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Today: Sparse Problems

• What is a sparse problem?  Why are they called “sparse”?

• What makes sparse problems hard?

• Roofline performance modeling

• Hardware and software strategies for optimizing sparse problems

(with acknowledgements to Vignesh Balaji, CMU ECE PhD 2021, now at Nvidia for contributions to this material) 



Graph Processing Problems are Sparse Problems

Path Planning Social network analysis Protein-Protein Interaction

The canonical examples of sparse problems are graph processing applications.



Machine Learning Problems are Sparse Problems

Graph Convolutional NetworksData Mining



What does a graph processing program look like?

for e in EL:
  dstData[e.dst] =     
     f(srcData[e.src],dstData[e.dst])

dstData

srcData
stores vertex property information
if srcData == dstData, updating in-place;
often “swap” srcData & dstData from 1 iteration to the next iteration 



What does a graph processing program look like?

PageRank(-ish){
  for e in EL:
    rank_n[e.dst] =     
      rank_nminus1[e.src] + rank_n[e.dst]
}

dstData

srcData rank_n is a webpage’s rank in this iteration, 
rank_nminus1 is rank_n from the last iteration



Graph Analytics can be mapped to Sparse Linear Algebra
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Graph Analytics can be mapped to Sparse Linear Algebra
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Graph Analytics can be mapped to Sparse Linear Algebra
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How do graph applications correspond to linear algebra?

10

Src

Dst
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Src

Dst

How do graph applications correspond to linear algebra?

1

Initial xi vector is starting vertex for BFS.

=

1

1

T

ATxi = xi+1

Matrix-transpose-vector product is one BFS iteration
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Src

Dst

How do graph applications correspond to linear algebra?

1

Initial xi vector is starting vertex for BFS.

=

1

1

T

ATxi = xi+1

Matrix-transpose-vector product is one BFS iteration

xi xi+1 

Initial xi+1 is vertices reachable from xi

A Transpose
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Src

Dst

How do graph applications correspond to linear algebra?

1 =

1

1

T

ATxi = xi+1

Matrix transpose vector product is one BFS iteration

xi xi+1 

The next iteration is computed by performing the next matrix 
transpose vector product

1

1

1
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Src

Dst

How do graph applications correspond to linear algebra?

1

=1

T

ATxi = xi+1

Matrix transpose vector product is one BFS iteration

xi xi+1 

The next iteration is computed by performing the next matrix 
transpose vector product

1

1

1

1

1

1
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Src

Dst

How do graph applications correspond to linear algebra?

1

=1

T

ATxi = xi+1

Matrix transpose vector product is one BFS iteration

xi xi+1 

The next iteration is computed by performing the next matrix 
transpose vector product

1

1

1

1

1

1

1

1

1

1

1

1

1

1

=

Search done when no new vertices added (or all 
visited)
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Src

Dst

How do graph applications correspond to linear algebra?

1

=1

T

ATxi = xi+1

Turns out that other graph applications also correspond to 
roughly this formulation if you change the operations you 
use (min/+ instead of +/*) or consider weighted edges

xi xi+1 

SSSP, BFS, PageRank, Connected-Components, Betweenness-
Centrality, triangle counting…   BFS is a representative sparse problem.

1

1

1

1

1

1

1

1

1

1

1

1

1

1

=

Search done when no new vertices added (or all 
visited)



Nobody EVER uses the adjacency matrix!
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Src

Dst
Why would the Adjacency Matrix not be used?



Nobody EVER uses the adjacency matrix!
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Src

Dst Reasons Adjacency Matrix is never used:
● Sparsity: % of Non-Zero Entries ~ 10-5

● Total Size: 32M nodes => (32M * 32M) = 1PB
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Src

Dst

Offsets Array (OA)

Neighbors Array (NA)

Compressed Sparse Row (CSR) 
Outgoing Neighbors

Compressed Sparse Data Structures for Feasible Memory Size

21 12 1
Vertex Property Array 
i.e., srcData / dstData

Often we will leave the vertex property array 
implicitly defined when we talk about sparse 
structures, but it is always there
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Src

Dst

Offsets Array (OA)

Neighbors Array (NA)

Compressed Sparse Row (CSR) 
Outgoing Neighbors

EdgeList sorted by 
SrcIDs

Compressed Sparse Data Structures for Feasible Memory Size

OA indexed by vertex ID of src of edge
Value in OA is offset into NA

start index for edges w/ src == vertex i = OA[i]
#edges with src == vertex i = OA[i+1] – OA[i]

Dense encoding of sparse structure

index is src id
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Src

Dst

Offsets Array (OA)

Neighbors Array (NA)

Compressed Sparse Row (CSR) 
Outgoing Neighbors

Compressed Sparse Column (CSC)
Incoming Neighbors

Offsets Array (OA)

Neighbors Array (NA)

EdgeList sorted by 
DstIDs

EdgeList sorted by 
SrcIDs

The CSC is the transpose of the CSR

Compressed Sparse Data Structures for Feasible Memory Size



Building the CSR / CSC from a Graph’s Edge List
for e in EL:
  neigh_count[e.dst]++; /*e.src*/

2 1 1 2 1 neigh_count



Building the CSR / CSC from a Graph’s Edge List
for e in EL:
  neigh_count[e.dst]++; /*e.src*/

2 1 1 2 1 neigh_count

sum = 0
for i in 0 .. |V|:
  tmp = neigh_count[i]
  neigh_count[i] = sum;
  neigh_count_dup[i] = sum;
  sum += tmp

2 1 1 2 1 neigh_count_dup



Building the CSR / CSC from a Graph’s Edge List
for e in EL:
  neigh_count[e.dst]++; /*e.src*/

2 1 1 2 1 neigh_count

sum = 0
for i in 0 .. |V|:
  tmp = neigh_count[i]
  neigh_count[i] = sum; //OA
  neigh_count_dup[i] = sum;
  sum += tmp

0 2 3 4 6 OA (also OA_dup)



Building the CSR / CSC from a Graph’s Edge List

for e in EL:
  neigh_ind = OA[e.src]
  NA[neigh_ind] = e.dst
  OA[e.src]++ /*sacrificial OA*/
//i.e., NA[ OA[e.src]++ ] = e.dst

0 2 3 4 6 OA (also OA_dup)

0 2 3 4 6 OA_dup

1 0 0 0 0 NA2 2

Completed CSC



Src

Dst
for dst in G: 
 for src in in_neighs(dst):
   dstData[dst] += srcData[src]

Pull (CSC Traversal)

OA

NA

CSC 
26

Compressed Representations ⇒ Irregular Memory Accesses

dstData

srcData

e.g., current rank of page I, 
e.g., current shortest path 
from source vertex

i.e., xi+1 

0 1 2 3 4

5 20 10 2 1

Pull traversal performs irregular read operations that lack locality



Src

Dst
for src in G: 
 for dst in out_neighs(src):
   dstData[dst] += srcData[src]

Push (CSR Traversal)

OA

NA

CSR 
27

Compressed Representations ⇒ Irregular Memory Accesses

dstData

srcData

e.g., current rank of page I, 
e.g., current shortest path 
from source vertex

i.e., xi+1 

0 1 2 3 4

5 20 10 2 1

Push traversal performs irregular write operations that lack locality



Src

Dst
for src in G: 
 for dst in out_neighs(src):
   dstData[dst] += srcData[src]

Push (CSR Traversal)

OA

NA

CSR 
28

Compressed Representations ⇒ Irregular Memory Accesses

dstData

srcData

e.g., current rank of page I, 
e.g., current shortest path 
from source vertex

i.e., xi+1 

0 1 2 3 4

5 20 10 2 1

Push traversal performs irregular write operations that lack locality

Irregular Data Footprint >> LLC Size

Size of srcData ~ 256MB (32M vertices * 8B)



Right Figure from “Optimizing Cache Performance for Graph Analytics” ArXiv v1; 
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LLC Miss Rate (%)

Irregular Accesses Lead to Poor Locality

Running on RMAT27 
Graph w/ 35MB LLC

Why such bleak cache performance?
Consequence of bleak cache performance? 



Right Figure from “Optimizing Cache Performance for Graph Analytics” ArXiv v1; 
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LLC Miss Rate (%)

Irregular Accesses Lead to Poor Locality

Running on RMAT27 
Graph w/ 35MB LLC

0 0 0 0 0

dstData
Remember: dstData[e.dst] ++
and e.dst is random, from edge list

Dst coordinate of edge is index in dstData:
totally input dependent & random!!!



Right Figure from “Optimizing Cache Performance for Graph Analytics” ArXiv v1; 

31

LLC Miss Rate (%)

Irregular Accesses Lead to Poor Locality

Running on RMAT27 
Graph w/ 35MB LLC

0 0 0 0 0

dstData
Remember: dstData[e.dst] ++
and e.dst is random, from edge list

0

miss

Dst coordinate of edge is index in dstData:
totally input dependent & random!!!



Right Figure from “Optimizing Cache Performance for Graph Analytics” ArXiv v1; 
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LLC Miss Rate (%)

Irregular Accesses Lead to Poor Locality

Running on RMAT27 
Graph w/ 35MB LLC

0

0 0 0 0

dstData
Remember: dstData[e.dst] ++
and e.dst is random, from edge list

0

0

miss

Dst coordinate of edge is index in dstData:
totally input dependent & random!!!



Right Figure from “Optimizing Cache Performance for Graph Analytics” ArXiv v1; 

33

LLC Miss Rate (%)

Irregular Accesses Lead to Poor Locality

Running on RMAT27 
Graph w/ 35MB LLC

0

0 0 0 0

dstData
Remember: dstData[e.dst] ++
and e.dst is random, from edge list

0

0

hit

Dst coordinate of edge is index in dstData:
totally input dependent & random!!!

(You get lucky sometimes)



Right Figure from “Optimizing Cache Performance for Graph Analytics” ArXiv v1; 
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LLC Miss Rate (%)

Irregular Accesses Lead to Poor Locality

Running on RMAT27 
Graph w/ 35MB LLC

0 0 0 0

dstData
Remember: dstData[e.dst] ++
and e.dst is random, from edge list

0

0

miss

0

Dst coordinate of edge is index in dstData:
totally input dependent & random!!!



Right Figure from “Optimizing Cache Performance for Graph Analytics” ArXiv v1; 
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LLC Miss Rate (%)

Irregular Accesses Lead to Poor Locality

Running on RMAT27 
Graph w/ 35MB LLC

0 0 0 0

dstData
Remember: dstData[e.dst] ++
and e.dst is random, from edge list

0

miss

0 0

Dst coordinate of edge is index in dstData:
totally input dependent & random!!!



Right Figure from “Optimizing Cache Performance for Graph Analytics” ArXiv v1; 
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LLC Miss Rate (%)

Irregular Accesses Lead to Poor Locality

Running on RMAT27 
Graph w/ 35MB LLC

0 0 0 0

dstData
Remember: dstData[e.dst] ++
and e.dst is random, from edge list

0

miss

0

Dst coordinate of edge is index in dstData:
totally input dependent & random!!!

0



Right Figure from “Optimizing Cache Performance for Graph Analytics” ArXiv v1; 
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LLC Miss Rate (%)

Irregular Accesses Lead to Poor Locality

Running on RMAT27 
Graph w/ 35MB LLC

0 0 0 0

dstData
Remember: dstData[e.dst] ++
and e.dst is random, from edge list

0

miss

0

Dst coordinate of edge is index in dstData:
totally input dependent & random!!!

0



Right Figure from “Optimizing Cache Performance for Graph Analytics” ArXiv v1; 

38

Cycles stalled on DRAM / Total CyclesLLC Miss Rate (%)

Irregular Accesses Lead to Poor Locality

Cache miss latency cannot be hidden by anything else 
in the program.  Each miss incurs DRAM latency!



Right Figure from “Optimizing Cache Performance for Graph Analytics” ArXiv v1; 
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Cycles stalled on DRAM / Total CyclesLLC Miss Rate (%)

Irregular Accesses Lead to Poor Locality

Problem: Sparse representations make processing large graphs feasible, but 
graph processing still entails a large working set with poor locality



Even Building the CSR / CSC is an Irregular Access Pattern!
for e in EL:
  neigh_count[e.dst]++; 

2 1 1 2 1 neigh_count

Why is this irregular?



Even Building the CSR / CSC is an Irregular Access Pattern!
for e in EL:
  neigh_count[e.dst]++; /*e.src*/

2 1 1 2 1 neigh_count

Updates to the neigh_count 
array are to random elements 
determined by order of edges 
in edge list



Even Building the CSR / CSC is an Irregular Access Pattern!

Why is the NA update part irregular?

for e in EL:
  NA[ OA[e.src]++ ] = e.dst

0 2 3 4 6 OA

1 0 0 0 0 NA2 2

Completed CSC



Even Building the CSR / CSC is an Irregular Access Pattern!

Updates to NA based on EL order & OA[e.src]
NA[ OA[e.src]++ ] = e.dst

for e in EL:
  NA[ OA[e.src]++ ] = e.dst

0 2 3 4 6 OA

1 0 0 0 0 NA2 2

Completed CSC



Roofline Performance Analysis of Graph Applications

44



The Roofline Model

45

Throughput
(operations per 

second)

Operational Intensity 
(operations per byte)

Peak ops/s

Compute-
Bound

Memory-
Bound

GFLOPS = Giga-Floating 
Point Operations Per Second

Yes, this is not a proper acronym



The Roofline Model
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Throughput
(GFLOP/s)

Operational Intensity 
(FLOPS/Byte)

Compute-
Bound

Memory-
Bound

Peak FLOPS

App 2

App 1

What does Roofline help us 
understand about a program?



The Roofline Model
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Throughput
(GFLOP/s)

Operational Intensity 
(FLOPS/Byte)

Compute-
Bound

Memory-
Bound

Peak FLOPS

App 2

App 1
What does Roofline help us 

understand about a program?
Tell us what limits performance 
& how close to peak an app is.



The Roofline Model
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Throughput
(GFLOP/s)

Operational Intensity 
(FLOPS/Byte)

Compute-
Bound

Memory-
Bound

Peak FLOPS

App 2

App 1

“Ridge point” is a 
property of a 
particular machine

What does Roofline help us 
understand about a program?

Tell us what limits performance 
& how close to peak an app is.



The Roofline Model
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Throughput
(GFLOP/s)

Operational Intensity 
(FLOPS/Byte)

Compute-
Bound

Memory-
Bound

Peak FLOPS

App 2

App 1
As a program does more operations per 
byte, memory has more time to deliver 
next byte, relieving Mem BW pressure 

& increasing compute pressure

“Ridge point” is a 
property of a 
particular machine



The Roofline Model
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Throughput
(GFLOP/s)

Operational Intensity 
(FLOPS/Byte)

Compute-
Bound

Memory-
Bound

Peak FLOPS

App 2

App 1

“Ridge point” is a 
property of a 
particular machine

What is this point?

As a program does more operations 
per byte, memory has more time to 

deliver next byte, relieving Mem BW 
pressure & increasing compute 

pressure



The Roofline Model

51

Throughput
(GFLOP/s)

Operational Intensity 
(FLOPS/Byte)

Compute-
Bound

Memory-
Bound

Peak FLOPS

App 2

App 1
What is this point?

As a program does more operations 
per byte, memory has more time to 

deliver next byte, relieving Mem BW 
pressure & increasing compute 

pressure

Compare App1 and App2.  What 
are they doing differently from 
one another?



Operational Intensity of Irregular Graph Applications
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for e in EL:
  dstData[e.dst] += srcData[e.src]

What is the operational intensity of a 
random update kernel like this one?



Operational Intensity of Irregular Graph Applications
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for e in EL:
  dstData[e.dst] += srcData[e.src]

What is the operational intensity of a 
random update kernel like this one?
Operations per byte:



Operational Intensity of Irregular Graph Applications
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for e in EL:
  dstData[e.dst] += srcData[e.src]

What is the operational intensity of a random 
update kernel like this one?
Operations per byte:
Operations: 1 addition
Bytes to Load: 8B for edge, 4B srcData, 4B dstData
Operational Intensity = 1 / (8+4+4) = 1/16



Graph Applications are Memory-Bound
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Throughput
(GFLOP/s)

Operational Intensity 
(FLOPS/Byte)

Compute-
Bound

Memory-
Bound

Peak 
FLOPS

2501/16



Graph Applications are Memory-Bound

56

Throughput
(GFLOP/s)

Operational Intensity 
(FLOPS/Byte)

Compute-
Bound

Memory-
Bound

Peak 
FLOPS

2501/16

DRAM BW utilization in graph 
apps is ~50%

Why would we have spare 
BW capacity to go to 
memory and not use it?



Graph Applications are Memory-Bound
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Throughput
(GFLOP/s)

Operational Intensity 
(FLOPS/Byte)

Compute-
Bound

Memory-
Bound

Peak 
FLOPS

2501/16

DRAM BW utilization in 
graph apps is ~50%

Why would we have 
spare BW capacity to go 
to memory and not use 
it?

Don’t know what to fetch 
next (no temporal 
locality), can’t use extra 
stuff we fetch (no spatial 
locality).  Limited ability 
to send more memory 
requests (limited mem. 
parallelism).  



Graph Applications are Memory-Bound
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Throughput
(GFLOP/s)

Operational Intensity 
(FLOPS/Byte)

Compute-
Bound

Memory-
Bound

Peak 
FLOPS

2501/16

How to improve BW 
utilization?

Option #1: Improve Locality → 
Reduce Bytes moved → Improve OI



Graph Applications are Memory-Bound
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Throughput
(GFLOP/s)

Operational Intensity 
(FLOPS/Byte)

Compute-
Bound

Memory-
Bound

Peak 
FLOPS

2501/16

Option #1: Improve Locality → 
Reduce Mem→ Improve OI

Option #2: Improve Memory to 
handle more parallel requests

How to improve BW 
utilization?



Operational Intensity of Irregular Graph Applications
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for e in EL:
  dstData[e.dst] += srcData[e.src]

Ideal Best Possible Operational Intensity?
Operations per byte:
Operations: 1 addition
Bytes to Load:
Operational Intensity =



Ideal Operational Intensity of Irregular Graph Applications
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for e in EL:
  dstData[e.dst] += srcData[e.src]

Ideal Best Possible Operational Intensity?
Operations per byte:
Operations: 1 addition
Bytes to Load: 8B for edge, 0B srcData, 0B dstData
Operational Intensity = 1 / (8+0+0) = 1/8
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Throughput
(GFLOP/s)

Operational Intensity 
(FLOPS/Byte)

Compute-
Bound

Memory-
Bound

Peak 
FLOPS

2501/16 1/8

Improving Performance by Improving Locality
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Throughput
(GFLOP/s)

Operational Intensity 
(FLOPS/Byte)

Compute-
Bound

Memory-
Bound

Peak 
FLOPS

2501/16 1/8

Improving Performance by Improving Locality

Locality wins: If we can operate 
out of cache, higher ceiling. 

Why is cache BW > DRAM BW? 
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Throughput
(GFLOP/s)

Operational Intensity 
(FLOPS/Byte)

Compute-
Bound

Memory-
Bound

Peak 
FLOPS

2501/16 1/8

Improving Performance by Improving Locality

Locality wins: If we can operate out 
of cache, higher ceiling & more 
leftward ridge point. 

Why is cache BW > DRAM BW?
Smaller SRAM caches much faster. 
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Throughput
(GFLOP/s)

Operational Intensity 
(FLOPS/Byte)

Compute-
Bound

Memory-
Bound

Peak 
FLOPS

2501/16 1/8

Improving Performance by Improving Locality

Locality wins: If we can operate out 
of cache, higher ceiling & more 
leftward ridge point. 

Why is cache BW > DRAM BW?
Smaller SRAM caches much faster. 

Key Question: How to improve 
locality, to reduce data movement, 
for peak performance?



Propagation Blocking: Optimizing Sparse 
Irregular Writes to Improve Cache Locality 
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Propagation Blocking: Reorganize Input to Make 
Memory Being Randomly Written Fit in Cache

0 0 0 0 0

Recall: irregular accesses into
vertex data array based on 
e.dst which are essentially random

Bad for the cache: the size of the domain of 
vertex data array entries is |V|, but the 
cache holds only |C| << |V| entries|Domain| = |V| = 5 vertices

|Cache| = 2 vertices
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Propagation Blocking: Reorganize Input to Make 
Memory Being Randomly Written Fit in Cache

0 0 0 0 0

Recall: irregular accesses into
vertex data array based on 
e.dst which are essentially random

Bad for the cache: the size of the domain of 
vertex data array entries is |V|, but the 
cache holds only |C| << |V| entries|Domain| = |V| = 5 vertices

|Cache| = 2 vertices

Key idea in propagation blocking: Limit the domain of updates to a sub-space of vertices, 
V*, so that |V*| <= |C| and do multiple sub-spaces of V*s, so that all V*s together = V
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Propagation Blocking: Reorganize Input to Make 
Memory Being Randomly Written Fit in Cache

0 0 0 0 0

dstData
Remember: dstData[e.dst] ++
and e.dst is random, from edge list

Create “Bins” that hold input elements (edges 
from the edge list)

Bin 0: 
dst 0-1

Bin 1: 
dst 2-3

Bin 2: 
dst 4-5

0    1

2    0

1    0

0    2

2    3

0    3

0    4
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Propagation Blocking: Reorganize Input to Make 
Memory Being Randomly Written Fit in Cache

0 0 0 0 0

dstData
Remember: dstData[e.dst] ++
and e.dst is random, from edge listExecute the kernel for one bin at a time

Bin 0: 
dst 0-1

Bin 1: 
dst 2-3

Bin 2: 
dst 4-5

0    1

2    0

1    0

0    2

2    3

0    3

0    4
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Propagation Blocking: Reorganize Input to Make 
Memory Being Randomly Written Fit in Cache

0 0 0 0 0

dstData
Remember: dstData[e.dst] ++
and e.dst is random, from edge listExecute the kernel for one bin at a time

Bin 0: 
dst 0-1

Bin 1: 
dst 2-3

Bin 2: 
dst 4-5

0    1

2    0

1    0

0    2

2    3

0    3

0    4

0
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Propagation Blocking: Reorganize Input to Make 
Memory Being Randomly Written Fit in Cache

0 0 0 0 0

dstData
Remember: dstData[e.dst] ++
and e.dst is random, from edge listExecute the kernel for one bin at a time

Bin 0: 
dst 0-1

Bin 1: 
dst 2-3

Bin 2: 
dst 4-5

0    1

2    0

1    0

0    2

2    3

0    3

0    4

00
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Propagation Blocking: Reorganize Input to Make 
Memory Being Randomly Written Fit in Cache

0 0 0 0 0

dstData
Remember: dstData[e.dst] ++
and e.dst is random, from edge listExecute the kernel for one bin at a time

Bin 0: 
dst 0-1

Bin 1: 
dst 2-3

Bin 2: 
dst 4-5

0    1

2    0

1    0

0    2

2    3

0    3

0    4

00

hit
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Propagation Blocking: Reorganize Input to Make 
Memory Being Randomly Written Fit in Cache

0 0 0 0 0

dstData
Remember: dstData[e.dst] ++
and e.dst is random, from edge listExecute the kernel for one bin at a time

Bin 0: 
dst 0-1

Bin 1: 
dst 2-3

Bin 2: 
dst 4-5

0    1

2    0

1    0

0    2

2    3

0    3

0    4

00
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Propagation Blocking: Reorganize Input to Make 
Memory Being Randomly Written Fit in Cache

0 0 0 0 0

dstData
Remember: dstData[e.dst] ++
and e.dst is random, from edge listExecute the kernel for one bin at a time

Bin 0: 
dst 0-1

Bin 1: 
dst 2-3

Bin 2: 
dst 4-5

0    1

2    0

1    0

0    2

2    3

0    3

0    4

0 0
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Propagation Blocking: Reorganize Input to Make 
Memory Being Randomly Written Fit in Cache

0 0 0 0 0

dstData
Remember: dstData[e.dst] ++
and e.dst is random, from edge listExecute the kernel for one bin at a time

Bin 0: 
dst 0-1

Bin 1: 
dst 2-3

Bin 2: 
dst 4-5

0    1

2    0

1    0

0    2

2    3

0    3

0    4

0 0

hit
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Propagation Blocking: Reorganize Input to Make 
Memory Being Randomly Written Fit in Cache

0 0 0 0 0

dstData
Remember: dstData[e.dst] ++
and e.dst is random, from edge list

How to decide how many vertices go in 
each of your Propagation Blocker’s bins?

Bin 0: 
dst 0-1

Bin 1: 
dst 2-3

Bin 2: 
dst 4-5

0    1

2    0

1    0

0    2

2    3

0    3

0    4

0 0

hit
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Propagation Blocking: Reorganize Input to Make 
Memory Being Randomly Written Fit in Cache

0 0 0 0 0

dstData
Remember: dstData[e.dst] ++
and e.dst is random, from edge list

Match destinations per bin to number of 
vertices worth of dstData that can fit in cache 
at one time

Bin 0: 
dst 0-2

Bin 1: 
dst 3-5

0    1

2    0

1    0

0    2 2    3

0    3 0

hit

0 0

0    4
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Propagation Blocking: Performance Analysis

0 0 0 0 0

dstData
Remember: dstData[e.dst] ++
and e.dst is random, from edge list

Traverse the edge list twice instead of once

Bin 0: 
dst 0-2

Bin 1: 
dst 3-5

0    1

2    0

1    0

0    2 2    3

0    3 0

hit

0 0

0    4

Binning Bin Read
All locations written fit in cache!  Compulsory 
misses on dstData[] only: all the rest hit.



80

Propagation Blocking: Performance Analysis

0 0 0 0 0

dstData
Remember: dstData[e.dst] ++
and e.dst is random, from edge list

Traverse the edge list twice instead of once

Bin 0: 
dst 0-2

Bin 1: 
dst 3-5

0    1

2    0

1    0

0    2 2    3

0    3 0

hit

0 0

0    4

Binning Bin Read
All locations written fit in cache!  Compulsory 
misses on dstData[] only: all the rest hit.

What about the performance of reading the 
edge list during binning?
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Propagation Blocking: Performance Analysis

0 0 0 0 0

dstData
Remember: dstData[e.dst] ++
and e.dst is random, from edge list

Traverse the edge list twice instead of once

Bin 0: 
dst 0-2

Bin 1: 
dst 3-5

0    1

2    0

1    0

0    2 2    3

0    3 0 0 0

0    4

Binning Bin Read

Usually save a little space in cache for 
streaming edge list data.  Easy to cache.

What about propagation blocking for irregular reads?

Streaming

Random Access, but always in cache



Propagation Blocking

PropagationBlocking_EdgeCount(EdgeList E){

  Bins B[];

  for edge in E{

    add_to_bin( find_bin(edge) )

  }

  for bin in B{

    for e in bin{

      dstData[e.dst]++

    }

  }

}

Application of Propagation Blocking for Graph Applications (Page Rank only, at first) discovered in 2017
(Prior work on “radix partitioning” applied the idea to other domains, but not graphs)



Cache Locality determines Overall Performance
What about better replacement policies?
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Existing Replacement Policies Are Insufficient
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Lower is 
Better



Existing Replacement Policies Are Insufficient
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State-of-the-Art
Policies

Lower 
is 

Better



Existing Replacement Policies Are Insufficient
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State-of-the-Art
Policies

Marginal Benefit 
over LRU

Lower is 
Better



Existing Replacement Policies Are Insufficient
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State-of-the-
Art

Policies

Marginal Benefit 
over LRU

Lower 
is 

BetterProblem: Heuristics used by SOTA policies fail to 
capture the complex reuse patterns of graph data
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Is It Possible To Do Better Cache Replacement?

E1
...

Enew

Elements 
in Cache

Element To Be 
Inserted

E2

Ek

Belady’s MIN Replacement Policy
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E1
...

Enew

Elements 
in Cache

Element To Be 
Inserted

E2

Ek

Time

Belady’s MIN Replacement Policy

Next 
References

Is It Possible To Do Better Cache Replacement?
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E1
...

Enew

Elements 
in Cache

Element To 
Be Inserted

E2

Ek

Time

Evict the element 
accessed furthest in the 

future

Next 
References

Belady’s MIN Replacement Policy

Is It Possible To Do Better Cache Replacement?



91

E1
...

Enew

Elements 
in Cache

Element To Be 
Inserted

E2

Ek

Time

Evict the element 
accessed furthest in the 

future

Next 
References

Belady’s MIN Replacement Policy

Is It Possible To Do Better Cache Replacement?

Recall:  Prescience 
required. Problem?
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E1
...

Enew

Elements 
in Cache

Element To Be 
Inserted

E2

Ek

Time

Evict the element 
accessed furthest in the 

future

Key Observation: The Graph’s Transpose Efficiently Encodes Future Accesses

Belady’s MIN Replacement Policy

Is It Possible To Do Better Cache Replacement? YES!

Prescience is a 
flawed requirement: 

any hope?
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Key Graph Application Property That Enables Belady’s OPT



Key Graph Application Property That Enables Belady’s OPT
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Src

Dst

for dst in G: 
 for src in in_neighs(dst): 
  dstData[dst] += srcData[src]

Pull Execution (CSC Traversal)

OA

NA

CSC 
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Src

Dst

for dst in G: 
 for src in in_neighs(dst):
  dstData[dst] += srcData[src]

OA

NA

CSC 

srcData[S1]

srcData[S2]

srcData[S4]

srcData[S2]

srcData[S3]

D0

D0

D0

D1

D1

. . 
. 

Time

Irregular Data StreamCurrDs
t

Key Graph Application Property That Enables Belady’s OPT
Pull Execution (CSC Traversal)
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Src

Dst

for dst in G: 
 for src in in_neighs(dst):
  dstData[dst] += srcData[src]

OA

NA

CSC 

srcData[S1]

srcData[S2]

srcData[S4]

srcData[S2]

srcData[S3]

D0

D0

D0

D1

D1

. . 
. 

Time

Key Property: Dst-IDs 
are like timestamps for 

irregular accesses

Irregular Data StreamCurrDs
t

Key Graph Application Property That Enables Belady’s OPT
Pull Execution (CSC Traversal)
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Src

Dst

for dst in G: 
 for src in in_neighs(dst):
  dstData[dst] += srcData[src]

OA

NA

CSC 

srcData[S1]

srcData[S2]

srcData[S4]

srcData[S2]

srcData[S3]

D0

D0

D0

D1

D1

. .
 . 

Time

Irregular Data StreamCurrDs
t

Key Graph Application Property That Enables Belady’s OPT

Key Property: Dst-IDs 
are like timestamps for 

irregular accesses

Pull Execution (CSC Traversal)
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Src

Dst

for dst in G: 
 for src in in_neighs(dst):
  dstData[dst] += srcData[src]

OA

NA

CSC 

srcData[S1]

srcData[S2]

srcData[S4]

srcData[S2]

srcData[S3]

D0

D0

D0

D1

D1

. .
 . 

Time

Irregular Data StreamCurrDs
t

Key Graph Application Property That Enables Belady’s OPT

Key Property: Dst-IDs 
are like timestamps for 

irregular accesses

Pull Execution (CSC Traversal)
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Src

Dst

for dst in G: 
 for src in in_neighs(dst):
  dstData[dst] += srcData[src]

OA

NA

CSC 

srcData[S1]

srcData[S2]

srcData[S4]

srcData[S2]

srcData[S3]

D0

D0

D0

D1

D1

. . 
. 

Time

srcData[S2] is accessed 
at D0 ⇒ D1 ⇒ D3

Irregular Data StreamCurrDs
t

Key Graph Application Property That Enables Belady’s OPT

Key Property: Dst-IDs 
are like timestamps for 

irregular accesses

Pull Execution (CSC Traversal)



100

Using The Graph’s Transpose For Optimal Replacement
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Src

Dst

for dst in G: 
 for src in in_neighs(dst):
  dstData[dst] += srcData[src]

srcData[S1]

srcData[S2]

srcData[S4]

srcData[S2]

srcData[S3]

D0

D0

D0

D1

D1

. . 
. 

Time

2-way Set-Associative 
Cache

Assumptions:
1. One srcData elem per line
2. Only irregular data enters 

the cache

Irregular Data StreamCurrDs
t

Using The Graph’s Transpose For Optimal Replacement
Pull Execution (CSC Traversal)



102

Src

Dst

for dst in G: 
 for src in in_neighs(dst):
  dstData[dst] += srcData[src]

srcData[S1]

srcData[S2]

srcData[S4]

srcData[S2]

srcData[S3]

D0

D0

D0

D1

D1

. . 
. 

Time

2-way Set-Associative 
Cache

Irregular Data StreamCurrDs
t

Using The Graph’s Transpose For Optimal Replacement
Pull Execution (CSC Traversal)
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Src

Dst

for dst in G: 
 for src in in_neighs(dst):
  dstData[dst] += srcData[src]

srcData[S1]

srcData[S2]

srcData[S4]

srcData[S2]

srcData[S3]

D0

D0

D0

D1

D1

. . 
. 

Time

srcData[S1]

2-way Set-Associative 
Cache

Irregular Data StreamCurrDs
t

Using The Graph’s Transpose For Optimal Replacement
Pull Execution (CSC Traversal)
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Src

Dst

for dst in G: 
 for src in in_neighs(dst):
  dstData[dst] += srcData[src]

srcData[S1]

srcData[S2]

srcData[S4]

srcData[S2]

srcData[S3]

D0

D0

D0

D1

D1

. . 
. 

Time

srcData[S1]

srcData[S2]

2-way Set-Associative 
Cache

Irregular Data StreamCurrDs
t

Using The Graph’s Transpose For Optimal Replacement
Pull Execution (CSC Traversal)
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Src

Dst

for dst in G: 
 for src in in_neighs(dst):
  dstData[dst] += srcData[src]

srcData[S1]

srcData[S2]

srcData[S4]

srcData[S2]

srcData[S3]

D0

D0

D0

D1

D1

. . 
. 

Time

srcData[S1]

srcData[S2]

2-way Set-Associative 
Cache

Which line should we evict?: 
● srcData[S1] 
● srcData[S2]

Irregular Data StreamCurrDs
t

Using The Graph’s Transpose For Optimal Replacement
Pull Execution (CSC Traversal)
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Src

Dst

for dst in G: 
 for src in in_neighs(dst):
  dstData[dst] += srcData[src]

srcData[S1]

srcData[S2]

srcData[S4]

srcData[S2]

srcData[S3]

D0

D0

D0

D1

D1

. . 
. 

Time

srcData[S1]

srcData[S2]

2-way Set-Associative 
Cache

Which line should we evict?: 
● srcData[S1]  (nextRef @ D4)
● srcData[S2]

D0 D4Out-Neigh(S1):

Irregular Data StreamCurrDs
t

Using The Graph’s Transpose For Optimal Replacement

CS
R

Pull Execution (CSC Traversal)
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Src

Dst

for dst in G: 
 for src in in_neighs(dst):
  dstData[dst] += srcData[src]

srcData[S1]

srcData[S2]

srcData[S4]

srcData[S2]

srcData[S3]

D0

D0

D0

D1

D1

. . 
. 

Time

srcData[S1]

srcData[S2]

2-way Set-Associative 
Cache

Which line should we evict?: 
● srcData[S1]  (nextRef @ D4)
● srcData[S2]  (nextRef @ D1)

D0 D1Out-Neigh(S2): D3

Irregular Data StreamCurrDs
t

Using The Graph’s Transpose For Optimal Replacement

CS
R

Pull Execution (CSC Traversal)
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Src

Dst

for dst in G: 
 for src in in_neighs(dst):
  dstData[dst] += srcData[src]

srcData[S1]

srcData[S2]

srcData[S4]

srcData[S2]

srcData[S3]

D0

D0

D0

D1

D1

. .
 . 

Time

srcData[S1]

srcData[S2]

2-way Set-Associative 
Cache

Which line should we evict?: 
● srcData[S1]  (nextRef @ D4) 
● srcData[S2]  (nextRef @ D1)

Irregular Data StreamCurrDs
t

Using The Graph’s Transpose For Optimal Replacement
Pull Execution (CSC Traversal)
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Src

Dst

for dst in G: 
 for src in in_neighs(dst):
  dstData[dst] += srcData[src]

srcData[S1]

srcData[S2]

srcData[S4]

srcData[S2]

srcData[S3]

D0

D0

D0

D1

D1

. . 
. 

Time

srcData[S1]

srcData[S2]

2-way Set-Associative 
Cache

Which line should we evict?: 
● srcData[S1]  (nextRef @ D4) 
● srcData[S2]  (nextRef @ D1)

Irregular Data StreamCurrDs
t

Using The Graph’s Transpose For Optimal Replacement
Pull Execution (CSC Traversal)

Key Question: how to query next 
reference while running the program?
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Src

Dst

for dst in G: 
 for src in in_neighs(dst):
  dstData[dst] += 
srcData[src]

srcData[S1]

srcData[S2]

srcData[S4]

srcData[S2]

srcData[S3]

D0

D0

D0

D1

D1

. . 
. 

Time

srcData[S1]

srcData[S2]

2-way Set-Associative 
Cache

Which line should we evict?: 
● srcData[S1]  (nextRef @ D4) 

● srcData[S2]  (nextRef @ D1)

Irregular Data 
Stream

CurrDs
t

Using The Graph’s Transpose For Optimal Replacement
Pull Execution (CSC Traversal)

For a pull execution (CSC-traversal), the transpose (CSR) contains 
all the necessary OPT replacement information

For a push execution (CSR-traversal), the transpose (CSC) 
contains all the necessary OPT replacement information
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Src

Dst

for dst in G: 
 for src in in_neighs(dst):
  dstData[dst] += 
srcData[src]

srcData[S1]

srcData[S2]

srcData[S4]

srcData[S2]

srcData[S3]

D0

D0

D0

D1

D1

. .
 . 

Time

srcData[S1]

srcData[S2]

2-way Set-Associative 
Cache

Which line should we evict?: 
● srcData[S1]  (nextRef @ D4) 

● srcData[S2]  (nextRef @ D1)

Irregular Data 
Stream

CurrDs
t

Using The Graph’s Transpose For Optimal Replacement
Pull Execution (CSC Traversal)

For a pull execution (CSC-traversal), the transpose (CSR) contains 
all the necessary OPT replacement information

For a push execution (CSR-traversal), the transpose (CSC) 
contains all the necessary OPT replacement information



Transpose-based OPT (T-OPT) Provides Large Gains 
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Transpose-based OPT (T-OPT) Provides Large Gains 

1.7X



Transpose-based OPT (T-OPT) Incurs Overheads
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Src

Dst

Set-Associative Cache

Finding Next References 
Using The Transpose

SrcData[S2]
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Src

Dst

Set-Associative Cache

Finding Next References 
Using The Transpose

SrcData[S2] OA

NA

CSR (Transpose) 

DRAM Access overhead

Transpose 
accesses are 

irregular

Transpose-based OPT (T-OPT) Incurs Overheads
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Src

Dst

Set-Associative Cache

Finding Next References 
Using The Transpose

SrcData[S2] OA

NA

CSR (Transpose) 

DRAM Access overhead Runtime Traversal overhead

D0 D1Out-Neigh(S2): D3

Need to scan neighbors

Transpose-based OPT (T-OPT) Incurs Overheads
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Src

Dst

Set-Associative Cache

Finding Next References 
Using The Transpose

SrcData[S2]

DRAM Access overhead

Question: How do we retrieve the next reference 
information from the graph’s transpose 

without all the cost of traversing the graph?

Runtime Traversal overhead

Transpose-based OPT (T-OPT) Incurs Overheads
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Src

Dst

OA

NA

CSR
(Transpose) 

srcData[S2] Accessed at:

D0 ⇒ D1 ⇒ D3

Main Technique: Use Quantization To Compress The Transpose
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Src

Dst

OA

NA

CSR
(Transpose) 

Divide execution into 
coarse-grained epochs

srcData[S2] Accessed at:

D0 ⇒ D1 ⇒ D3

Main Technique: Use Quantization To Compress The Transpose
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Src

Dst

OA

NA

CSR
(Transpose) 

srcData[S2] Accessed at:

E0 ⇒ E1

Divide execution into 
coarse-grained epochs

srcData[S2] Accessed at:

D0 ⇒ D1 ⇒ D3

Main Technique: Use Quantization To Compress The Transpose
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Src

Dst

OA

NA

CSR
(Transpose) 

srcData[S2] Accessed at:

E0 ⇒ E1

No. of epochs  ⇒ Next Ref Quantization 
(accuracy vs metadata size trade-off)

Divide execution into 
coarse-grained epochs

srcData[S2] Accessed at:

D0 ⇒ D1 ⇒ D3

Main Technique: Use Quantization To Compress The Transpose
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Src

Dst

OA

NA

CSR
(Transpose) 

Rereference Matrix 
(Quantized Transpose)

Divide execution into 
coarse-grained epochs

Quantization enables 
compression of transpose data

Main Technique: Use Quantization To Compress The Transpose

Size the reref 
matrix to fit in 
cache!

8
8

8



P-OPT Improves Cache Locality
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P-OPT Improves Cache Locality
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P-OPT results are 
only 12% away 
from the Ideal



P-OPT’s LLC Miss Reductions Directly Translate To Speedups
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P-OPT provides up to 1.56x 
speedup over LRU.  What does 

this tell us about LRU?



What did we just learn?

• Sparse problems are ones that manipulate large, mostly-zero 
matrices

• Sparsity makes caching a useful part of the matrix hard

• Roofline model shows how close to peak perf. an app is

• Propagation blocking bins updates making irregular data fit in cache

• P-OPT is a practical implementation of Belady’s OPT for graphs

(with acknowledgements to Vignesh Balaji, CMU ECE PhD 2021, now at Nvidia for contributions to this material) 



Takeaways

127

❖ Heuristic-based policies are ineffective for irregular memory access patterns

❖ The graph’s transpose enables Belady’s MIN replacement policy

❖ P-OPT achieves close to ideal performance (quantization can be an effective tool in 
making a design practical)
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