18- 344 Gumpuler Syslems and the Hardware-Software Inferface ~ Fan 2023

Gourse DBSC”D“U" Lecture 7: Caches and the Memory Hierarchy

This course covers the design and implementation of computer systems from the perspective of the
hardware software interface. The purpose of this course is for students to understand the
relationship between the operating system, software, and computer architecture. Students that
complete the course will have learned operating system fundamentals, computer architecture
fundamentals, compilation to hardware abstractions, and how software actually executes from the
perspective of the hardware software/boundary. The course will focus especially on understanding
the relationships between software and hardware, and how those relationships influence the design
of a computer system's software and hardware. The course will convey these topics through a series

of practical, implementation-oriented lab assignments.] .
p Al 5 Credit: Brandon Lucia

Bimodal BHT Branch Predictor

benchmark

description

doduc
eqntott
espress
fpppp
gcc

li
mat300
nasa’
spice
tomcatv

Monte Carlo simulation

conversion from equation to truth table
minimization of boolean functions
quantum chemistry calculations

GNU C compiler

lisp interpreter

matrix multiplication

NASA Ames FORTRAN Kernels
circuit simulation

vectorized mesh generation

Figure 2: SPEC Benchmarks Used for Evaluation

Conditional Branch Prediction Accuracy (%)

98 -
97 -
96 -
95 1
94 -
93 -
92 -
911
90 1
89 -

88

[“Combining Branch Predictors”, McFarling "93]

A A A A A

A A bimodal

| | | | ! | | | | | |

32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K

Predictor Size (bytes)

Figure 3: Bimodal Predictor Performance

Predicting Branch Outcomes

Two-bit saturating counter branch predictor

Branch History Table (BHT)

Branch PC

Example history - 0x100: 1010110110110110..

Limitations of 2-bit BHT branch prediction

* Limitation 1: branch interference due to hash table collisions
* Limitation 2: single-branch decision making misses correlation
How to handle each of these problems?

Avoiding collisions

Branch History Table (BHT)

L 4
Two-bit saturating counter branch predictor

T T T
hash

Branch PC

0x100

16k Entries

Example history - 0x100: 1010110110110110..

Large table size (e.g., 16k entries) avoids collisions
* Each entryis small, making total cost tolerable (e.g., 32kb)
* Large enough table and collisions do not limit prediction accuracy

Catching correlated branches

Branch History Table (BHT)
L 4

if(a == 1){ a=0 } " 8
if(b == 1){ b=0 } %100 5
if(a '= b){ } ©

There are correlation of the outcomes of consecutive branches
e The outcome of the third branch is correlated with the first two

* Our per-branch predictor cannot capture this common pattern

Track history of outcomes of all branches executed in GHT
Use PC to select which PHT to use

Two-Level Branch Predictor (Option for Lab 1):
GAp (Global Adaptive w/ per-address table)

Branch PC

if (a
if (b
if (a

1){ a
1){ b

'= b) {

0
0

}
}
}

Global History Table
10010110

Use global pattern history to index into PHT

Use PHT entry’s 2-bit counter to predict outcome
After each branch resolves, updated predictor in per-address
pattern history table & shift its outcome (T=1, NT=0) into GHT

Per-address “pattern history table”

16k Entries

Global Index Sharing Predictor

Branch History Table (BHT)
L 4

Global History Table

if(a __ 1){ 2=0 } 10010110 é

if(b == 1){ b=0 } — .2

if(a '= b){ } %
PXIOO

Branch PC

Index sharing predictor tracks local history in global context concisely
 XOR GHT with branch PCto select BHT

e Use 2-bit counter in BHT to make prediction for branch in GHT context
* XOR maps branches & contexts that matter to different BHTs

* Gshare combining addr bits with history bits often better

Local/Global Correlating Predictor (Optional for Lab 1):
PAg (Per-Address Adaptive global history table)

log n bits
(8 bits here) Global Pattern History Table
L 4

10010110
10010110

if(a == 1){ a=0 }
if(b == 1){ b=0 }
if(a '=b){ ... }

Branch PC

(256 entries here)

n entries

10010110
10010110

Per-PC Branch History Table

Use per-branch history to index into a global, shared table of
predictors. Per-PC branch history table stores history for that
branch only, not global history.

* Use PCto select which BHT to use

* Use branch history to index into global PHT

 Use PHT entry’s 2-bit counter to predict outcome

bimodal

Quantifying Predictor Accuracy gshare

mmmmm bimodal/gshare

doduc (Choose best option)
egntott
espress
fpppp
gcce

I
mat300
nasa’/
spice
tomcatv
average

80 82 84 8 88 90 92 94 96 98 100
Conditional Branch Prediction Accuracy (%)

Dynamically predicting branch behavior

0x100F

”
SRLEIENRLECIEEIM Target: 0x10C

beg x16 x12 PC+0xC

Fetch

‘ ‘ ‘ Register
Decode Execute Memory ‘w:i;g-Bagk \

Need to predict branch target

Target gets resolved only in Decode, which leads to 1-cycle stall
Predict outcome and target both in Fetch & avoid all stalls

Branch Target Buffer Implementation

Branch Target Buffer

hash()

BranchiID

0x1a2100
Branch Tag

Target:
0x1A210C

Branch PC=Tag +ID

Tag Target

Branch Target Buffer (BTB) logs branch target

 BTBis associative memory table indexed by branch PC low order bits
* Need tag because some PCs do not point to branches

* Associative memory can be set-, fully-associative or direct-mapped

Putting it all together:
A Gshare branch predictor + BTB

Branch History Table (BHT)
L 4

Croaitony Tabe Branch predictors resolve branches
10010110 B in the fetch stage avoiding stalls
E * Need misprediction detection
XOor)
= logic added to decode stage
|OX100 Outcome:) * Need logic to flush instructions
Sranch PC | Taken ' on predicted path after

Branch Target Buffer

misprediction
Target: * Flushed instructions are
0x1A210C effectively stalls in the pipeline,
but worse: wasted work.

BranchID

v

Oxlaz
Branch Tag

Tag Target

Branch Predictor in the pipeline

Instruction PC+4

Branch Target

Instruction

Fetch

Instruction
Memory

Instruction Fetch

Branch Predictor

£
-+

Write Reg C Data Mem

Dp select

ALU: output C data

Output/Read Output/Read
Reg C Data RengeIect

Register
Writeback

MemWrite

Memory Register Write-Back

Read Regs A & B Data

Write Register C Select

Write Register C Data

Write Reg C Data ALU

Today: Caches and the Memory Hierarchy

* Introduction to caches and cache organization
e Caches in the memory hierarchy

e Cache implementation choices

e Cache hardware optimizations

» Software-managed caches & scratchpad memories

Memory is a big list of M bytes

Byte M

1w x6 0xC :

‘ ‘ ‘ Register
Decode Execute Memory ite-

Byte OxF
Byte OxE
Byte OxD
Byte OxC

Fetch ‘

Byte 2
Byte 1
Byte O

Memory is conceptually far away from CPU

1w x6 0xC

Mem/Mem Fwd

leB[Mem Fwd
lMem[Mem Fwd
<AddrReg A
.WB[Mem Fwd
<DataReg B

Cont. Data C
Sigs.:

Op.
Select T

What does this “distance” entail for a
hardware / software interface?

Byte M

[Ld/St]

Memory

Byte 2
Byte 1
Byte O

Byte OxF
Byte OxE
Byte OxD
Byte OxC

Memory is conceptually far away from CPU

1w x6 0xC

leB[Mem Fwd

Cont.
Sigs.:
Op.
Select
[Ld/St]

Mem/Mem Fwd

<DataRegB

WB[Mem Fwd

<AddrReg A

lMem[Mem Fwd

DataC

1

What does this “distance” entail for a hardware / software
interface?

* Need to be judicious with 1w & sw

* Compiler & programmer must carefully lay out memory

* Worth spending hardware resources to optimize

* Need hardware and software to co-optimize data re-use

* Data movement is a fundamental limit on speed & energy

Byte M

Memory

Byte 2
Byte 1
Byte O

Byte OxF
Byte OxE
Byte OxD
Byte OxC

Memory hierarchy: large & slow vs. small & fast

Byte M

Byte 11

Byte M3

Mem/Mem Fwd

<LDataRegB

WB[Mem Fwd

(AddrReg A

lMem[Mem Fwd

leB[Mem Fwd

Byte M2 Byte OxF

Byte OxE
Byte OxD
Byte OxC

g;:t Data C L1DS

Op.
Select T
[Ld/St]

Memory

Byte 2
Byte 1
Byte O

Capacity inversely proportional to access cost
M>M3>M2>M1

Recall: Memory A Hierarchy from 18x13

Regs CPU registers hold words retrieved
Smaller, L1 h from the L1 cache.
faster, L1: Lelhs
and (SRAM) L1 cache holds cache lines retrieved
i from the L2 cache.
(COStlLert) L2 L2 cache
er e
per by (SRAM) |
storage L2 cache holds cache lines
devices retrieved from L3 cache.
L3: L3 cache
(SRAM)
L3 cache holds cache lines
retrieved from main memory.
Larger,
slower, L4: Main memory
and (DRAM)
cheaper Main memory holds disk blocks
(per byte) retrieved from local disks.
storage | ;. Local secondary storage
devices (SSD/Disk)
Local disks hold files
retrieved from disks
on remote servers.
L6: Remote secondary storage

(e.g., Web servers)

Recall from 18x13: The Working Set

The data that is presently being use is called the Working Set.

Imagine you are working on 18x13. Your working set might include:
 The lab handout
* Aterminal window for editing
* Aterminal window for debugging
* A browser window for looking up man pages

If you changed tasks, you’d probably hide those windows and open new
ones

The data computer programs use works the same way.

Recall from 18x13: Guesstimating the Working Set

« How does the memory system (cache logic) know the working set?
 Thisis tricky. There is no way it can really know what data the program needs or

will need soon.
* |t could even be totally dynamic, based upon input.

* [tapproximates it using a simple heuristic called locality:
« Temporallocality: Data used recently is likely to be used again in the near future

(local in time).
e Spatial locality: Data near the data used recently is likely to be used soon (local in

space, e.g. address space).

e The memory system will bring and keep the Most Recently Used (MRU) data and data
near it in memory to the higher layers while evicting the Least Recently Used (LRU)
data to the lower layers.

What’s New Since 18x137?

e We want to think about a cache built natively in real hardware vs a software
simulation of a cache

e The 18x13 cache was a software simulation of a somewhat ideal LRU cache
 Consider how you built an LRU cache simulator in 18x13:
 Alinked list- based queue?

A copy-to-shift array-based queue?

* Time for the “18-240 Thinking Cap”: Consider the implementation of LRU in hardware
e (Canthe 18x13 approach be translated to real hardware in a practical way?

Locality is the key to cache performance

Spatial Locality Temporal Locality

Why do we see locality? What are some examples of each?

Memory hierarchy: Unified vs. Split ICache & DCache

1w x6 0xC

(AddrReg A

lMem[Mem Fwd

leB[Mem Fwd

Cont.
Sigs.:
Op.
Select
[Ld/St]

.WB[Mem Fwd

1

Mem/Mem Fwd

<LDataRegB

DataC

L1IS

Byte 11

L1DS

Byte M2

Byte M3

Byte M

Memory

L1 Instruction & L1 Data cache often separate (why?)
Lower levels of cache are unified (why?)

Byte 2
Byte 1
Byte O

Byte OxF
Byte OxE
Byte OxD
Byte OxC

Review: Anatomy of a set-associative cache

Way O Way 1 Way 2 Way 3

Typical Parameters

Line contains 16-64 bytes of data
1-8 number of sets

1 set contains all lines?

All sets contain 1 line?

Total size varies by level:

L1: 1kB — 32kB

L3: a few kB —48MB

L3S

Valid | Dirty Tag B bytes data

Anatomy of a Line

Total cache size = 32B x 4 sets x 4 ways = 512B

Review: Accessing the cache

Way 0 Way 1 Way 2 Way 3

L3S

Step 1: Partitioning the address

1b x6 O0x7ff£f0053

l set index

0x01111111111111110000000001010011

tag bits block
offset

Valid | Dirty Tag 32 bytes data

Total cache size = 32B x 4 sets x 4 ways = 512B

Review: Accessing the cache b x6 0x7£££0053

Way 0 Way 1 Way 2 Way 3

L3S

Step 2: Select the set

set index
OxOlllll11111111110000000001_01001l
tag bits block
offset

set 2

Review: Accessing the cache - Hit

1,0,0x7fff10,... 1,0,0x000000,... 1,1,0x001e00,...

Tag match, valid

1,1,0x7fff00,...

1b x6 0x7fff0053

Step 3: Check valid, compare tags

set index

0x01111111111111110000000001010011

tag bits

block
offset

Valid

Dirty

Tag

32 bytes data

Review: Accessing the cache - Hit o %6 0x7EEE0053

Step 4: Fetch cache block for memory unit via cache controller

Way 0 Way 1 Way 2 Way 3

0x01111111111111110000000001010011

block offset
= byte 19 L3S

BEN N D

egA

.WB[Mem Fwd

1b

<DataReg B

o
2
£
@
=
)

Read

Cont. DataC
Sigs.: —>
g’pl' . 1,0,0x7fff10, ... 1,0,0x000000,... 1,1,0x001e00,... 1,1,0x7fff00,...
elec
[Ld/St]
Single Byte of
Data @
Ox7fff0053

Memory

Review: Accessing the cache - Miss | = oreemooss

Step 3: Check valid, compare tags

No tag match, or invalid

set index
OXOlllllllllllllll0000000001701001l
tag bits block

offset
1,0,0x7fff10,... 1,0,0x000000, .. 1,1,0x001e00, .. 0,0,0x7fff00, ..

Valid | Dirty Tag 32 bytes data

Review: Accessing the cache - Miss | = oreemooss

D011 Byte M

Way 0 Way 1 Way 2 Way 3
fset

32 Byte Block
@ Ox7fff0000

1,0,0x7fff10,... 1,0,0x000000,... 1,1,0x001e00,... 1,0,0x7fff00,...

Byte 2

I I | syte

Byte O

Review: Accessing the cache - Miss | = oreemooss

Step 5: Fetch cache block for memory unit via cache controller

Way 0 Way 1 Way 2 Way 3

0x01111111111111110000000001010011

block offset
= byte 19 L3S

BEN N D

egA

.WB[Mem Fwd

1b

<DataReg B

o
2
£
@
=
)

Read

Cont. DataC
Sigs.: —>
g’pl' . 1,0,0x7fff10, ... 1,0,0x000000,... 1,1,0x001e00,... 1,0,0x7fff00,...
elec
[Ld/St]
Single Byte of
Data @
Ox7fff0053

Memory

Why do we miss in the cache?

Why do we miss in the cache?

* The 3 C’s of misses

e Compulsory
* Conflict

* Capacity

Why miss? Compulsory misses

First access to any block of memory is always a miss; these misses are compulsory

Why miss? Capacity misses

Working set of program contains more data than can be cached at one time.
By the pigeonhole principle caching all data requires missing at least once

Why miss? Conflict misses

Multiple blocks of memory map to the same location in the cache
and conflict, even if there is still some empty space in the cache
L3S

How many bits in tag/index/offset?

Way 0 Way 1 Way 2 Way 3 1b x6 0x7fff0053

= |
set index

OxOlllll11111111110000000001_010011

tag bits block
offset

Why these numbers of bits?

Valid | Dirty Tag 32 bytes data

Total cache size = 32B x 4 sets x 4 ways = 512B

How many bits in tag/index/offset?

Way 0 Way 1 Way 2 Way 3 1b x6 0x7fff0053

= |
set index

O0x01111111111111110000000001010011
tag bits “block
offset
Enough block offset bits to count block bytes
Enough set index bits to count the sets
All left-over bits are tag bits
Question: what do tag bits mean?

Valid | Dirty Tag 32 bytes data

Total cache size = 32B x 4 sets x 4 ways = 512B

How many sets should your cache have?

#Ways parallel tag matches per lookup

1,0,0x7fff10,...

1,0,0x000000,...

1,1,0x001e00,... 0,1,0x7fff00,...

Set Associative Cache Design Procedure
1.Select total cache size

2.Select implementable #ways

3.cache size = #sets x #ways x #block_bytes
4 #sets = cache size / (Hways x #block_bytes)

What is an implementable # of ways?

What is an implementable # ways?

n-way set associative cache:
Need n parallel comparators for tag match

1,0,0x7fff10,... 1,0,0x000000,... 1,1,0x001e00,... 0,1,0x7fff00,...

What is an implementable # ways?

Fully-associative cache:
comparators = # lines in entire cache

e M 1)

1,0,0x7fff10,... 1,0,0x000000,.. . 1,1,0x001e00,... 0,1,0x7fff00,...

What is an implementable # ways?

Direct mapped cache:
1 comparator because each set
contains a single line

1,0,0x7fff10,... 1,0,0x000000,... 1,1,0x001e00,... 0,1,0x7fff00,...

Physical implementation separates data & tags

set index
O0x01111111111111110000000000p10011
Way 0 Way 1 Way 2 Way 3 tag bits block
offset

L3S

Cache Tag Array

Sequential Tag Lookup & Data Lookup

set index

0x01111111111111110000000000910011

Way 0 Way 1 Way 2 Way 3 tag bits block
138 offset
2-bit set 2-bit set
: it block selec select select

Line

2-bit way

select

13$

tag0 tagl

Sequentially access tag array first, then access the data array using the result of the tag
lookup.

Question: Can you think of an alternative scheme to optimize tag/data lookup?

tag2 tag3

Cache Data Array Cache Tag Array

Parallel Tag Lookup & Data Lookup
|

set index

0x01111111111111110000000000910011

Slock Sele tag bits block

13$ 2-bit way offset
select 2-bit set
Line select
13$
tag0 tagl tag2 tag3

Fetch all ways in set in parallel with tag matching and use the way index of tag to select
the one data block that was fetched.
Question: Pros & cons of parallel lookup?

Cache Data Array Cache Tag Array

Way Prediction: Cost Like Sequential, Performance
Like Parallel Tag Lookup gzme

; \CUCCIIa) . 01111111111111110000000000410011

Way 0 - Way 2 Way 3 tag bits block
L3S

offset
way .
oredictor 2-bit set 2-bit set
B s e seled

y 3

set index

|0] wer w2] e |
t

|| | |
Cache Tag Array

Send some tag bits and set index bits to fast way predictor, output of which is 4-bit block
select, like in sequential. Fetch way of matched tag and send to prediction validation
logic. If correct predict: use block. If incorrect predict: discard block and refetch.

Moritz Lipp, Vedad Hadzi¢, Michael Schwarz, Arthur 5 2000 ~ 7 Non-colliding addresses
Perais, Clementine Maurice, and Daniel Gruss. 2020. S 1500] Colliding addresses
Take A Way: Exploring the Security Implications of £ 1,000

AMD's Cache Way Predictors. In Proceedings of the é 500 JTH

15th ACM Asia Conference on Computer and 0 L

Communications Security (ASIA CCS '20). Association 0 50 100 150 200
for Computing Machinery, New York, NY, USA, 813- Access time (increments)

825. https://doi.org/10.1145/3320269.3384746

Figure 2: Measured duration of 250 alternating accesses to
addresses with and without the same pTag.

- ¥ ;l
c Way1 e Wayn | | % bd h
‘ ‘ 27 | 26 | 25 | 24 ‘ 23 ‘ 22 ‘ 21 ‘ 20 ‘ 19 | 18 ‘ 17 ‘ 16 ‘ 15 ‘ 14 ‘ 13 ‘ 12 ‘
e [o]] — 3 ;
: - ;
() fanY £
.. () Zen, Zen+, Zen 2
(T (i
"""""""""""" D f
K'J\ fi
D f
D f
Way Prediction Early Miss | I S Q}/\ J‘Cg
\ 4 ‘ | 27 | 26 | 25 \ 24 ‘ 23 ’ 22 ‘ 21 | 20 l“) V 18 \ 17 \ 16 \ 15 ‘ 14 ‘ 13] 12 |
L1D L2
(b) Bulldozer, Piledriver, Steamroller
Figure 1: Slmpllﬁed illustration of AMD’s way predictor. Figure 3: The recovered hash functions use bits 12 to 27 of

the virtual address to compute the yTag.

Cost of Associativity

512 Bytes, 256-bit (32B) lines, 1-way 512 Bytes, 256-bit (32B) lines, 4-way

$./destiny config/SRAM 512 1 256.cfg $./destiny config/SRAM 512 4 256.cfg

Read Latency = 55.4943ps

Tag Read Latency = 277.84ps
Write Latency = 54.7831ps
Tag Write Latency =212.575ps

Read Bandwidth = 674.493GB/s
Write Bandwidth = 633.944GB/s

Tag Read Dynamic Energy = 0.281324p]
Tag Write Dynamic Energy = 0.222833p)

Read Latency = 83.4307ps
Tag Read Latency = 293.516ps
Write Latency = 83.1343ps
Tag Write Latency = 226.518ps

Read Bandwidth =480.942GB/s
Write Bandwidth = 500.715GB/s

Tag Read Dynamic Energy = 1.01651p)
Tag Write Dynamic Energy = 0.758075p)

Higher associativity avoids conflict misses at an additional cost in hit latency & energy

Write-Allocate: Stores go to cache
Write-No-Allocate: Stores do not go to cache

Write Policies - Allocation

Way 0 Way 1 Way 2 Way 3

Byte M

L3S

sb x6 0x7f£ff0053

<
0o
Q
(2
S
<

.VllB[Mem Fwd

o
3
(T8
£
]
S
)

Cont. Data C
Sigs.:
Op.
Select
[Ld/St]
Byte 2
Memory Byte 1
Byte O
? y
]

" 11 Write-Back: Wait until line evicted to writeback
W r l te P O ‘ l C e S Write-Through: Writeback immediately on store

Propagation e

Way 0 Way 1 Way 2 Way 3

sb x6 0x7f£f£0053

<
oo
U

[DataRegB

4__

WB[Mem Fwd

o
3
(T8
£
o
=
)

! Read

Cont. DataC
Sigs.: —>
Op.

Select

[Ld/St]

Memory

Recall 18x13: Snoopy Caches

inta=1,;
int b =100;
Tag each cache block with state A
Invalid Cannot use value
Shared Readable copy Thread1: Thread?2:
Exclusive Writeable copy Wa: a=2; Whb: b = 200;
Rb: print(b); | | Ra: print(a);

Threadl Cache Thread2 Cache
E| a: 2

E |b:200

Main Memory
a:l b:100

Recall 18x13: Snoopy Caches

inta=1,;
int b = 100;
Tag each cache block with state A
Invalid Cannot use value
Shared Readable copy Thread1: Thread?2:
Exclusive Writeable copy Wa: a=2; Whb: b = 200;
Rb: print(b); Ra: print(a);

Threadl Cache Thread2 Cache
e S| a2 print 2
S |b:2Q0 200
\ print 200
W m When cache sees request for
a1 b 100 one of its E-tagged blocks
m Supply value from cache

(Note: value in memory
may be stale)

m SettagtoS

Recall 18x13: Typical Multicore Processor

i Core O Core n-1
Regs Regs
L1 L1 L1 L1 !
d-cachq | i-cache d-cachq | i-cache| || Propagation Policy v. Multicore Cache Coherency
.« What is required for a snooping?
L2 unified cache L2 unifiedcache | | 1 |« How does propagation policy facilitate or impede this?
|+ What does this suggest about cache policy by level?

L3 unified cache
(shared by all cores)

Main memory

Cache Hierarchy Performance Measurement

Average Memory Access Time (AMAT):
Measuring the performance of a memory hierarchy

Byte M
lw x6 0xC L11S

Byte 11

egA

.WB[Mem Fwd

leB[Mem Fwd
lMem[Mem Fwd
Mem/Mem Fwd
<LDataRegB

Byte M3

Read Byte M2

DataC L]_DS

Cont.
Sigs.:
Op.
Select
[Ld/St]

Byte OxF
Byte OxE
Byte OxD
Byte OxC

L

1

Memory

Byte 2
Compute the time taken by the average Byte 1

access based on miss rate, hit latency, and Byte 0
miss penalty at each level

Average Memory Access Time (AMAT):
Measuring the performance of a memory hierarchy

lw x6 0xC Miss rate = 0.01 Z'ins
Hit time = 1.28ns atency
Miss rate = 0.02 Miss time = 485ps

Access time = 461ps

Miss rate = 0.1 Miss time = 395ps

Access time = 322ps
Miss time = 305ps

Mem/Mem Fwd

<LDataRegB

.WB[Mem Fwd

<AddrReg A

lMem[Mem Fwd

leB[Mem Fwd

Cont.
Sigs.:
Op.

Byte OxF
Byte OxE

DataC

Select Byte OxD
[Ld/St] L Byte OxC
4kB,
4way
Memo
4 64KkB, Byte 2
. 8way
Compute the time taken by the average 1MB, Byte 1
access based on miss rate, hit latency, and sway Byte 0

miss penalty at each level

Average Memory Access Time (AMAT):
Measuring the performance of a memory hierarchy

7.5ns
Latency

lw x6 0xC Miss rate = 0.01
Hit time = 1.28ns
Miss rate = 0.02 Miss time = 485ps
Access time = 461ps
Miss time = 395ps

Miss rate = 0.1
Access time = 322ps
Miss time = 305ps

Mem/Mem Fwd

<DataRegB

.\MB[Mem Fwd

<AddrReg A

leB[Mem Fwd
lMem[Mem Fwd

Byte OxF
Byte OxE
Byte OxD
Byte OxC

Cont. Data C
Sigs.:

Op.
Select T
[Ld/St]

4KkB,
4way

64kB,
8way

Memory

AMAT = L1HitRate x L1AccTime + L1MissRate x (L1MissTime +
L2HitRate x L2ZAccTime + L2ZMissRate x (L2ZMissTime +
L3HitRate x L3AccTime + L3MissRate x (L3MissTime +

DRAM Latency)))

Byte 2

1MB, Byte 1
dway Byte O

Computing the AMAT 1/2/4/23 90% hits

Miss rate = 0.1 Miss rate = 0.02 Miss rate = 0.01
Access time = 322ps Access time = 461ps Hit time = 1.28ns
(1 cycle @ 3GHz) (2 cycles @ 3GHz) (4 cycles @ 3GHz)
Miss time = 305ps Miss time = 395ps Miss time = 485ps

0.322ns x 0.9 + 0.1 x (0.305ns +
0.461ns x 0.98 + 0.02 x (0.395ns +
1.28ns x 0.99 + 0.01 x (0.485ns +
7.5ns)))

1x09+0.1x(1+
2x0.98+0.02x(2+
4x0.99+0.01x(2+
23)))

DRAM Latency
7.5ns (CAS latency)
(23 cycles @ 3GHz)

AMAT in Seconds

AMAT in Cycles

Computing the AMAT

Miss rate = 0.1 Miss rate = 0.02

Access time = 322ps Access time = 461ps

Miss time = 305ps Miss time = 395ps
0.322ns x 0.9 + 0.1 x (0.305ns + 0.461ns x 0.98 + 0.02 x X Q
Q Al @ Shopping [&) Images @& News © Maps ¢ More Tools

About O results (0.52 seconds)

(0.322 ns x 0.9) + (0.1 x ((0.305 ns) + (0.461 ns x 0.98) + (0.02 x ((0.395 ns) + (1.28 ns
x 0.99) + (0.01 x ((0.485 ns) + (7.5 ns))))))) =

0.3689621 nanoseconds

Miss rate = 0.01 DRAM Latency
Hit time = 1.28ns 7.5ns (CAS latency)

Miss time = 485ps

1%0.9+01% {1+ 2%0.98+0.02x (2+ X Q
Q Al @ Shopping (] Images [E News [»] Videos : More Tools
About 5,550,000 results (1.24 seconds)
9D (1x0.9)+ (0.1 x (1 +(2x0.98) + (0.02 x (2 + (4 x 0.99) + (0.01 x (2 + 23)))))) =
cycles

Computing the AMAT —2/5/10/30 90% hits

Miss rate = 0.1
Access time = 2 cycles
Miss time = 2 cycles

2x09+0.1x(2+

Miss rate = 0.01
Hit time = 10 cycles
Miss time = 10 cycles

Miss rate = 0.02
Access time = 5 cycles
Miss time =5 cycles

DRAM Latency
30 cycles

5x0.98 +0.02x (5 + AMAT in cycles
10 x0.99 + 0.01 x (10 +

30))) = 2.52 cycles = 3 cycles

Computing the AMAT — 2/5/10/30 80% hits

Miss rate = 0.2
Access time = 2 cycles
Miss time = 2 cycles

2x0.8+0.2x(2+

Miss rate = 0.01
Hit time = 10 cycles
Miss time = 10 cycles

Miss rate = 0.02
Access time = 5 cycles
Miss time =5 cycles

DRAM Latency
30 cycles

5x0.98 +0.02x (5 + AMAT in cycles
10 x 0.99 + 0.01 x (10 +

30))) =3.04 cycles = 4 cycles = 2 x L1 latency!

he ABCs of Optimizing a Cache

Associativity vs. Block Size vs Cache Size

Many complex inter-dependent factors
determine cache performance

* Associativity

* Block Size

* Cache Size

* Replacement Policy

* Write allocation policy

* Write propagation policy

Associativity

Best option depends on workload!

* Factors will sometimes work against
one another, where improving
degrades another. (we will study this
next week)

What did we just learn?

* Memory has a high access cost; memory hierarchy mitigates that cost
* Caches make locality exploitable to optimize for data reuse

* Review of the basics of cache operation, address decomposition, set
associative caches

* Miss types
* The costs of associativity & tag storage arrays
* What to do about writes?

* The replacement problem

What to think about next?

* More caches (next time)
* Replacement from the ground up

e Caching optimizations: victim caches, write buffers & lockup-free caches,
prefetching, way partitioning, banking & bank conflicts

» Scratchpads vs. Caches & their relation to the HW/SW interface

* Performance Evaluation (next next time)
e Design spaces, Pareto Frontiers, and design space exploration

* Miscellaneous (micro)architectural tricks & optimizations (future)
* Vector processors, SIMD/SIMT, dataflow

Replacement Policies

)011

fset

Replacement Policies

1b x6 0x7fff0053

Way 0 Way 1 Way 2 Way 3

BED N D

Which block in the set should we evict
to make space for the new block?

Byte M

1,0,0x7fff10,... 1,0,0x000000,... 1,1,0x001e00,... 0,0,0x7fff00,...

32 Byte Block

Byte 2
Byte 1
Byte O

@ Ox7fff0000

Replacement Policies — Round Robin | = oo

011 Byte M

Way0 Way 1 Way 2 Way 3
fset

BED N D

58
0 O
o 2
. 5 2
Evict ;';
0o

Next 3
mn &

1,0,0x7fff10,... 1,0,0x000000,... 1,1,0x001e00,... 0,0,0x7fff00,...

Byte 2

I R A | D Byte

Byte O

Replacement Policies — Round Robin | = oo

011 Byte M

Way0 Way 1 Way 2 Way 3
fset

BED N D

S 8

I°Ne

i e —— ——T— T —T— = 8
)

BN . g

Next & X
ex 6

m

1,0,0x7fff10,... 1,0,0x000000,... 1,1,0x001e00,... 0,0,0x7fff00,...

Byte 2

I R A | D Byte

Byte O

Replacement Policies — Round Robin | = oo

011 Byte M

Way0 Way 1 Way 2 Way 3
fset

BED N D

58
83
T = 8
Q
Evicc N ;E
0o
Next
AN
mn &

1,0,0x7fff10,... 1,0,0x000000,... 1,1,0x001e00,... 0,0,0x7fff00,...

Byte 2

I R A | D Byte

Byte O

Replacement Policies — Round Robin | = oo

011 Byte M

Way0 Way 1 Way 2 Way 3
fset

BED N D

%8
9 S

T T Erm— 2 8
Q

N ;E
o

Next @ S

m S

1,0,0x7fff10,... 1,0,0x000000,... 1,1,0x001e00,... 0,0,0x7fff00,...

Byte 2

I R A | D Byte

Byte O

Replacement Policies — Round Robin | = oo

011 Byte M

Way0 Way 1 Way 2 Way 3
fset

58
I°Ne
o 2
. 5 2
Evict ;';
o
Next NO
mn &

1,0,0x7fff10,... 1,0,0x000000,... 1,1,0x001e00,... 0,0,0x7fff00,...

Byte 2

I R A | D Byte

Byte O

Replacement Policies — Round-Robin Analysis

1b x6 Oxe @
1b x6 0Oxb

a 1b x6 0Oxc
1b x6 0Oxd

1b x6 0Oxa

Set 0
Q)

Advantage: Simple to implement and understand
Disadvantage: Hopefully the next to evict isn’t going to be the next to be accessed...

Replacement Policies — Round-Robin Analysis

1b x6 0Oxe
1b x6 0xb @

a b x6 oxe
1b x6 0Oxd

1b x6 Oxa

Set 0
Q)
()

Advantage: Simple to implement and understand
Disadvantage: Hopefully the next to evict isn’t going to be the next to be accessed...

Replacement Policies — Round-Robin Analysis

1lb x6 O0Oxe
1b x6 0xb

w 1b x6 Oxc @
1lb x6 0xd

1b x6 Oxa

Set 0
Q)
()
O

Advantage: Simple to implement and understand
Disadvantage: Hopefully the next to evict isn’t going to be the next to be accessed...

Replacement Policies — Round-Robin Analysis

1lb x6 O0Oxe
1b x6 0xb
1b x6 0Oxc

1b x6 0xd @

Set

1b x6 Oxa

Advantage: Simple to implement and understand
Disadvantage: Hopefully the next to evict isn’t going to be the next to be accessed...

Replacement Policies — Round-Robin Analysis

1lb x6 O0Oxe
1b x6 0xb

a 1b x6 0Oxc
1b x6 0Oxd

1b x6 0Oxa P

Set 0
o

Advantage: Simple to implement and understand
Disadvantage: Hopefully the next to evict isn’t going to be the next to be accessed...

Replacement Policies — Round-Robin Analysis

1lb x6 O0Oxe
1b x6 0xb

1b x6 0Oxc
1b x6 0Oxd

1b x6 0Oxa

Set 0
o
Q)

Advantage: Simple to implement and understand
Disadvantage: Hopefully the next to evict isn’t going to be the next to be accessed...

Minimum Number of Misses?

What is the best replacement strategy to minimize misses & why?

e e < J 4
1b

1b
1b
1b

X0
X0
X0

X6
X0

Oxe
Oxb
Oxc

Oxd

Oxa

Minimum Number of Misses?

Set

1b
1b
1b

1b
1b

X0
X0
X0

X0
X0

Oxe @
Oxb
Oxc

Oxd

Oxa

When are we going to re-use cached data?

1b xo6
1b x6
1b xo6

1lb xo0
1b x6

Set O
M
O
o
o

Replacement decisions must be informed by the next reuse of a block of data.

Oxe
Oxb

Oxc

Oxd

Oxa

Think: what is an optimal policy? How far in the future is something going to be used again?

Miss
Hit
Hit
Hit
Miss

	Slide 1
	Slide 2: Bimodal BHT Branch Predictor
	Slide 3: Predicting Branch Outcomes
	Slide 4: Avoiding collisions
	Slide 5: Catching correlated branches
	Slide 6: Two-Level Branch Predictor (Option for Lab 1): GAp (Global Adaptive w/ per-address table)
	Slide 7: Global Index Sharing Predictor
	Slide 8: Local/Global Correlating Predictor (Optional for Lab 1): PAg (Per-Address Adaptive global history table)
	Slide 9
	Slide 10: Dynamically predicting branch behavior
	Slide 11: Branch Target Buffer Implementation
	Slide 12: Putting it all together: A Gshare branch predictor + BTB
	Slide 13: Branch Predictor in the pipeline
	Slide 14: Today: Caches and the Memory Hierarchy
	Slide 15: Memory is a big list of M bytes
	Slide 16: Memory is conceptually far away from CPU
	Slide 17: Memory is conceptually far away from CPU
	Slide 18: Memory hierarchy: large & slow vs. small & fast
	Slide 19: Recall: Memory Hierarchy from 18x13
	Slide 20: Recall from 18x13: The Working Set
	Slide 21: Recall from 18x13: Guesstimating the Working Set
	Slide 22: What’s New Since 18x13?
	Slide 23: Locality is the key to cache performance
	Slide 24: Memory hierarchy: Unified vs. Split ICache & DCache
	Slide 25: Review: Anatomy of a set-associative cache
	Slide 26: Review: Accessing the cache
	Slide 27: Review: Accessing the cache
	Slide 28: Review: Accessing the cache - Hit
	Slide 29: Review: Accessing the cache - Hit
	Slide 30: Review: Accessing the cache - Miss
	Slide 31: Review: Accessing the cache - Miss
	Slide 32: Review: Accessing the cache - Miss
	Slide 33: Why do we miss in the cache?
	Slide 34: Why do we miss in the cache?
	Slide 35: Why miss? Compulsory misses
	Slide 36: Why miss? Capacity misses
	Slide 37: Why miss? Conflict misses
	Slide 38: How many bits in tag/index/offset?
	Slide 39: How many bits in tag/index/offset?
	Slide 40: How many sets should your cache have?
	Slide 41: What is an implementable # ways?
	Slide 42: What is an implementable # ways?
	Slide 43: What is an implementable # ways?
	Slide 44: Physical implementation separates data & tags
	Slide 45: Sequential Tag Lookup & Data Lookup
	Slide 46: Parallel Tag Lookup & Data Lookup
	Slide 47: Way Prediction: Cost Like Sequential, Performance
	Slide 48
	Slide 49: Cost of Associativity
	Slide 50
	Slide 51: Write Policies - Propagation
	Slide 52: Recall 18x13: Snoopy Caches
	Slide 53: Recall 18x13: Snoopy Caches
	Slide 54: Recall 18x13: Typical Multicore Processor
	Slide 55: Cache Hierarchy Performance Measurement
	Slide 56: Average Memory Access Time (AMAT): Measuring the performance of a memory hierarchy
	Slide 57: Average Memory Access Time (AMAT): Measuring the performance of a memory hierarchy
	Slide 58: Average Memory Access Time (AMAT): Measuring the performance of a memory hierarchy
	Slide 59: Computing the AMAT 1/2/4/23 90% hits
	Slide 60: Computing the AMAT
	Slide 61: Computing the AMAT – 2/5/10/30 90% hits
	Slide 62: Computing the AMAT – 2/5/10/30 80% hits
	Slide 63: The ABCs of Optimizing a Cache
	Slide 64: Associativity vs. Block Size vs Cache Size
	Slide 65: What did we just learn?
	Slide 66: What to think about next?
	Slide 67: Replacement Policies
	Slide 68: Replacement Policies
	Slide 69: Replacement Policies – Round Robin
	Slide 70: Replacement Policies – Round Robin
	Slide 71: Replacement Policies – Round Robin
	Slide 72: Replacement Policies – Round Robin
	Slide 73: Replacement Policies – Round Robin
	Slide 74: Replacement Policies – Round-Robin Analysis
	Slide 75: Replacement Policies – Round-Robin Analysis
	Slide 76: Replacement Policies – Round-Robin Analysis
	Slide 77: Replacement Policies – Round-Robin Analysis
	Slide 78: Replacement Policies – Round-Robin Analysis
	Slide 79: Replacement Policies – Round-Robin Analysis
	Slide 80: Minimum Number of Misses?
	Slide 81: Minimum Number of Misses?
	Slide 82: When are we going to re-use cached data?

