18-344 Recitation 8

Lab4 - Graph Processing Optimization



About Sparse Problems



Sparse Problems

What is a sparse problem? Why are they called “sparse™?

o Graph Processing Problems are Sparse Problems

o Machine Learning Problems are Sparse Problems

What makes sparse problems hard?

Protein-Protein Interaction |

Hidden layer

Hidden layer

-

FH

ReLU

&
%

| Graph Convolutional Networks I.\.




What does a graph processing program look like?

for e in EL:

Coo dstData[e.dst] =
(EdgeList) f(srcData[e.src],dstData[e.dst])
Edge
11 | | dstData
[ ]| srcData

stores vertex property information
if srcData == dstData, updating in-place;
often “swap” srcData & dstData from 1 iteration to the next iteration



Nobody EVER uses the adjacency matrix!

Why would the Adjacency Matrix not be used?

p————

17



Compressed Sparse Data Structures for Feasible Memory Size

Offsets Array (OA) 113 8
Neighbors Array (NA) 0/4|10[11|3 0ii:2
Compressed Sparse Row (CSR)
Edge ] Outgoing Neighbors
St —=
Vertex Property Array
Po : D1 : ! : D3 . D4 i.e., srcData / dstData I-

So r 133 3

silg s | 4 fq Often we will leave the vertex property array
Src e implicitly defined when we talk about sparse

5211 IEEEEE structures, but it is always there

l Sz | 1 1
Se|2F 1% Y




Compressed Sparse Data Structures for Feasible Memory Size

OffsetsArray(OA) |0 |1 (3|6 8\‘
NeighborsArray(NA) 121014 1011131114102
EdgeList sorted by —_ Compressed Sparse Row (CSR)
Edge ) SrcDs Outgoing Neighbors
St —
Dp Dy Dy Dz Dy The CSCis the transpose of the CSR
so| 1] Offsets Array (OA) [0 |3 |57 |8
S1|1: 1 l \
s, [ 111 (1
R e e e NeighborsArray(NA) |1 12 [(4|2|3|0(4[2|1|3
53 ! | ;
-------------------- EdgeList sorted by —_  Compressed Sparse Column (CSC) -
S4 1. 1 DstIDs Incoming Neighbors




Irreqular Accesses Lead to Poor Locality

LLC Miss Rate (%) Cycles stalled on DRAM / Total Cycles
100 1
80 08
60 » 0.6
40 04
20 02
0 0 ‘
PageRank SSSP-BF SSSP-DS BC PageRank Collaborative Breadth-First Betweenness
Filtering Search Centrality

Problem: Sparse representations make processing large graphs feasible, but Cache miss latency cannot be hidden by anything else
graph processing still entails a large working set with poor locality in the program. Each miss incurs DRAM latency!

38
Right Figure from “Optimizing Cache Performance for Graph Analytics” ArXiv v1;



CPU

(compute, flop/s)

DRAM Bandwidth
(GB/s)

DRAM

(data, GB)

The Roofline Model

Throughput
(GFLOP/S)

What does Roofline help us
understand about a program?
Tell us what limits performance
& how close to peak an app is.

Memory- Compute-

Bound@ :>Bound
. Peak FLOPS

® App2

“Ridge point” is a
property of a
particular machine

a
>

Operational Intensity
(FLOPS/Byte) 48



Propagation Blocking: Reorganize Input to Make
Memory Being Randomly Written Fit in Cache

Bad for the cache: the size of the domain of
vertex data array entries is |V|, but the
|Domain| = |V] =5 vertices cache holds only |C| << |V| entries

A
[ |
C O DR w—
\ J

Y
| Cache| = 2 vertices

O|O|IN|O|-IN|IO
WA WNWINIO|IO|(—

Co0

(EdgeList) Recall: irregular accesses into

vertex data array based on
e.dst which are essentially random

Key idea in propagation blocking: Limit the domain of updates to a sub-space of vertices,
V*, so that |V*| <= |C| and do multiple sub-spaces of V*s, so that all V*s together =V

68



Propagation Blocking: Reorganize Input to Make
Memory Being Randomly Written Fit in Cache

Create “Bins” that hold input elements (edges

/ from the edge list)

0[1
20
110
02|
213
0l4
003
co0
(EdgeList)
Bin O: Bin1: Bin 2:
dst 0-1 dst 2-3 dst 4-5 dstData
Remember: dstData[e.dst] ++
Execute the kernel for one bin at a time and e.dst is random, from edge list

69



Propagation Blocking: Reorganize Input to Make
Memory Being Randomly Written Fit in Cache

coo
(EdgelList)
Bin 0: Bin 1: Bin 2:
dst 0-1 dst 2-3 dst 4-5 dstData
Remember: dstData[e.dst] ++
Execute the kernel for one bin at a time and e.dst is random, from edge list

71



Propagation Blocking: Reorganize Input to Make
Memory Being Randomly Written Fit in Cache

(o]0
(EdgeList)
Bin O: Bin 1: Bin 2:
dst 0-1 dst 2-3 dst 4-5 dstData
Remember: dstData[e.dst] ++
Execute the kernel for one bin at a time and e.dst is random, from edge list

72



Propagation Blocking: Reorganize Input to Make
Memory Being Randomly Written Fit in Cache

coo
(EdgeList)
Bin 0: Bin 1: Bin 2:
dst 0-1 dst 2-3 dst 4-5 dstData
Remember: dstData[e.dst] ++
Execute the kernel for one bin at a time and e.dst is random, from edge list

73



Propagation Blocking: Reorganize Input to Make
Memory Being Randomly Written Fit in Cache

coo
(EdgelList)
Bin 0: Bin 1: Bin 2:
dst 0-1 dst 2-3 dst 4-5 dstData
Remember: dstData[e.dst] ++
Execute the kernel for one bin at a time and e.dst is random, from edge list

74



