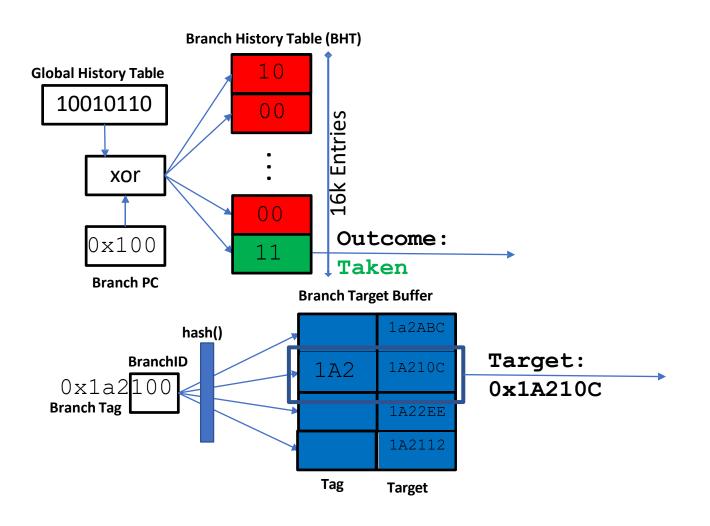
18-344: Computer Systems and the Hardware-Software Interface Fall 2025

Course Description

Lecture 11: Design Space Exploration

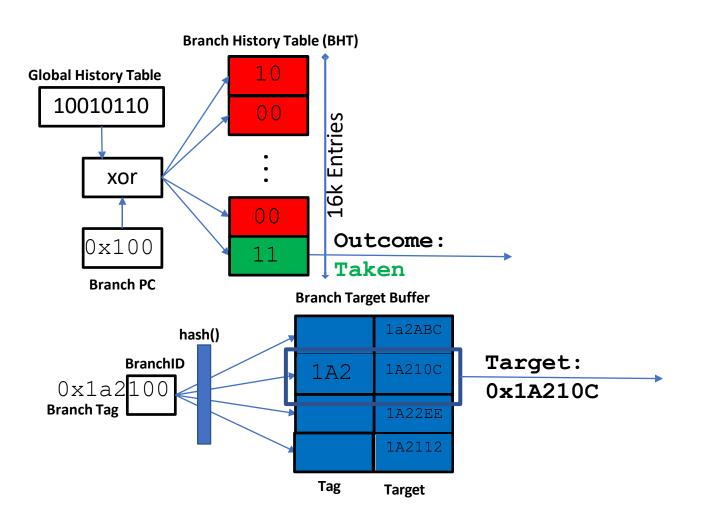
This course covers the design and implementation of computer systems from the perspective of the hardware software interface. The purpose of this course is for students to understand the relationship between the operating system, software, and computer architecture. Students that complete the course will have learned operating system fundamentals, computer architecture fundamentals, compilation to hardware abstractions, and how software actually executes from the perspective of the hardware software/boundary. The course will focus especially on understanding the relationships between software and hardware, and how those relationships influence the design of a computer system's software and hardware. The course will convey these topics through a series of practical, implementation-oriented lab assignments.

Credit: Brandon Lucia


Today: Design Space Exploration

- Defining the design space of a hardware or software system
- Pareto Frontiers and optimizing within a design space
- Applied Performance Evaluation
 - Finding the best performing design under constraints

Defining a design space


- A design space is a set of possible incarnations of a system
- A design space is defined over a set of parameters
- A point in the design space is a concrete system with a concrete value for each of the design space's parameters
- Design spaces exist to allow systematic exploration of a collection of possible designs, like architectures.

Example: Branch Predictor Design Space

What are the parameters / dimensions of this branch predictor's design?

Example: Branch Predictor Design Space

GHT size BHT # entries GHT/PC hash func BHT entry size BranchID hash BTB # entries BTB assoc

These parameters are the dimensions of a design space vector

GHT size

BHT # entries

GHT/PC hash func

BHT entry size

BranchID hash

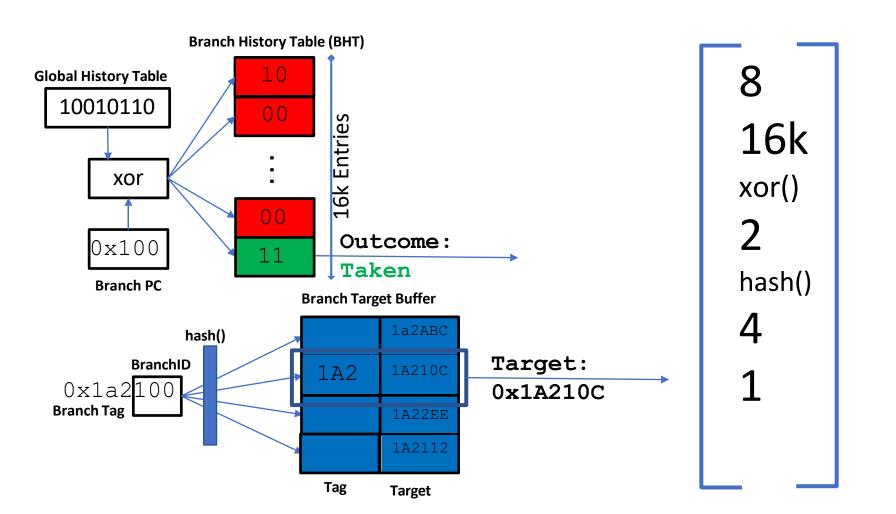
BTB # entries

BTB assoc

Sg

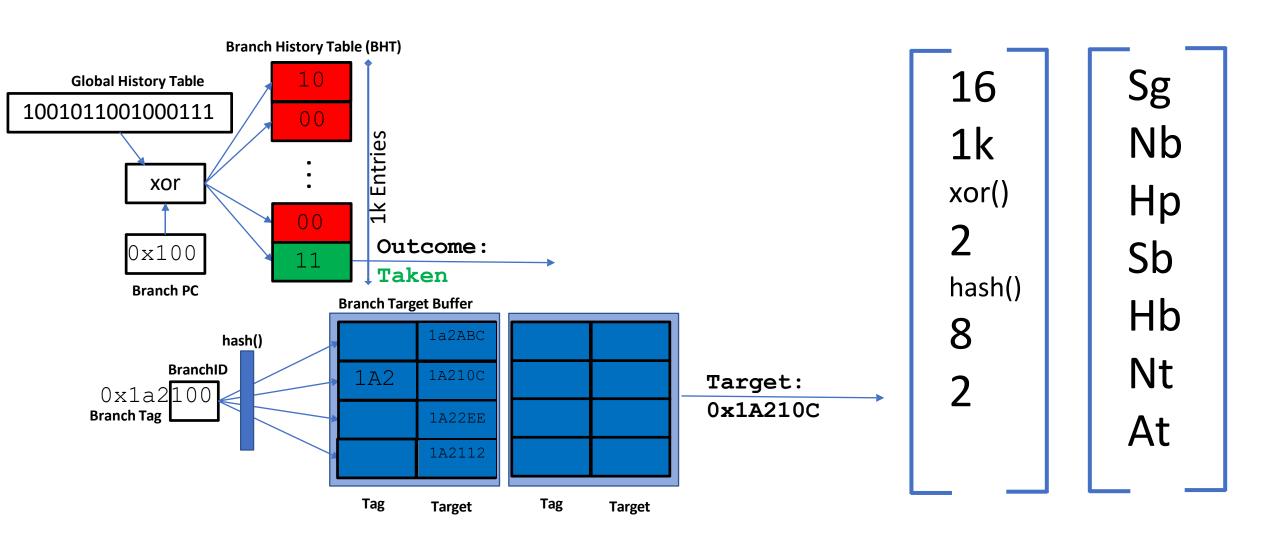
Nb

Hp

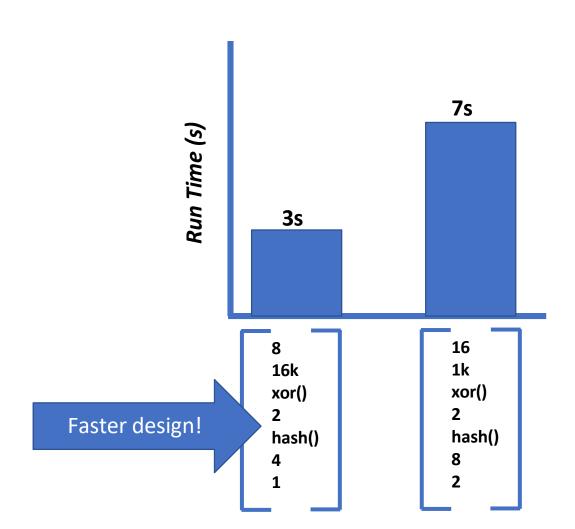

Sb

Hb

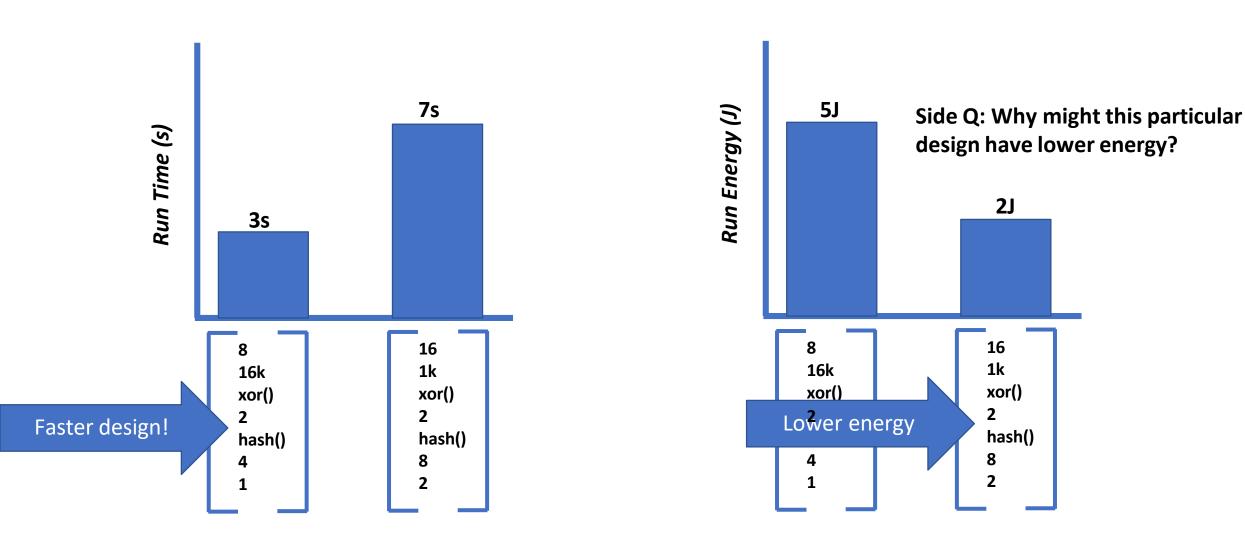
Nt

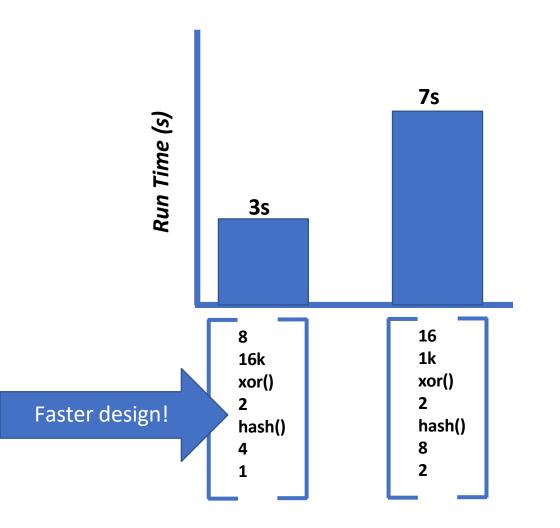

At

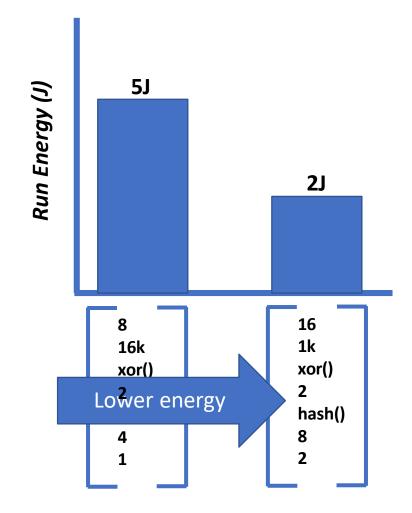
Example: Branch Predictor Design Space



Sg Nb Hp Sb Hb Nt At


Example: Branch Predictor Design Space

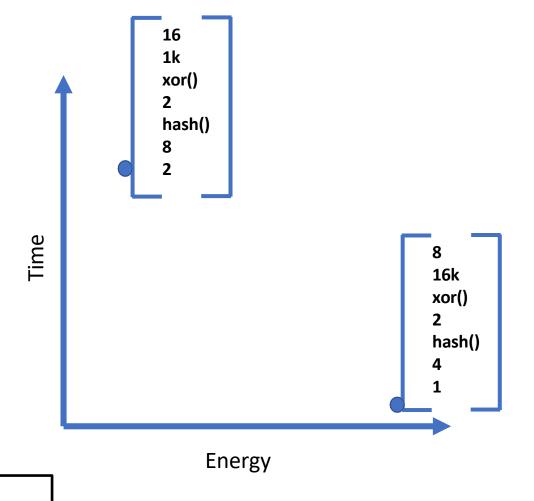

Can find a good design by measuring points in the design space



Can find a good design by measuring points in the design space

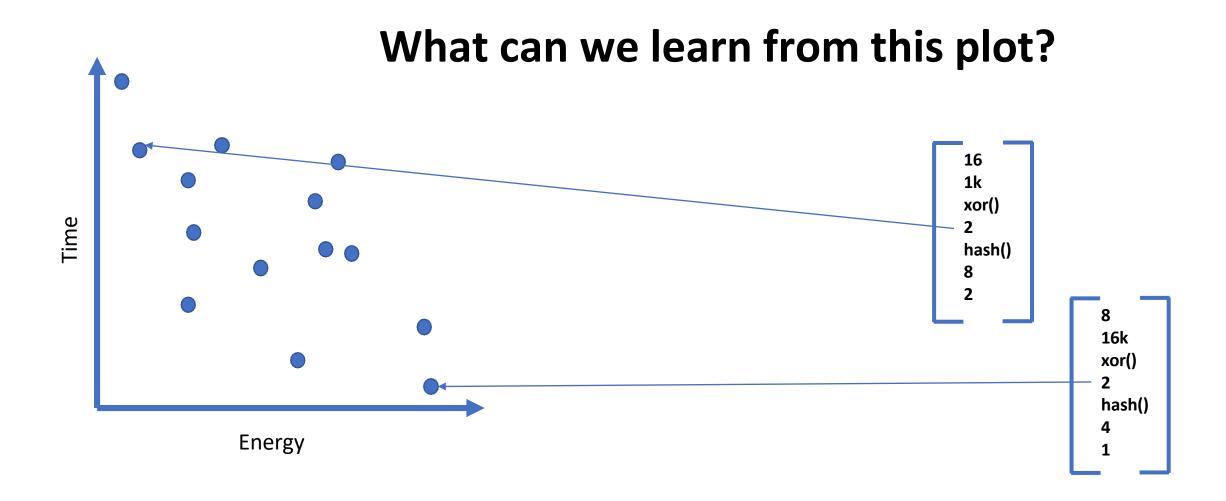
Is one of these better?

Plotting the design space: Geometric view of design dimensions 16k xor() hash() Nb 16 1k xor() Нр hash() Sb Nb Hb Nt At Nt

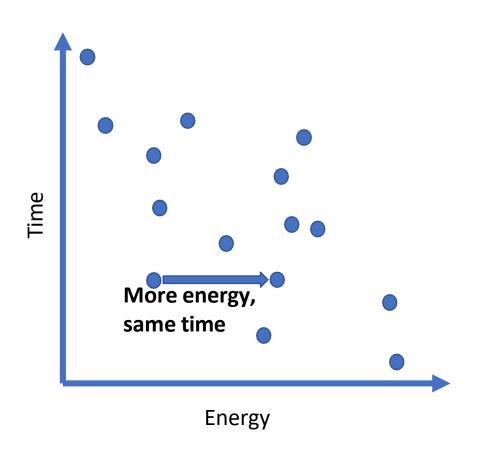

Plotting the design space: Geometric view of design dimensions 16k xor() hash() Sg Nb 16 1k xor() Нр hash() Sb Nb Hb Nt At Nt Limited medium: too many dimensions to render visually Limited interpretability: what does position mean?

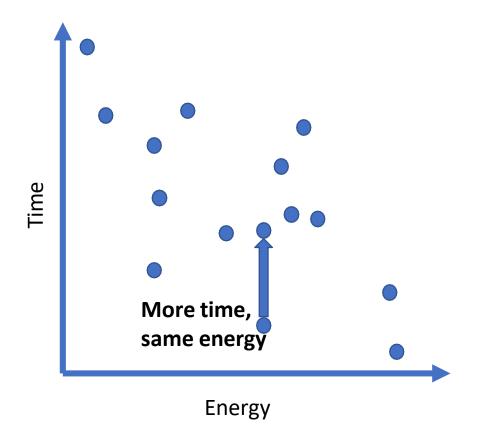
Can be helpful for clustering designs if non-obvious

Plotting the design space: Geometric view of figures of merit

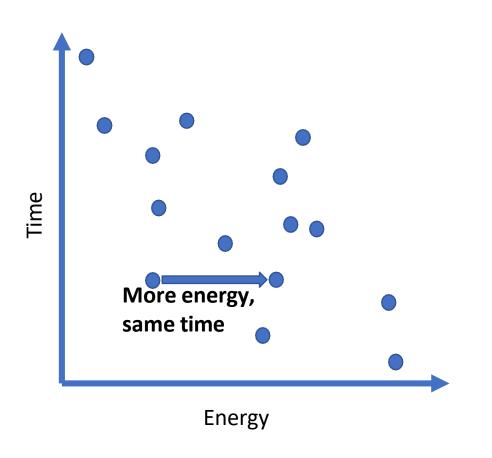


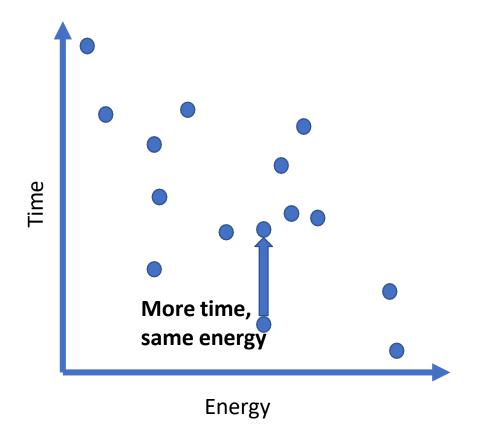
Simple medium: can easily render multiple FoMs & designs Limited view of designs: points do not show design info Benefit: allows comparing designs in multiple dimensions

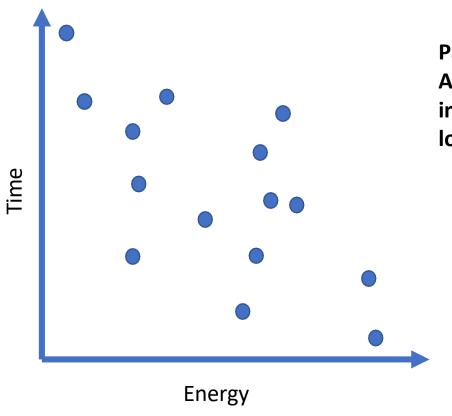



FoM = "Feature of Merit", i.e. an attribute we care about.

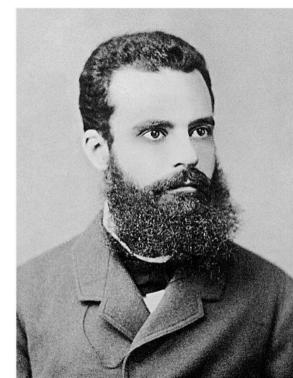
Plotting many designs to study a tradeoff

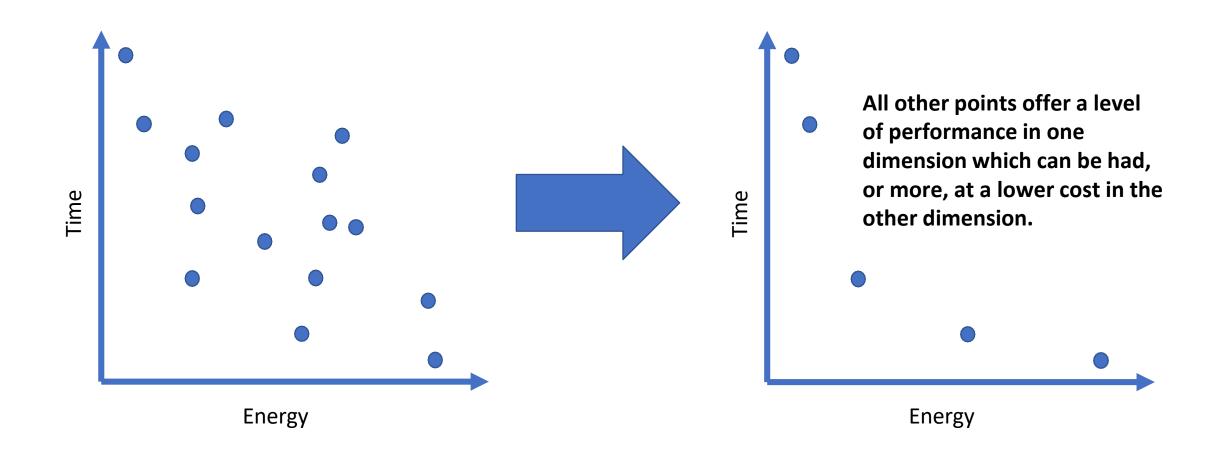



Plotting many designs to study a tradeoff



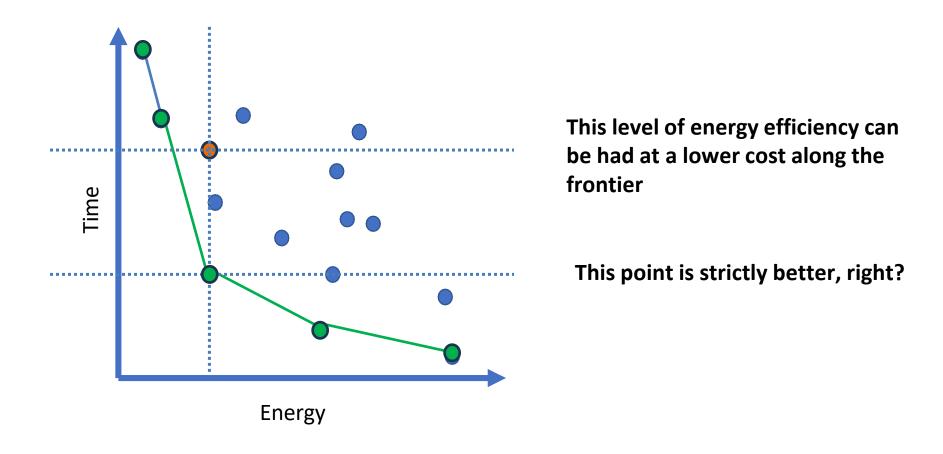
Which points in this plot are optimal?


Pareto Optimality of Design Alternatives

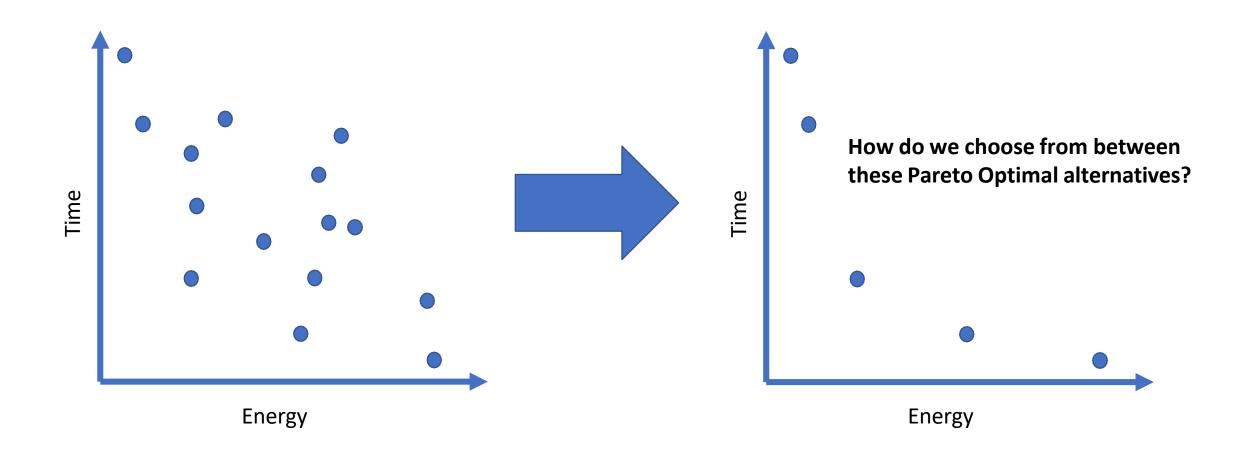

Pareto Optimality:

A design is optimal if no change leads to improvement in one dimension without a loss in at least one other dimension

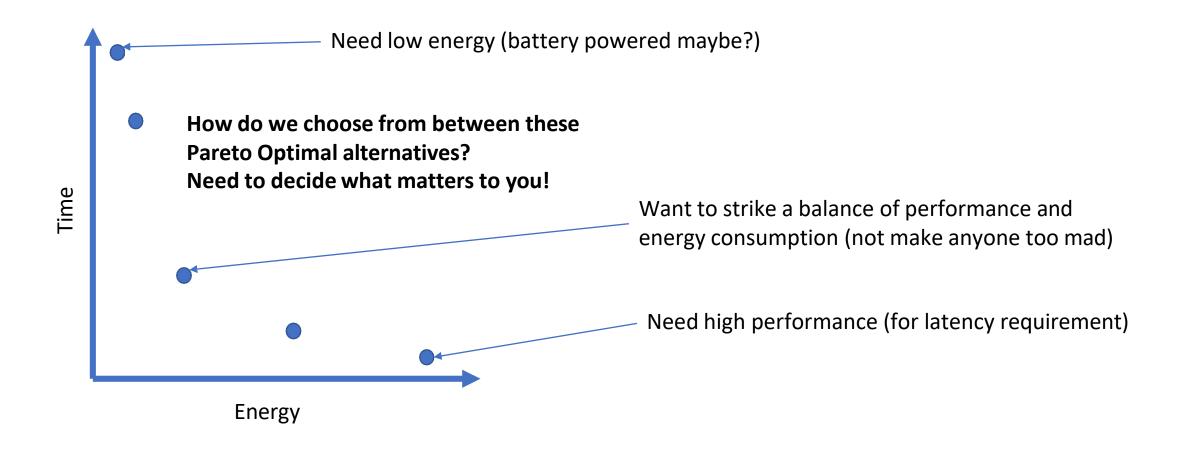
Vilfredo Pareto



Pareto Optimality of Design Alternatives

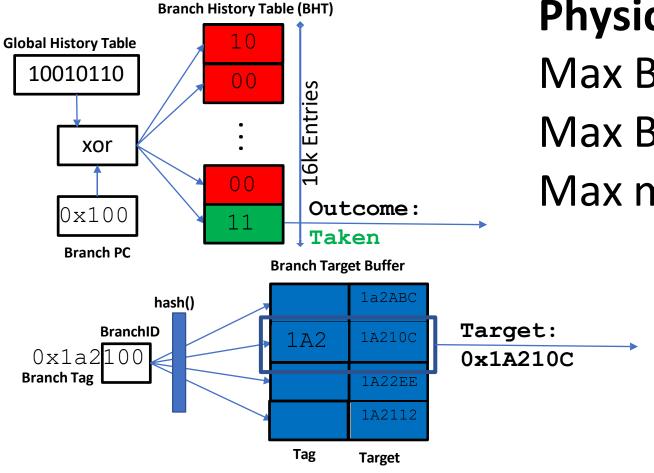


Design Consequence of Pareto Optimality


Never select designs other than at the frontier, at least without motivation outside of plot. Any design anywhere other than at the frontier can achieve the same or better performance at a lower cost w.r.t. the plotted dimensions.

Design Consequence of Pareto Optimality

Worthwhile Options Are Along the Pareto Frontier


Design Space Exploration

- Applied Performance Evaluation to find the best feasible system
 - Define a system's important design parameters
 - Define a system's figure(s) of merit
 - Define a set of constraints on the feasibility of a binding of design parameters
 - Choose a feasible parameter setting and measure its merit
 - Iterate until satisfied:
 - If this system is better than the last one, keep it. If worse, discard it.
 - Choose a parameter and change it

Design Space Exploration

- Applied Performance Evaluation to find the best feasible system
 - Define a system's important design parameters
 - Define a system's figure(s) of merit
 - Define a set of constraints on the feasibility of a binding of design parameters
 - Choose a feasible parameter setting and measure its merit
 - Iterate until satisfied:
 - If this system is better than the last one, keep it. If worse, discard it.
 - Choose a parameter and change it

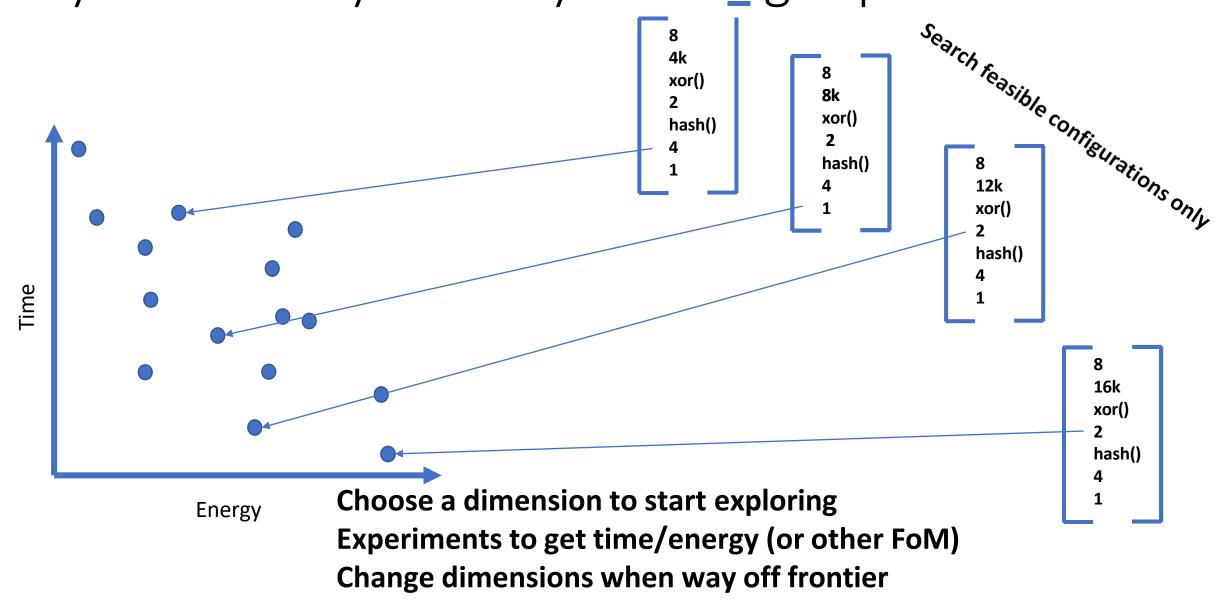
Constraining your design space

Physical design constraints

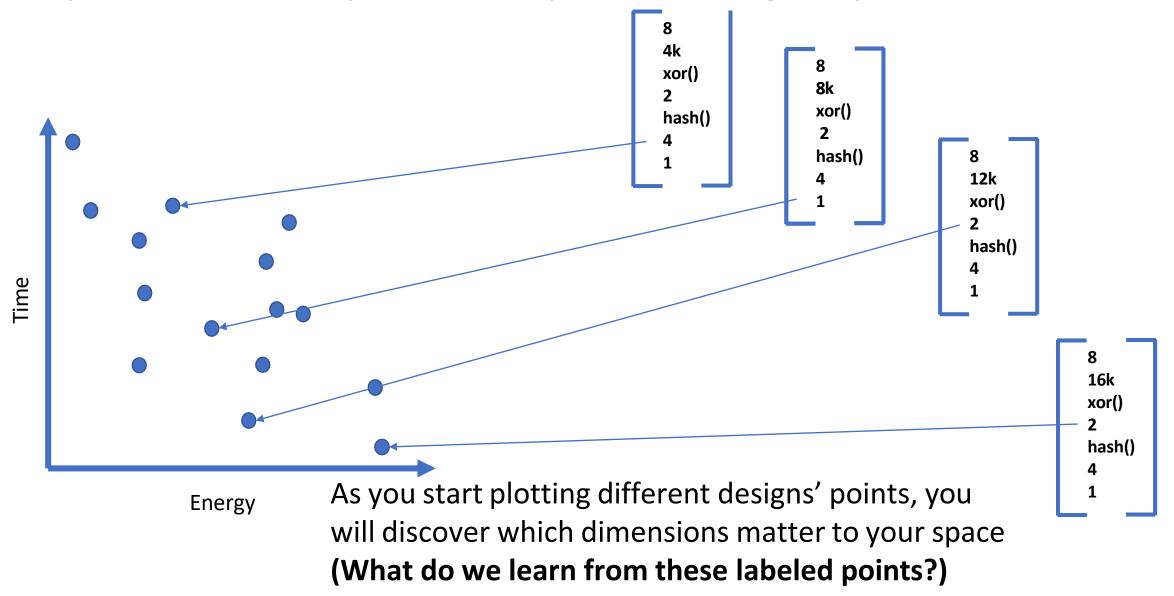
Max BP power = 4mW

Max BTB associativity = 2

Max memory (BTB+BHT) = 20kB


Designs candidates are often described as needing to "Make PPA":

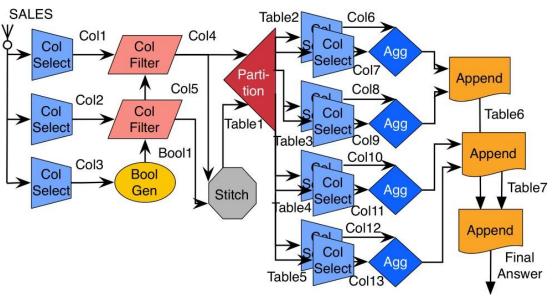
- Power
- Performance
- Area


Design Space Exploration

- Applied Performance Evaluation to find the best feasible system
 - Define a system's important design parameters
 - Define a system's figure(s) of merit
 - Define a set of constraints on the feasibility of a binding of design parameters
 - Choose a feasible parameter setting and measure its merit
 - Iterate until satisfied:
 - If this system is better than the last one, keep it. If worse, discard it.
 - Choose a parameter and change it
 - Random restarts to search different sub-spaces

Systematically fill out your design space

Systematically fill out your design space



Example of Design Space Optimization The Q100 Database Acceleration Architecture

Q100: The Architecture and Design of a Database Processing Unit

Lisa Wu Andrea Lottarini Timothy K. Paine Martha A. Kim Kenneth A. Ross

Columbia University, New York, NY

Cutting edge database query hardware accelerator

- "GPU for SQL & Database operations"
- Architecture built up of a collection of special computing tiles in hardware
- Each tile runs a particular kind of database operation
- Tiles connected by configurable wires that can be set up to make circuits to do a database query
- (Includes one of the best design space explorations I've encountered in a research paper)

			Area		ower	Critical Path	Design Width (bits)			
-	Tile	mm^2	% Xeon a	mW	% Xeon	ns	Record	Column	Comparator	Other Constraint
Functional	Aggregator	0.029	0.07%	7.1	0.14%	1.95		256	256	
	ALU	0.091	0.21%	12.0	0.24%	0.29		64	64	
	BoolGen	0.003	0.01%	0.2	< 0.01%	0.41		256	256	
	ColFilter	0.001	< 0.01%	0.1	< 0.01%	0.23		256		
	Joiner	0.016	0.04%	2.6	0.05%	0.51	1024	256	64	
	Partitioner	0.942	2.20%	28.8	0.58%	***3.17	1024	256	64	
	Sorter	0.188	0.44%	39.4	0.79%	2.48	1024	256	64	1024 entries at a time
	Append	0.011	0.03%	5.4	0.11%	0.37	1024	256		
A!1; a	ColSelect	0.049	0.11%	8.0	0.16%	0.35	1024	256		
Auxiliary	Concat	0.003	0.01%	1.2	0.02%	0.28		256		
	Stitch	0.011	0.03%	5.4	0.11%	0.37		256		

Design space optimization problem statement:

			Area	Po	wer	Critical Path		D	esign Widtl	h (bits)	
	Tile	mm^2	% Xeon a	n Hi	rile	ns	R	Record	Column	Comparator	Other Constraint
-	Aggregator	choose	% Xeon a a number original wol	of each	io a high-	1.95			256	256	,
	ALU BoolGen	Ln the	original wo	of click	how	0.29 0.41			64 256	64 256	
Functional									256	230	
	Joiner	- 103/	tiles yic.	C. F ODC	1 1156 01.5	0.51		1024	256	64	
	Partitioner	marta	rmance bei	UBLIC ON L	nany of	***3.17		1024	256	64	
	Sorter	perio	ber to bour	id now '		2.48		1024	256	64	1024 entries at a time
	Append	dnum	ber to bour tile they co	onsider	0.11%	0.37		1024	256		
Auxiliary	ColSelect	0 each	5.1170	8.0	0.16%	0.35		1024	256		
Auxiliai y	Concat	0.003	0.01%	1.2	0.02%	0.28			256		
	Stitch	0.011	0.03%	5.4	0.11%	0.37	91		256		-

Design space optimization problem statement:

,	Tile	50-40 00-000 10 00 00 00 00 00 00 00 00 00 00 00	Xeon a	mir.	tile	Critic	Tile	Maximum Useful Count	"Tiny" Tile	Tile Counts Explored	her Constraint
Functional	BoolGen ColFilter Joiner	Choose a not have a simulation of the original interests of the control of the co	lation to s yield no ince ben	decide o more efit and d how n	use that nany of		Aggregator ALU BoolGen ColFilter Joiner Partitioner Sorter	4 5 6 6 4 5 6	X X X X	4 1 5 6 6 4 1 5 1 6	entries at a time
Auxiliary	Append ColSelect Concat Stitch	0 each tile 0.003	they ^{CO} 0.01% 0.03%	8.0 1.2 5.4	0.11% 0.16% 0.02% 0.11%		Append ColSelect Concat Stitch	8 7 2 3	X X X X	8 7 2 3	

Design space optimization problem statement:

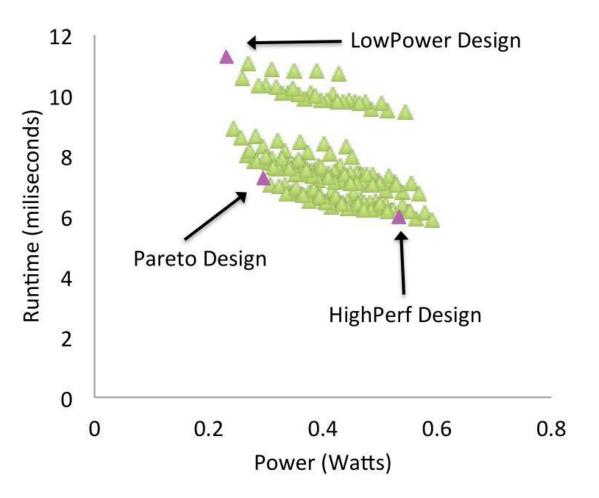
			Area		ower	Critical Path	D	esign Widtl		
-	Tile	mm^2	% Xeon ^a	mW	% Xeon	ns	Record	Column	Comparator	Other Constraint
	Aggregator	0.029	0.07%	7.1	0.14%	1.95		256	256	
	ALU	0.091	0.21%	12.0	0.24%	0.20	ling	64	64	
	BoolGen	0.003	0.01%	0.2	< 0.01 or	.t. a reasonable	basellile	256	256	
Functional	ColFilter	0.001	< 0.01%		a area W.r	t. a reasonable rk, they compain rver processor,	red to a	256		
	Joiner	0.016	0.04%	Estimat	e areal wo	rk, they compare	the Intel	256	64	
	Partitioner	0.942	2.20%	In the C	origiliai	rver processor,	studed all	of 256	64	
	Sorter	0.188						.56	64	1024 entries at a time
	Append	0.011	0.03%	E5620	Xeon. The	rver processor, comparison inc wires, buffers, e	1024	256		
Auviliany	ColSelect	0.049	0.11%	the co	onnecting	0.35	1024	256		
Auxiliary	Concat	0.003	0.01%	2.2	0.02%	0.28		256		
<u> </u>	Stitch	0.011	0.03%	5.4	0.11%	0.37		256		

Design space optimization problem statement:

	Tile	mm^2	Area % Xeon ^a	55-365	ower % Xeon	Critical Path		esign Width		on Other Constraint
	THE	mm^-	% Aeon	mW	% Aeon	ns	Record	Column		or Other Constraint
	Aggregator	0.029	0.07%	7.1	0.14%	1.95		ıar	۱ - ۳	
	ALU	0.091	0.21%	12.0	0.24%	Want to mini In the origina	mize pow	eited the	number	
	BoolGen	0.003	0.01%	0.2	< 0.01%	Want to ma	ıl work, lir	miles in	5 to $0, 1, \dots$	
Functional	ColFilter	0.001	< 0.01%	0.1	< 0.01%	In the origina	or 110s of	mW) uine	s_{t} of "tiny"	
	Joiner	0.016	0.04%	2.6	0.05%	Want to minion of high-power or 2, and all	er (199	itrary coui	100.	
	Partitioner	0.942	2.20%	28.8	0.58%	and all	owed and	have <10n	UVV.	
	Sorter	0.188	0.44%	39.4	0.79%	of high-powers or 2, and all functional u	inits that	- 0 0	64	1024 entries at a time
	Append	0.011	0.03%	5.4	0.11%	0.37	1024	256		
Auviliany	ColSelect	0.049	0.11%	8.0	0.16%	0.35	1024	256		
Auxiliary	Concat	0.003	0.01%	1.2	0.02%	0.28		256		
-	Stitch	0.011	0.03%	5.4	0.11%	0.37		256		

Design space optimization problem statement:

			Area	Power		Critical Path		D	esign Widtl		
	Tile	mm^2	% Xeon ^a	\mathbf{mW}	% Xeon	ns	R	ecord	Column	Comparator	Other Constraint
-	Aggregator	0.029	0.07%	7.1	0.14%	1.95			256	256	
	ALU	0.091	0.21%	10		0.29			64	64	
	BoolGen College Je Frequence	0.002	I by tile lat	ency	+hat	0.41			256	256	
Functional	BoolGen Color Je Frequence Pa Aggressi	cy limite	d by the	n mear	is that	0.23			256		
	Jd Frequein	qia vlov	elined design	os the r	naximuiii	0.51		1024	256	64	
	Pa Aggressi	very pri	delay defin	es cir	as the	***3.17		1024	256	64	
	501 the Criu	Carr	which 15 "	10 -		2.48		1024	256	64	1024 entries at a time
	Pa Aggressi So the criti Ap switchin	ng delay	ne design). Ways define 0.03%	frod.	for Q100)	0.37		1024	256		
Auxiliary	Coll freque	ncy or a	ways define	s treq.	0.16%	0.35		1024	256		
Auxiliary	Con (partit	ioner al	Ways	1.2	0.02%	0.28			256		
	Stitc	0.011	0.03%	5.4	0.11%	0.37			256		

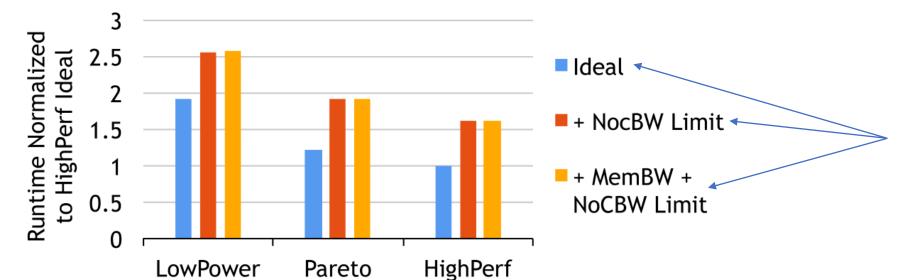

Design space optimization problem statement:

			Area		ower	Critical Path	Design Width (bits)			
	Tile	mm^2	% Xeon a	mW	% Xeon	ns	Record	Column	Comparator	Other Constraint
	Aggregator	0.029	0.07%	7.1	0.14%	1.95		256	256	
	ALU	0.091	0.21%	12.0	0.24	0.29		64	64	
	BoolGen	0.003	0.010	LDB he	nchmark	0.41		256	256	
Functional	ColFilter		on standard	y Do bo		0.23		256		
	BoolGen ColFilter J Simulate Pa Collect N	e design	- asureme	ents for	(TDC-H)	0.51	1024	256	64	
	Pa Silitary	run time	measa.	chmark	((170.11)	***3.17	1024	256	64	
	So Collect	tion-Pro	cessing being	system	Without	2.48	1024	256	64	1024 entries at a time
	So Collect r So Transac Ap which s Con being	stresses	measurement cessing ben a database s	ching fro	om memo	0.37	1024	256		
Aussilians	Col. Willer	oottlene	cked by re-	8.0	0.16%	0.35	1024	256		
Auxiliary	Con being	0000	0.01%	1.2	0.02%	0.28		256		
	Stitch	0.011	0.03%	5.4	0.11%	0.37		256		

Design space optimization problem statement:

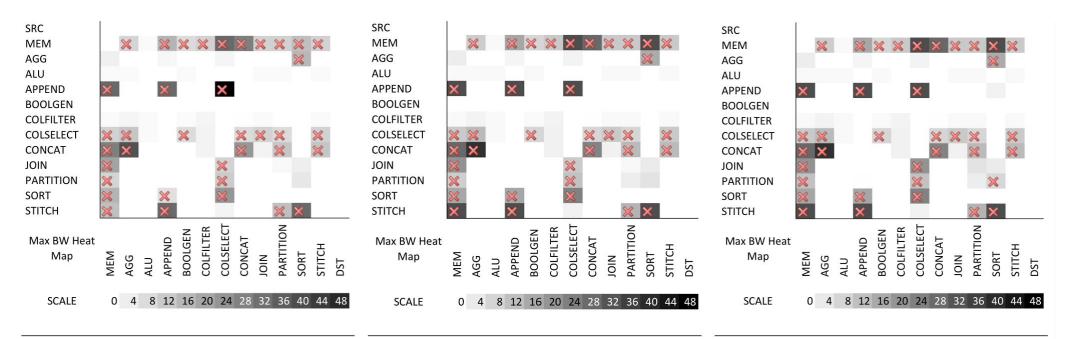
Choose the right mixture of tiles to have the best performance and power without using too much area or limiting frequency

Q100 Pareto Frontier


Pareto plot from a research paper on the Q100 Database accelerator by Wu et al, ASPLOS 2014

- How did they select magenta points?
- What other points might they have selected?
- What is the value in seeing all these points?

- "Pareto Design" as used in the paper means the design that maximizes (runtime) performance per watt.
- Although there were designs with nominally better runtime, the goal of the paper was to select three options for further study. The two options with a nominally better runtime were only negligibly better but at a much higher cost in terms of energy, rendering them less interesting to the authors.


Results of Design Space Exploration

			Area		Power						
	Tiles	NoC	SBs	Total	Total	Tiles	NoC	SBs	Total	Total	
	mm^2	mm^2	mm^2	mm^2	% Xeon	W	W	W	W	% Xeon	
LowPower	1.890	0.567	0.520	2.978	7.0%	0.238	0.071	0.400	0.710	14.2%	
Pareto											
HighPerf	5.080	1.524	0.780	7.384	17.3%	0.541	0.162	0.600	1.303	26.1%	

Final results show idealized design and results that include adding in costs related to the on-chip network and memory access bandwidth

Heat Plots Can Be Used to Explore 2D Space

sign, the communication bandwidth for heat map, Pareto design maximum intra- max bandwidth per connection. most connections exceed the provisioned connection bandwidth exhibit almost $6.3 \, GB/s$ NoC bandwidth, marked as X's identical behavior as HighPerf design. in the figures.

Figure 10. Even with a LowPower de- Figure 11. Similar to connection count Figure 12. Heat map of HighPerf design

Here heat plots are used to show the communication bandwidth needed between tiles and which design elements exceed a reference threshold.

Q100 Takeaways / What did we just learn

- Practical application of design space exploration
- Defined design space based on tiles and connections between tiles
- Defined constraints and optimization goals based on power, area, frequency
- Runs experiments to produce Pareto Frontier with performance and power as main design dimension
- Final designs come from Pareto Frontier fast, balanced, low-power
- Compare design to characteristics of known baseline (Xeon)

What to think about next?

- Miscellaneous (micro)architectural tricks & optimizations (future)
 - Super-scalar Out-of-Order
 - VLIW
 - Vector processors / SIMD
 - SIMT/GPU