18-344 Recitation 8

Lab4 - Graph Processing Optimization



About Sparse Problems



Sparse Problems

What is a sparse problem? Why are they called “sparse™?

o Graph Processing Problems are Sparse Problems

o Machine Learning Problems are Sparse Problems

What makes sparse problems hard?
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What does a graph processing program look like?

for e in EL:

Coo dstData[e.dst] =
(EdgeList) f(srcData[e.src],dstData[e.dst])
Edge
11 | | dstData
[ ]| srcData

stores vertex property information
if srcData == dstData, updating in-place;
often “swap” srcData & dstData from 1 iteration to the next iteration



Nobody EVER uses the adjacency matrix!

Why would the Adjacency Matrix not be used?
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Compressed Sparse Data Structures for Feasible Memory Size

Offsets Array (OA) 113 8
Neighbors Array (NA) 0/4|10[11|3 0ii:2
Compressed Sparse Row (CSR)
Edge ] Outgoing Neighbors
St —=
Vertex Property Array
Po : D1 : ! : D3 . D4 i.e., srcData / dstData I-
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silg s | 4 fq Often we will leave the vertex property array
Src e implicitly defined when we talk about sparse
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Compressed Sparse Data Structures for Feasible Memory Size

OffsetsArray(OA) |0 |1 (3|6 8\‘
NeighborsArray(NA) 121014 1011131114102
EdgeList sorted by —_ Compressed Sparse Row (CSR)
Edge ) SrcDs Outgoing Neighbors
St —
Dp Dy Dy Dz Dy The CSCis the transpose of the CSR
so| 1] Offsets Array (OA) [0 |3 |57 |8
S1|1: 1 l \
s, [ 111 (1
R e e e NeighborsArray(NA) |1 12 [(4|2|3|0(4[2|1|3
53 ! | ;
-------------------- EdgeList sorted by —_  Compressed Sparse Column (CSC) -
S4 1. 1 DstIDs Incoming Neighbors




Irreqular Accesses Lead to Poor Locality
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Problem: Sparse representations make processing large graphs feasible, but Cache miss latency cannot be hidden by anything else
graph processing still entails a large working set with poor locality in the program. Each miss incurs DRAM latency!
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What does Roofline help us
understand about a program?
Tell us what limits performance
& how close to peak an app is.
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Propagation Blocking: Reorganize Input to Make
Memory Being Randomly Written Fit in Cache

Bad for the cache: the size of the domain of
vertex data array entries is |V|, but the
|Domain| = |V] =5 vertices cache holds only |C| << |V| entries
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(EdgeList) Recall: irregular accesses into

vertex data array based on
e.dst which are essentially random

Key idea in propagation blocking: Limit the domain of updates to a sub-space of vertices,
V*, so that |V*| <= |C| and do multiple sub-spaces of V*s, so that all V*s together =V
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Propagation Blocking: Reorganize Input to Make
Memory Being Randomly Written Fit in Cache

Create “Bins” that hold input elements (edges

/ from the edge list)

0[1
20
110
02|
213
0l4
003
co0
(EdgeList)
Bin O: Bin1: Bin 2:
dst 0-1 dst 2-3 dst 4-5 dstData
Remember: dstData[e.dst] ++
Execute the kernel for one bin at a time and e.dst is random, from edge list
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Propagation Blocking: Reorganize Input to Make
Memory Being Randomly Written Fit in Cache

coo
(EdgelList)
Bin 0: Bin 1: Bin 2:
dst 0-1 dst 2-3 dst 4-5 dstData
Remember: dstData[e.dst] ++
Execute the kernel for one bin at a time and e.dst is random, from edge list

71



Propagation Blocking: Reorganize Input to Make
Memory Being Randomly Written Fit in Cache

(o]0
(EdgeList)
Bin O: Bin 1: Bin 2:
dst 0-1 dst 2-3 dst 4-5 dstData
Remember: dstData[e.dst] ++
Execute the kernel for one bin at a time and e.dst is random, from edge list
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Propagation Blocking: Reorganize Input to Make
Memory Being Randomly Written Fit in Cache

coo
(EdgeList)
Bin 0: Bin 1: Bin 2:
dst 0-1 dst 2-3 dst 4-5 dstData
Remember: dstData[e.dst] ++
Execute the kernel for one bin at a time and e.dst is random, from edge list
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Propagation Blocking: Reorganize Input to Make
Memory Being Randomly Written Fit in Cache

coo
(EdgelList)
Bin 0: Bin 1: Bin 2:
dst 0-1 dst 2-3 dst 4-5 dstData
Remember: dstData[e.dst] ++
Execute the kernel for one bin at a time and e.dst is random, from edge list
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