
09/27/2024

Recitation 5

- Lab 1 done

- HW 3 out now, due next Thursday, October 3

- Lab 2 releases Monday, September 30
- Due Monday after fall break (3 weeks, plenty of time)

Logistics

Outline

1. HW 2 Review

2. Lab 2 Overview

3. Lab 1 Postmortem

HW 2 Review

Question 1

Fetch Decode Execute Memory Writeback

t1 add0

t2 add1 add0

t3 add2 add1 add0

t4 add2 add1 STALL add0

t5 add2 add1 STALL STALL add0

t6 add3 add2 add1 STALL STALL

t7 add3 add2 STALL add1 STALL

t8 add3 add2 STALL STALL add1

t9 addi0 add3 add2 STALL STALL

t10 addi0 add3 STALL add2 STALL

t11 addi0 add3 STALL STALL add2

t12 addi1 addi0 add3 STALL STALL

t13 addi1 addi0 add3 STALL

t14 addi1 addi0 add3

t15 addi1 addi0

t16 addi1

Q1

6 stall cycles
16 total cycles
6 instructions

IPC = 6/16 = 0.375

Q3

Lab 2 Overview

Step 1: Implement a Set-Associative Cache

● Simulate a set-associative cache, which takes in memory loads/stores from
Pin, and updates the cache state after each memory access.

● The cache should have three configurables parameters:
○ Cache size, Block size, and Associativity

● You will sweep across reasonable values for these parameters.

● For each cache configuration, you must profile the SPEC workloads to get
○ total accesses, hit rate, and miss rate

● You will have to implement the required file I/O in the pintool yourself

Step 1: Implement a Set-Associative Cache Cont.

● You will then use Destiny to generate the access/miss latencies for each
cache configuration.

● Using this data, you can now calculate the AMAT per cache configuration.
AMAT (1-level cache) Formula:

○ AMAT = L1_hit_rate * L1_access_cost + L1_miss_rate * (L1_miss_cost +
DRAM_access_cost)

○ Use DRAM_access_cost = 9.5ns

CPU L1
Cache DRAM

Step 1

Example AMAT
calculation in Lecture 7

 Step 2: Implement cache replacement policies

● Implement the replacement policies from class, and any other replacement
policy that you think might improve performance.

○ random, LRU, and bit-PLRU

● Select three different reasonable values for cache size, associativity and
block size, and compare the miss rates for each replacement policy.

● Comment on the absence or presence of a trend in the plot

 Step 3: Implement a two-level cache hierarchy

● Extend the parametrized set-associative cache structure written in Step 1 to
implement a two-level cache hierarchy

● Each level of the cache hierarchy can take a variable value for the cache size,
associativity, block size and replacement policy.

CPU L1
Cache

L2
Cache DRAM

Step 1
Step 3

 Step 4: Design Space Exploration Tool

● Write a design space iteration tool
● Explore the design space created by the different configurations for the cache

hierarchy. A configuration can be established as:
○ {(L1 associativity, L1 block size, L1 size, L1 replacement),

-(L2 associativity, L2 block size, L2 size, L2 replacement) }

● Your design space iteration tool should search the space of configuration
tuples to find the optimal configuration

● You should evaluate each cache’s leakage power, dynamic access power,
and access latency using the Destiny memory modeling tool.

● Using these numbers from Destiny, you should report a configuration’s
performance as the Average Memory Access Time (AMAT)

 Step 4: Design Space Exploration Tool Cont.

● AMAT (2-level cache) = L1_hit_rate * L1_access_cost + L1_miss_rate *
(L1_miss_cost + L2_hit_rate * L2_access_cost + L2_miss_rate *
(L2_miss_cost + DRAM_access_cost))

○ Still use DRAM_access_cost = 9.5ns

● Total Storage Budget: Your system has a total budget of 5MB of cache that
you can split across the layers of cache in your system (only search within
this budget)

● Minimization goal: Your design space iteration tool should minimize area and
power if comparable configurations are equal in their performance; always opt
for the lower area or lower power configuration.

Again: Example AMAT
calculation in Lecture 7

 Step 4: Design Space Exploration Tool Cont.

● Implementability: You must argue in your write-up that the cache hierarchy
that you have proposed is implementable using supporting evidence from the
Destiny tool.

○ Is the power consumed while doing reads and writes reasonable?
○ Is the tag storage overhead reasonable?
○ Are access latencies reasonable?
○ Your argument should consider that L1 accesses should be only a few cycles, meaning L1

access latency (especially for reads) is critical.

Lab 1 Postmortem

How was Lab 1?

- We’ll try to grade by next week

- Feedback / Any challenges doing the lab?

