
18-344 Recitation 4
Lab1 - Branch Prediction



Logistical Notes



Logistical Notes

● Lab1 due 9/25/2024
○ Released 9/16/2024

● Partnered lab

● Lab1 builds off the infrastructure setup in Lab0
○ Pintool
○ Runcpu 
○ SPEC2017



Version Control

● We recommend using some version control system such as git
● If you choose to backup your code to a cloud service such as GitHub 

PLEASE MAKE SURE IT IS PRIVATE



Collaboration Tools

● You can share files over the afs space by creating a shared directory (see: 
https://github.com/CMU-18240/240-How-to/wiki/Configuring-AFS-folder-permi
ssions-with-FS)

● If you are using git, you might also collaborate via a cloud system like github.
● Teletype (VScode, other ‘smart’ editors)
● Partner Program

https://github.com/CMU-18240/240-How-to/wiki/Configuring-AFS-folder-permissions-with-FS
https://github.com/CMU-18240/240-How-to/wiki/Configuring-AFS-folder-permissions-with-FS


Getting Started

● Starter code at: /afs/ece.cmu.edu/class/ece344/assign/lab1.tar.gz

● Extract into your private class folder using: tar -xvzf <file_name>.tar.gz

● Read handout.txt for Lab1 implementation and deliverable details



Goals

● Implement four branch outcome prediction algorithms that we learned in class 
and compare their accuracy and implementation complexity

● The branch predictors that you will implement are:
○ Static predictor (e.g., always-taken or always-not-taken)
○ Bimodal / saturating counter predictor
○ Two-level (e.g., GAp or PAg) predictor
○ GShare predictor

● You will implement predict(), update(), and any other necessary functionality 
for four branch predictors (we recommend implementing these in the existing 
bp.cpp file)



Lab1 Knobs

● Found in bp_main.cpp:

● Refer to Recitation 2 for additional Knob details

https://course.ece.cmu.edu/~ece344/course_documents/f22_recitation/18344_recitation_2.pdf


Implementation Tips

Your code will run every time a branch is encountered in the program

● Keep your code light weight
● In general, avoid C++ data structures like Hash, Map and Queue

○ Most of these are AVL trees (remember that from 15122?)
○ These AVL trees will rebalance after every call

● Stick to C arrays and you should be able to keep your code quick and efficient



Testing Infrastructure

● Lab0 should have ironed out all the issues but let's double check

● The static predictor (always taken) is already implemented in the starter code

● Lets try running the pintool

○ First need to run make to generate pintool (.so file)

○ Remember to run make every time you edit the source files



Testing Infrastructure - edit run.sh/py

● We need to change run.sh/py to point to the new lab1 files as well as set 
knobs when calling the pintool



Testing Infrastructure - call runcpu

● Command:
runcpu -c /afs/ece.cmu.edu/class/ece344/opt/spec2017/config/18344-f22-<andrewid>.cfg 
--action=onlyrun--noreportable --size=test <selected-benchmark-suite>

● There should now be stats in the results folder for the static branch predictor



Advanced edits to run.sh

● You will want to automate the process of selecting knob {b, bht, ght} values

● Example which iterates over each BP type (keeping bht, ght constant)

● Note: You could have several nested for loops iterating over different knob values



The same thing, but in Python!



Outputting Data

The default outputs aren’t exactly scalable



Outputting Data cont’d

Choose a data format you like!
Like json

Or csv

Nb: this file appends data instead of 
just replacing



Visualizing Results

Choose a graphing systems

● Your favorite spreadsheet software 
(e.g. Google Sheets or Excel)

● Plotting tools like Matplotlib
○ You can use scientific notebooks like 

JuPyter notebook
● Matlab???



Branch Predictor Review


