
18-344 Recitation 3
HW1 Review & Lab 1 Overview

Logistical Notes

Logistical Notes

● HW2 Releasing Sept 16 - Due Sept 23
● Lab 1 Releasing Sept 16 - Due Sept 25

Amdahl’s Law

Defining Speed up

“Your friend proposes an optimization which would speed up store operations by
30%. Calculate the new run time”

When we say: X is N times faster than Y, We mean:

N = TimeY/TimeX = 1.30

Examples in HW1

Stores_old = 15ns
Stores_new = Stores_old/1.3 = 15ns/1.3 = 11.53ns

11.53 * 1000 * 0.2 = 2307.69s

1950ns + 2250ns + 2307.69ns = 6608ns

Note:

(15ns * 0.7) * 1000 * 0.2 = 2100ns

Amdahl’s Law Approach

Store Time = 15 * 1000 * 0.2 = 2250ns

Total Time = 6600ns

2250ns/6600ns = .34

S = 1/(1-p + p/s) = 1/(.66 + .34/1.3) = 1.08

6600/1.08 ≅ 6082ns

Amdahl’s Law cont’d

Note: Amdahl’s deals with proportions of time not with proportions of
operations

S = 1/(1-p + p/s) = 1/(0.8 + .2/1.3) = 1.04 (incorrect)

6600/1.04 ≅ 6295ns

ISA Design

General Principles

● Don’t over specify… If Hardware & Software don’t need to BOTH know this
information it doesn’t need to be in the spec*

● SW:
○ If a compiler doesn’t NEED to know it, it doesn’t matter

● HW:
○ If a micro-architect doesn’t NEED to know it, it doesn’t matter

*Things get fuzzier on how to define “need”

** lots of exceptions based on who makes the ISA

Caches

● Caches are a hardware construct
○ What you built in 213 is NOT a cache, it was a cache simulator

● Caches generally shouldn’t be in the ISA*
○ They do (dynamic) run-time analysis of code to optimize memory accesses
○ What happens if new caching technologies are developed?

■ Better replacement policies
■ Space optimizations

 *many ISA’s break this rule: x86 cache hinting

https://en.wikipedia.org/wiki/Cache_control_instruction

Specifying Delays

● Answer didn’t matter if you interpreted “delay” to be time or cycles
● Instruction delays are implementation specific

○ Optimizing for power vs Optimizing for speed will have different delays
○ Improvements in execution techniques or a paradigm shift in architecture will make these

specifications obsolete
● This can be made worse if you specify techniques to deal with these delays in

your ISA: MIPS R3000 Branch Delay Slot and Load Delay Slot

https://en.wikipedia.org/wiki/Delay_slot

Logistical Notes

● Partnered lab

● Lab1 builds off the infrastructure setup in Lab0
○ Pintool
○ Runcpu
○ SPEC2017

Version Control

● We recommend using some version control system such as git
● If you choose to backup your code to a cloud service such as GitHub

PLEASE MAKE SURE IT IS PRIVATE

Collaboration Tools

● You can share files over the afs space by creating a shared directory (see:
https://github.com/CMU-18240/240-How-to/wiki/Configuring-AFS-folder-permi
ssions-with-FS)

● If you are using git, you might also collaborate via a cloud system like github.
● Teletype (VScode, other ‘smart’ editors)
● Partner Program

https://github.com/CMU-18240/240-How-to/wiki/Configuring-AFS-folder-permissions-with-FS
https://github.com/CMU-18240/240-How-to/wiki/Configuring-AFS-folder-permissions-with-FS

Getting Started

● Starter will be at code at: /afs/ece.cmu.edu/class/ece344/assign/lab1.tar.gz

● Extract into your private class folder using: tar -xvzf <file_name>.tar.gz

● Read handout.txt for Lab1 implementation and deliverable details

Goals

● Implement four branch outcome prediction algorithms that we learned in class
and compare their accuracy and implementation complexity

● The branch predictors that you will implement are:
○ Static predictor (e.g., always-taken or always-not-taken)
○ Bimodal / saturating counter predictor
○ Two-level (e.g., GAp or PAg) predictor
○ GShare predictor

● You will implement predict(), update(), and any other necessary functionality
for four branch predictors (we recommend implementing these in the existing
bp.cpp file)

Lab1 Knobs

● Found in bp_main.cpp:

● Refer to Recitation 2 for additional Knob details

https://course.ece.cmu.edu/~ece344/course_documents/f23-recitation2

Implementation Tips

Your code will run every time a branch is encountered in the program

● Keep your code light weight
● In general, avoid C++ data structures like Map

○ This is an AVL tree (remember that from 15122?)
○ These AVL trees will rebalance after every call

● Stick to C arrays and you should be able to keep your code quick and efficient

Testing Infrastructure

● Lab0 should have ironed out all the issues but let's double check

● The static predictor (always taken) is already implemented in the starter code

● Lets try running the pintool

○ First need to run make to generate pintool (.so file)

○ Remember to run make every time you edit the source files

Testing Infrastructure - edit run.sh/py

● We need to change run.sh/py to point to the new lab1 files as well as set
knobs when calling the pintool

Testing Infrastructure - call runcpu

● Command:
runcpu -c /path-to-config/18344-f22-<andrewid>.cfg --action=onlyrun--noreportable --size=test
<selected-benchmark-suite>

● There should now be stats in the results folder for the static branch predictor

Advanced edits to run.sh

● You will want to automate the process of selecting knob {b, bht, ght} values

● Example which iterates over each BP type (keeping bht, ght constant)

● Note: You could have several nested for loops iterating over different knob values

The same thing, but in Python!

Outputting Data

The default outputs aren’t exactly scalable

Outputting Data cont’d

Choose a data format you like!
Like json

Or csv

Nb: this file appends data instead of
just replacing

Visualizing Results

Choose a graphing systems

● Your favorite spreadsheet software
(e.g. Google Sheets or Excel)

● Plotting tools like Matplotlib
○ You can use scientific notebooks like

JuPyter notebook
● Matlab???

Branch Predictor Review

