconnect topologies
	Slide 8: Interconnect metrics
	Slide 9: Bus
	Slide 10: Point-to-point
	Slide 11: Crossbar
	Slide 12: Buffered crossbar
	Slide 13: Multistage networks
	Slide 14: Handling contention
	Slide 15: Ring
	Slide 16
	Slide 17: 2D Mesh
	Slide 18: Intel Xeon Phi / Skylake Server
	Slide 19: Tilera Pro Mesh Interconnect
	Slide 20: Trees
	Slide 21: Flow control methods
	Slide 22: Circuit switching
	Slide 23: Store and forward
	Slide 24: Virtual cut-through
	Slide 25: Wormhole
	Slide 26: Wormhole
	Slide 27: Routing algorithms

