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What fun stuff did you do over the weekend?



Some more details..

• Lab 0 is due today by 11:59:59 pm ET 
• Homework 1 has been released today, due Sep 11 by 11:59:59 pm ET  

1. Complete the homework individually 
2. Submit via Gradescope

• Please submit an initial feedback form (anonymous): 
https://forms.gle/nHQPiRBk9SMUi2Xk8

• Those who submit will be given an extra day for lab 1 (you must let 
us know that you submitted)

• The course schedule has been updated: please take a look 
• Please attend TA OH or post in Slack for debugging Qs on the labs

• Reiterate the importance of participation in class 

https://forms.gle/nHQPiRBk9SMUi2Xk8


What did we talk about last time?

• Hardware vs. software tradeoffs

• von Neumann vs. Harvard architecture and the beginnings of a design space

• An optimization exercise by example

• Amdahl’s Law (and Gustafson’s Law, by contrast)



Hardware/software boundary



Our first hw/sw interface:
The Von Neumann Computing Model

Program Data

Unified Bus

Memory

CPU

Control & Instruction
Sequencing (“Control”)

Arithmetic, Logic, and Data
Manipulation (“ALU”)

John von Neumann’s Big Idea:

Programs are data.



Optimizing our Harvard Architecture

Program Data

Instruction Bus
(32-bit read)

Memory

CPU

Control & Instruction
Sequencing (“Control”)

Arithmetic, Logic, and Data
Manipulation (“ALU”)

Dual-ported Data Bus
(2x64-bit read, 64-bit write port)

I1: x = y + z

I2: a = b * c

I3: r = s + t

32bits
64bits

With a one word (8 byte) bus:
1 data write cycle simultaneous with 1 
data read cycles simultaneous with 1 
instruction read cycle
per arithmetic operation

1 cycle per instruction!



How about changing the code?

Program Data

Instruction Bus
(128-bit read)

Memory

CPU

Control & Instruction
Sequencing (“Control”)

Arithmetic, Logic, and Data
Manipulation (“ALU”)

Dual-ported Data Bus
(2x64-bit read, 64-bit write port)

I1:

I2:

I3:

I4:

if (x==0) 

a = b * 2 

y = z + w 

q = n + m

Restructure code, increase likelihood to execute
Avoid needless fetch of non-executing code
Q: What if x is most often non-zero?

I5: //else

I6:  a = b * 4 

I7:  y = z + w 

I8:  q = n + m

Compiler!

I1:

I2:

I3:

I4:

I5:

I6:

I7:

I8:

y = z + w 

q = n + m 

if (x==0) 

a = b * 2

//else

a = b * 4

//other

//stuff



Amdahl’s Law

100% of execution time

45% - Memory Accesses 20% - Control Flow 17.5% - Integer 12.5% - Fetch

5% - Floating
Point

Amdahl’s Law:
optimized time = [ 1-p x time / 1.0 ] + [ p x time / speedup ] 
Or equivalently:
speedup = 1 / [ (1 – p) / 1.0 + p / speedup ]



100% of execution energy

Memory 
Accesses

Control Flow Integer Fetch Floating 
Point

Idea: find an optimizable part of your system and make it bigger 
If we know that memory is optimizable, why not optimize more 
and do more memory accesses?

Another view of the world: Gustaffson’s Law



85% - Memory Accesses

Gustafson’s Law for overall speedup with speedup factor of N:
(assume) Optimized time = T = 1
Unoptimized time = T’ = (1-p)T + pT*N = (1-p) + pN
Scaled Speedup = T’ / T = (1-p) + pN

Another view of the world: Gustafson’s Law



Another view of the world: Gustafson’s Law
Gustafson’s Law: Sequential part does not grow as 
optimizable part grows. Can always add more 
optimizable part and make sequential part matter less

Assume that we can scale up # of parallel mem operations, N
Assume that we can scale input to use all N parallel memops

data_size = 10 

data[data_size] = {…} 

if(…){ }

…//18 more of these conditionals 

if(…){ }

for d in 0..data_size{ d++ }

data_size = 100000 

data[data_size] = {…} 

if(…){ }

…//18 more of these conditionals 

if(…){ }

#parallel[N=1000]

for d in 0..data_size{ d++ }

Gustaffson!



85% - Memory Accesses

Gustafson’s Law for overall speedup with speedup factor of N:
(assume) Optimized time = T = 1
Unoptimized time = T’ = (1-p)T + pT*N = (1-p) + pN 
Scaled Speedup = T’ / T = (1-p) + pN

Another view of the world: Gustafson’s Law

Scale parallel memory accesses, N, up to 1000? 
Scaled Speedup = 1-p + 1000p = 999p + 1 
Scaled Speedup = 999 * 0.85 + 1 = 850x



What is a Computer Architecture?

• Building up to our first architecture

• Defining the ISA: Architecture vs. Microarchitecture

• RISC vs. CISC ISAs

• RISCV ISA



Our CPU from last time is incomplete

CPU

Control & Instruction
Sequencing (“Control”)

Arithmetic, Logic, and Data
Manipulation (“ALU”)

What’s missing?



Basic Architecture: State + processing 
elements

Maintain State 
(sequential 

logic)

Process 
(combinational 

logic)

control

ALU/processing state



Opcode selector
op = [+, -, x, /]

Building up to our first architecture: ALU

ALU

Input A Input B

Output: 
A op B



Opcode selector
op = [+, -, x, /]

Building up to our first architecture: ALU

ALU

Input A Input B

Output: 
A op B

Design choice – what operations 
do we support here? What are 
the tradeoffs?



Basic Architecture: State + processing 
elements

Maintain State 
(sequential 

logic)

control

ALU/processing state
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Basic Architecture: State + processing 
elements

control

ALU/processing state
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Reg 4

Register File



Opcode select
op = [+, -, x, /]

Building up to our first architecture: ALU + 
Registers

Output register select

Input A register select 

Input B register select

Input A Input B

ALU
Output C

Reg 1
Reg 2

Reg 3
Reg 4

Register File

Output 
Register 
Control

Input A
Register
Control

Input B 
Register 
Control



Opcode select
op = [+, -, x, /]

Building up to our first architecture: ALU + 
Registers

Output register select

Input A register select 

Input B register select

Input A Input B

ALU
Output C

Reg 1
Reg 2

Reg 3
Reg 4

Register File

Output 
Register 
Control

Input A
Register
Control

Input B 
Register 
Control

Stateful Elements plus control required to access them, providing 
inputs to operations and storing outputs of operations



Opcode select
op = [+, -, x, /]

Building up to our first architecture: ALU + 
Registers

Output register select

Input A register select 

Input B register select

Input A Input B

ALU
Output C

Reg 1
Reg 2

Reg 3
Reg 4

Register File

Output 
Register 
Control

Input A
Register
Control

Input B 
Register 
Control

Design choice – how many stateful 
elements / registers do we support?

Need to activate control logic to 
select right register for a particular 
operation. How?

Registers are named & explicit. 
Implication of explicit names?



Building up to our first architecture: Control

Input A Input B

ALU
Output C

Reg 1
Reg 2

Reg 3
Reg 4

Register File

Output 
Register 
Control

Input A 
Register
Control

Input B 
Register 
Control

Instruction
Memory

In
st

ru
ct

io
n

 D
ec

od
eInstruction

FetchProgram 
Counter(PC)

In A reg select 

In B reg select

Op select

Out reg select

4

+

Instruction gets decoded into signals that 
control the other parts of the system (more on 
encoding / decoding in a few slides)



Building up to our first architecture: Control

Input A Input B

ALU
Output C

Reg 1
Reg 2

Reg 3
Reg 4

Register File

Output 
Register 
Control

Input A 
Register
Control

Input B 
Register 
Control

Instruction
Memory

In
st

ru
ct

io
n

 D
ec

od
eInstruction

FetchProgram 
Counter(PC)

In A reg select 

In B reg select

Op select

Out reg select

4

+

Instruction memory holds all of the bits of all of 
the instructions that we might ever use to 
control other units.
Design choice: Need to think about where we 
put this memory (and its hierarchy of caches)



Building up to our first architecture: Control

Input A Input B

ALU
Output C

Reg 1
Reg 2

Reg 3
Reg 4

Register File

Output 
Register 
Control

Input A 
Register
Control

Input B 
Register 
Control

Instruction
Memory

In
st

ru
ct

io
n

 D
ec

od
eInstruction

FetchProgram 
Counter(PC)

In A reg select 

In B reg select

Op select

Out reg select

4

+

Instruction fetch logic refers to PC, loads 
instruction from instruction memory and sends 
to decode.
Design choices: how much to fetch at once?
What to fetch next (not always obvious)?



Building up to our first architecture: Control

Input A Input B

ALU
Output C

Reg 1
Reg 2

Reg 3
Reg 4

Register File

Output 
Register 
Control

Input A 
Register
Control

Input B 
Register 
Control

Instruction
Memory

In
st

ru
ct

io
n

 D
ec

od
eInstruction

FetchProgram 
Counter(PC)

In A reg select 

In B reg select

Op select

Out reg select

4

+

Remember our fetch optimization from last time? That 
would go here. Specialized instruction memory access 
logic. (Physical memory may be the same, though)



Building up to our first architecture: Control

Input A Input B

ALU
Output C

Reg 1
Reg 2

Reg 3
Reg 4

Register File

Output 
Register 
Control

Input A 
Register
Control

Input B 
Register 
Control

Instruction
Memory

In
st

ru
ct

io
n

 D
ec

od
eInstruction

FetchProgram 
Counter(PC)

In A reg select 

In B reg select

Op select

Out reg select

4

+

Sequential Control:
Each cycle, update the PC by adding 4.
Implication for software of our current design?



Building up to our first architecture: Control

Input A Input B

ALU
Output C

Reg 1
Reg 2

Reg 3
Reg 4

Register File

Output 
Register 
Control

Input A 
Register
Control

Input B 
Register 
Control

Instruction
Memory

In
st

ru
ct

io
n

 D
ec

od
eInstruction

FetchProgram 
Counter(PC)

In A reg select 

In B reg select

Op select

Out reg select

4

+

Decoding a fetched operation breaks it from a blob of 
bits into a set of signals that we can use to configure 
the rest of the units in this diagram

Key Idea: What we encode here has implications for other units and software layers above 
the instruction definition level.
Mechanism of decoding and content of encoded/decoded instructions are orthogonal 
concepts. How? vs what?.



Building up to our first architecture: Memory

Reg 1
Reg 2

Reg 3
Reg 4

Instruction
Memory

In
st

ru
ct

io
n
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ec

od
eInstruction

FetchProgram 
Counter(PC)

In A reg select 

In B reg select

Op select
op = [+, -, x, /]

Out reg select

4

+

Memory
Unit

Op select
op = [ld,st]

Data
Memory

Input A Input B

ALU
ALU: output C

Reg 1
Reg 2
Reg 3
Reg 4

Register File

Output 
Register 
Control

Input A 
Register 
Control

Input B 
Register 
Control

Memory 
Unit

ld: data

Data 
Memory

st: data

ld/st: address



Building up to our first architecture: Memory

Input A Input B

ALU
ALU: output C

Reg 1
Reg 2

Reg 3
Reg 4

Register File

Output 
Register
Control

Input A 
Register 
Control

Input B 
Register 
Control

Instruction
Memory

In
st

ru
ct

io
n

 D
ec

od
eInstruction

FetchProgram 
Counter(PC)

In A reg select 

In B reg select

Op select
op = [+, -, x, /]

Out reg select

4

+

Memory 
Unit

Op select
op = [ld,st]

ld: data

Data 
Memory

st: data

ld/st: address

Decoded instruction now needs to 
select: ALU op or Mem op?



Building up to our first architecture: Memory

Input A Input B

ALU
ALU: output C

Reg 1
Reg 2

Reg 3
Reg 4

Register File

Output 
Register
Control

Input A 
Register 
Control

Input B 
Register 
Control

Instruction
Memory

In
st

ru
ct

io
n

 D
ec

od
eInstruction

FetchProgram 
Counter(PC)

In A reg select 

In B reg select

Op select
op = [+, -, x, /]

Out reg select

4

+

Memory 
Unit

Op select
op = [ld,st]

ld: data

Data 
Memory

st: data

ld/st: address

Here: address assumed to come from register directly



Building up to our first architecture: Memory

Input A Input B

ALU
ALU: output C

Reg 1
Reg 2

Reg 3
Reg 4

Register File

Output 
Register
Control

Input A 
Register 
Control

Input B 
Register 
Control

Instruction
Memory

In
st

ru
ct

io
n

 D
ec

od
eInstruction

FetchProgram 
Counter(PC)

In A reg select 

In B reg select

Op select
op = [+, -, x, /]

Out reg select

4

+

Memory 
Unit

Op select
op = [ld,st]

ld: data

Data 
Memory

st: data

ld/st: address

Reality: ALU may crunch reg vals to generate address

Address 
mode bits 
from 
decoded 
instruction

Address bits 
from register



Building up to our first architecture: Memory

Input A Input B

ALU
ALU: output C

Reg 1
Reg 2

Reg 3
Reg 4

Register File

Output 
Register
Control

Input A 
Register 
Control

Input B 
Register 
Control

Instruction
Memory

In
st

ru
ct

io
n

 D
ec

od
eInstruction

FetchProgram 
Counter(PC)

In A reg select 

In B reg select

Op select
op = [+, -, x, /]

Out reg select

4

+

Memory 
Unit

Op select
op = [ld,st]

ld: data

Data 
Memory

st: data

ld/st: address

Design choice:
How many ways do we have to compute an address? 
How many ways should we have?
Guess at implications of more ways?

Address 
mode bits 
from 
decoded 
instruction

Address bits 
from register



Building up to our first architecture: Memory

Input A Input B

ALU
ALU: output C

Reg 1
Reg 2

Reg 3
Reg 4

Register File

Output 
Register
Control

Input A 
Register 
Control

Input B 
Register 
Control

Instruction
Memory

In
st

ru
ct
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n
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FetchProgram 
Counter(PC)

In A reg select 

In B reg select

Op select
op = [+, -, x, /]

Out reg select

4

+

Memory 
Unit

Op select
op = [ld,st]

ld: data

Data 
Memory

st: data

ld/st: address

state



Building up to our first architecture: Memory

Input A Input B

ALU
ALU: output C

Reg 1
Reg 2

Reg 3
Reg 4

Register File

Output 
Register
Control

Input A 
Register 
Control

Input B 
Register 
Control

Instruction
Memory

In
st

ru
ct

io
n

 D
ec

od
eInstruction

FetchProgram 
Counter(PC)

In A reg select 

In B reg select

Op select
op = [+, -, x, /]

Out reg select

4

+

Memory 
Unit

Op select
op = [ld,st]

ld: data

Data 
Memory

st: data

ld/st: address

Are register files and memory two 
varieties of the same basic thing?



Building up to our first architecture: Branching

Input A Input B

ALU
ALU: output C

Reg 1
Reg 2

Reg 3
Reg 4

Register File

Output 
Register
Control

Input A 
Register 
Control

Input B 
Register 
Control

Instruction
Memory

In
st

ru
ct

io
n

 D
ec

o
d

eInstruction
FetchProgram 

Counter(PC)

In A reg select 

In B reg select

Op select
op = [+, -, x, /]

Out reg select

4

+

Memory 
Unit

Op select
op = [ld,st]

ld: data

Data 
Memory

st: data

ld/st: address

Branch Target Address Offset

MUX

P
C

 S
o

u
rc

e 
Se

le
ct

PC+4

+



Building up to our first architecture: Branching

Instruction
Memory

In
st

ru
ct

io
n

 D
ec

o
d

eInstruction
FetchProgram 

Counter(PC)

4

+ Input A Input B
Register Register
Control Control

In A reg select 

In B reg select
Register File

Input A Input B Reg 1
Output Reg 2

Op select Register

op = [+, -, x, /] ALU Control Reg 3

Out reg select 
ALU: output C Reg 4

Op select Memory ld: data 
st: data

op = [ld,st] Unit ld/st: address

Data 
Memory

Branch Target Address Offset

MUX

P
C

 S
o

u
rc

e 
Se

le
ct

PC+4

PC
If PC Source Select not asserted PC=PC+4

If PC Source Select asserted PC=PC+off

+

P
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M

em
o

ry



Building up to our first architecture: Branching

Input A Input B

ALU
ALU: output C

Reg 1
Reg 2

Reg 3
Reg 4

Register File

Output 
Register
Control

Input A 
Register 
Control

Input B 
Register 
Control

Instruction
Memory

In
st
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ct
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n

 D
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o
d

eInstruction
FetchProgram 

Counter(PC)

In A reg select 

In B reg select

Op select
op = [+, -, x, /]

Out reg select

4

+

Memory 
Unit

Op select
op = [ld,st]

ld: data

Data 
Memory

st: data

ld/st: address

Branch Target Address Offset

MUX

P
C

 S
o

u
rc

e 
Se
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ct

PC+4

+

Where does our branch target 
offset originate?
Alternative design choices? How 
are each of those used in code?



Building up to our first architecture: Branching

Input A Input B

ALU
ALU: output C

Reg 1
Reg 2

Reg 3
Reg 4

Register File

Output 
Register
Control

Input A 
Register 
Control

Input B 
Register 
Control

Instruction
Memory
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In A reg select 

In B reg select

Op select
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Out reg select
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Memory 
Unit

Op select
op = [ld,st]

ld: data

Data 
Memory

st: data

ld/st: address

Branch Target Address Offset

MUX

P
C
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o
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+

How do we decide taken vs. not
taken via PC Source Select?



Building up to our first architecture: Branching

Input A Input B

ALU
ALU: output C

Reg 1
Reg 2

Reg 3
Reg 4

Register File

Output 
Register
Control

Input A 
Register 
Control

Input B 
Register 
Control

Instruction
Memory
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 D
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eInstruction
FetchProgram 

Counter(PC)

In A reg select 

In B reg select

Op select
op = [+, -, x, /]

Out reg select

4

+

Memory 
Unit

Op select
op = [ld,st]

ld: data

Data 
Memory

st: data

ld/st: address

Branch Target Address Offset

MUX

PC+4

+

Branch: PC Source Select

Design Choice:
ALU output determines PC source select 
when branch condition evaluates 
Alternative Design?



A Complete (but slightly messy) RISCV-ish Datapath

Input A Input B

ALU
ALU: output C

Reg 1
Reg 2

Reg 3
Reg 4

Register File

Output 
Register
Control

Input A 
Register 
Control

Input B 
Register 
Control

Instruction
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Counter(PC)

In A reg select 

In B reg select

Op select
op = [+, -, x, /]

Out reg select
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Memory 
Unit

Op select
op = [ld,st]

ld: data

Data 
Memory

st: data

ld/st: address

Branch Target Address Offset

MUX

Branch: PC Source Select

PC+4

+



A “single-cycle” design

Input A Input B

ALU
ALU: output C

Reg 1
Reg 2

Reg 3
Reg 4

Register File
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Control

Input A 
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Control

Input B 
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Op select
op = [+, -, x, /]

Out reg select

4

+

Memory 
Unit

Op select
op = [ld,st]

ld: data

Data 
Memory

st: data

ld/st: address

Branch Target Address Offset

MUX

Branch: PC Source Select

PC+4

+

Clock



A “single-cycle” design

Input A Input B

ALU
ALU: output C

Reg 1
Reg 2

Reg 3
Reg 4

Register File

Output 
Register
Control

Input A 
Register 
Control

Input B 
Register 
Control

Instruction
Memory

In
st
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io
n

 D
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d

eInstruction
FetchProgram 

Counter(PC)

In A reg select 

In B reg select

Op select
op = [+, -, x, /]

Out reg select

4

+

Memory 
Unit

Op select
op = [ld,st]

ld: data

Data 
Memory

st: data

ld/st: address

Branch Target Address Offset

MUX

Branch: PC Source Select

PC+4

+

Clock

Key Idea:
Single-cycle design goes from reading an instruction 
out of memory all the way to writing results back to 
registers before the next clock edge.



Thinking about latency: ALU Operations

Input A Input B

ALU
ALU: output C
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ALU Operation Latency:
Circuit delay of ALU operations is (mostly) low.
Why?
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Thinking about latency: ALU Operations

Input A Input B

ALU
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Data 
Memory

st: data

ld/st: address

Address 
mode bits 
from 
decoded 
instruction

Address bits 
from registerALU Operation Latency:

Circuit delay of ALU operations is (mostly) low.
Sum of delay of 5 or 6 units depending on impl.
Need to fetch, decode, register access (in 1), reg access 
(in 2), ALU function, register writeback

Program 
Counter(PC)

4

+

Branch Target Address Offset

MUX

Branch: PC Source Select

PC+4

+



Thinking about latency: Memory

Input A Input B

ALU
ALU: output C
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Address bits 
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Memory Latency:
Memory accesses are pretty slow. Why?
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Thinking about latency: Memory

Input A Input B

ALU
ALU: output C
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op = [ld,st]

ld: data

Data 
Memory

st: data

ld/st: address

Address 
mode bits 
from 
decoded 
instruction

Address bits 
from register

Sum of delay of 7 or 8 units depending on counting 
Need to fetch, decode, register access (addr part 1), 
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Memory Latency – Critical Path:
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Implication of operation latencies?

• Single-cycle design means that the cycle time for the system is
defined by the latency of the longest-latency operation

• In our case, that would be the memory latency (and ALU latency has 
some slack from the cycle time)

• If every operation is not a memory operation, then we have over- 
provisioned the cycle time of the system



Where is the HW/SW Interface in the Datapath?
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Branch: PC Source Select



Where is the HW/SW Interface?

Input A Input B

ALU
ALU: output C

Reg 1
Reg 2

Reg 3
Reg 4

Register File

Output 
Register
Control

Input A 
Register 
Control

Input B 
Register 
Control

Instruction
Memory

In
st

ru
ct

io
n

 D
ec

o
d

eInstruction
FetchProgram 

Counter(PC)

In A reg select 

In B reg select

Op select
op = [+, -, x, /]
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This is where 
software begins!

Branch: PC Source Select



Instruction memory holds software
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Big Idea: Instruction Bits are Control Signals
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Big Idea: Instruction Bits are Control Signals
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00000100 00001000 00001001 00000001
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Input Register 1 Input Register 2 Output Register Operation Type

00000100 00000011 00000010 00000001
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Binary encoded: signals
directly interface to datapath
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Reg 4

x

Big Idea: Instruction Bits are Control Signals



Instruction Set Architecture

In
st

ru
ct

io
n

D
ec

od
e

In
st

ru
ct

io
n

Fe
tc

h

Input Register 1 Input Register 2 Output Register Operation Type

00000100 00000011 00000010 00000001

Register r4 Register r3 Register r2 Multiply

Binary encoded: signals
directly interface to datapath

Reg 1
Reg 2
Reg 3

Reg 4

x

The ISA defines the architecture of the machine

Any implementation of the architecture must 
support the features exposed through the ISA 
(why?)



Architecture vs. Microarchitecture
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The ISA defines the architecture of the machine

A microarchitecture implements the features of 
the architecture



Architecture vs. Microarchitecture

Input Register 1 Input Register 2 Output Register Operation Type

00000100 00000011 00000010 00000001

Register r4 Register r3 Register r2 Multiply

Reg 1
Reg 2
Reg 3

Reg 4

x

The ISA defines the architecture of the machine

A microarchitecture implements the features of 
the architecture

Architecture:
Register-register ALU ops, registers numbering 0-4

Microarchitecture:
One ALU containing a multiplier,
physical register file with registers numbering 0-3

ALU x



Architecture vs. Microarchitecture

Input Register 1 Input Register 2 Output Register Operation Type

00000100 00000011 00000010 00000001

Register r4 Register r3 Register r2 Multiply

Reg 1
Reg 2

Reg 3

Reg 4

+

For a given architecture there are many perfectly 
good microarchitectural implementations

Architecture:
Register-register ALU ops, registers numbering 0-4

x

Microarchitecture:
One ALU containing an adder; multiply w/ iterated addition, 
physical register file with registers numbering 0-3

ALU



Architecture vs. Microarchitecture

Input Register 1 Input Register 2 Output Register Operation Type

00000100 00000011 00000010 00000001

Register r4 Register r3 Register r2 Multiply

Reg 2Reg 1

Reg 3 Reg 4

+

For a given architecture there are many perfectly 
good microarchitectural implementations

Architecture:
Register-register ALU ops, registers numbering 0-4

x

Microarchitecture:
One ALU containing an adder; multiply w/ iterated addition, 
physical register file with registers numbering 0-3

ALU

SRAM Bank #1 SRAM Bank #2
Register File

Microarchitecture:
Two SRAM banks storing regs based on parity

Architecture:
Sequentially-numbered, general-purpose registers



Instruction Set Architecture
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Binary encoded: signals
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x

The ISA is the vocabulary of the machine

The ISA/vocabulary determines the types of 
programs/sentences that it is possible to write



What should go in the ISA?

Reduced Instruction Set Computer
Simple primitives:
Let software compose complex operations

Register operands:
Decouple functionality from memory accesses

Few total operations:
Usually only one way to do something

Complex Instruction Set Computer
Simple & complex operations:
Hardware provides complex functionality

Many operations:
Often several ways to do the same thing

Register and memory operands:
Operations may directly manipulate memory



What should go in the ISA?

Reduced Instruction Set Computer
Simple primitives:
Let software compose complex operations

Complex Instruction Set Computer
Simple & complex operations:
Hardware must support complex functionality

Register operands:
Decouple functionality from memory accesses

Few total operations:
Usually only one way to do something

Register and memory operands:
Operations may directly manipulate memory

Many operations:
Often several ways to do the same thing

Many cases to map to control 
signals in microarchitecturerd = M[imm] 

rd = M[reg]

rd = M[reg + imm] 

rd = M[PC + imm]

Plus all of these combinations

Few cases to map to control signals 
in microarchitecture



What should go in the ISA?

Reduced Instruction Set Computer Complex Instruction Set Computer

Simple primitives:
Let software compose complex operations

Register operands:
Decouple functionality from memory accesses

Few total operations:
Usually only one way to do something

Simple & complex operations:
Hardware must support complex functionality

Register and memory operands:
Operations may directly manipulate memory

Many operations:
Often several ways to do the same thing

What are the pros and cons of each?

How does RISC vs. CISC affect the microarchitecture,
compiler, program, programmer?



Principles of ISA Design

General Principles
Regularity – “Law of least astonishment”
Orthogonality – keep separable concerns separate 
Composability – regular, orthogonal ops combine easily

Specific Principles
One vs. All – precisely one way to do it, or all ways should be possible
Primitives, not solutions – solve by coding, compiling, & synthesizing

“Blatant opinions” (matters of taste)
Addressing – not limited to simple arrays, etc.
Environment Support – exceptions, processes, debugging, etc
Deviations – deviate from these rules only in implementation-specific ways



What did we just learn?

• Computer architectures define the HW/SW interface through the ISA

• There is a difference between architecture and microarchitecture

• Many valid microarch. implementations of an architecture exist

• RISC vs. CISC architectures are extrema on a spectrum

• Principles of ISA design (Wulf)



What to think about next?

• The basics of the RISCV-RV32I ISA and some other hw/sw interfaces

• More microarchitectural concepts
• Pipelining our microarchitecture & instruction-level parallelism

• Control hazards & branch prediction
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