
CMU 18-344: Computer
Systems and the

Hardware/Software Interface
Fall 2024, Prof. Brandon Lucia

Today: Sparse Problems

• What is a sparse problem? Why are they called “sparse”?

• What makes sparse problems hard?

• Roofline performance modeling

• Hardware and software strategies for optimizing sparse problems

(with acknowledgements to Vignesh Balaji, CMU ECE PhD 2021, now at Nvidia for contributions to this material)

Graph Processing Problems are Sparse Problems

Path Planning Social network analysis Protein-Protein Interaction

The canonical examples of sparse problems are graph processing applications.

Machine Learning Problems are Sparse Problems

Graph Convolutional NetworksData Mining

What does a graph processing program look like?

for e in EL:
 dstData[e.dst] =
 f(srcData[e.src],dstData[e.dst])

dstData

srcData
stores vertex property information
if srcData == dstData, updating in-place;
often “swap” srcData & dstData from 1 iteration to the next iteration

What does a graph processing program look like?

PageRank(-ish){
 for e in EL:
 rank_n[e.dst] =
 rank_nminus1[e.src] + rank_n[e.dst]
}

dstData

srcData rank_n is a webpage’s rank in this iteration,
rank_nminus1 is rank_n from the last iteration

Graph Analytics can be mapped to Sparse Linear Algebra

7

Graph Analytics can be mapped to Sparse Linear Algebra

8

Graph Analytics can be mapped to Sparse Linear Algebra

9

How do graph applications correspond to linear algebra?

10

Src

Dst

11

Src

Dst

How do graph applications correspond to linear algebra?

1

Initial xi vector is starting vertex for BFS.

=

1

1

T

ATxi = xi+1

Matrix-transpose-vector product is one BFS iteration

12

Src

Dst

How do graph applications correspond to linear algebra?

1

Initial xi vector is starting vertex for BFS.

=

1

1

T

ATxi = xi+1

Matrix-transpose-vector product is one BFS iteration

xi xi+1

Initial xi+1 is vertices reachable from xi

A Transpose

13

Src

Dst

How do graph applications correspond to linear algebra?

1 =

1

1

T

ATxi = xi+1

Matrix transpose vector product is one BFS iteration

xi xi+1

The next iteration is computed by performing the next matrix
transpose vector product

1

1

1

14

Src

Dst

How do graph applications correspond to linear algebra?

1

=1

T

ATxi = xi+1

Matrix transpose vector product is one BFS iteration

xi xi+1

The next iteration is computed by performing the next matrix
transpose vector product

1

1

1

1

1

1

15

Src

Dst

How do graph applications correspond to linear algebra?

1

=1

T

ATxi = xi+1

Matrix transpose vector product is one BFS iteration

xi xi+1

The next iteration is computed by performing the next matrix
transpose vector product

1

1

1

1

1

1

1

1

1

1

1

1

1

1

=

Search done when no new vertices added (or all
visited)

16

Src

Dst

How do graph applications correspond to linear algebra?

1

=1

T

ATxi = xi+1

Turns out that other graph applications also correspond to
roughly this formulation if you change the operations you
use (min/+ instead of +/*) or consider weighted edges

xi xi+1

SSSP, BFS, PageRank, Connected-Components, Betweenness-
Centrality, triangle counting… BFS is a representative sparse problem.

1

1

1

1

1

1

1

1

1

1

1

1

1

1

=

Search done when no new vertices added (or all
visited)

Nobody EVER uses the adjacency matrix!

17

Src

Dst
Why would the Adjacency Matrix not be used?

Nobody EVER uses the adjacency matrix!

18

Src

Dst Reasons Adjacency Matrix is never used:
● Sparsity: % of Non-Zero Entries ~ 10-5

● Total Size: 32M nodes => (32M * 32M) = 1PB

19

Src

Dst

Offsets Array (OA)

Neighbors Array (NA)

Compressed Sparse Row (CSR)
Outgoing Neighbors

Compressed Sparse Data Structures for Feasible Memory Size

21 12 1
Vertex Property Array
i.e., srcData / dstData

Often we will leave the vertex property array
implicitly defined when we talk about sparse
structures, but it is always there

20

Src

Dst

Offsets Array (OA)

Neighbors Array (NA)

Compressed Sparse Row (CSR)
Outgoing Neighbors

EdgeList sorted by
SrcIDs

Compressed Sparse Data Structures for Feasible Memory Size

OA indexed by vertex ID of src of edge
Value in OA is offset into NA

start index for edges w/ src == vertex i = OA[i]
#edges with src == vertex i = OA[i+1] – OA[i]

Dense encoding of sparse structure

index is src id

21

Src

Dst

Offsets Array (OA)

Neighbors Array (NA)

Compressed Sparse Row (CSR)
Outgoing Neighbors

Compressed Sparse Column (CSC)
Incoming Neighbors

Offsets Array (OA)

Neighbors Array (NA)

EdgeList sorted by
DstIDs

EdgeList sorted by
SrcIDs

The CSC is the transpose of the CSR

Compressed Sparse Data Structures for Feasible Memory Size

Building the CSR / CSC from a Graph’s Edge List
for e in EL:
 neigh_count[e.dst]++; /*e.src*/

2 1 1 2 1 neigh_count

Building the CSR / CSC from a Graph’s Edge List
for e in EL:
 neigh_count[e.dst]++; /*e.src*/

2 1 1 2 1 neigh_count

sum = 0
for i in 0 .. |V|:
 tmp = neigh_count[i]
 neigh_count[i] = sum;
 neigh_count_dup[i] = sum;
 sum += tmp

2 1 1 2 1 neigh_count_dup

Building the CSR / CSC from a Graph’s Edge List
for e in EL:
 neigh_count[e.dst]++; /*e.src*/

2 1 1 2 1 neigh_count

sum = 0
for i in 0 .. |V|:
 tmp = neigh_count[i]
 neigh_count[i] = sum; //OA
 neigh_count_dup[i] = sum;
 sum += tmp

0 2 3 4 6 OA (also OA_dup)

Building the CSR / CSC from a Graph’s Edge List

for e in EL:
 neigh_ind = OA[e.src]
 NA[neigh_ind] = e.dst
 OA[e.src]++ /*sacrificial OA*/
//i.e., NA[OA[e.src]++] = e.dst

0 2 3 4 6 OA (also OA_dup)

0 2 3 4 6 OA_dup

1 0 0 0 0 NA2 2

Completed CSC

Src

Dst
for dst in G:
 for src in in_neighs(dst):
 dstData[dst] += srcData[src]

Pull (CSC Traversal)

OA

NA

CSC
26

Compressed Representations ⇒ Irregular Memory Accesses

dstData

srcData

e.g., current rank of page I,
e.g., current shortest path
from source vertex

i.e., xi+1

0 1 2 3 4

5 20 10 2 1

Pull traversal performs irregular read operations that lack locality

Src

Dst
for src in G:
 for dst in out_neighs(src):
 dstData[dst] += srcData[src]

Push (CSR Traversal)

OA

NA

CSR
27

Compressed Representations ⇒ Irregular Memory Accesses

dstData

srcData

e.g., current rank of page I,
e.g., current shortest path
from source vertex

i.e., xi+1

0 1 2 3 4

5 20 10 2 1

Push traversal performs irregular write operations that lack locality

Src

Dst
for src in G:
 for dst in out_neighs(src):
 dstData[dst] += srcData[src]

Push (CSR Traversal)

OA

NA

CSR
28

Compressed Representations ⇒ Irregular Memory Accesses

dstData

srcData

e.g., current rank of page I,
e.g., current shortest path
from source vertex

i.e., xi+1

0 1 2 3 4

5 20 10 2 1

Push traversal performs irregular write operations that lack locality

Irregular Data Footprint >> LLC Size

Size of srcData ~ 256MB (32M vertices * 8B)

Right Figure from “Optimizing Cache Performance for Graph Analytics” ArXiv v1;

29

LLC Miss Rate (%)

Irregular Accesses Lead to Poor Locality

Running on RMAT27
Graph w/ 35MB LLC

Why such bleak cache performance?
Consequence of bleak cache performance?

Right Figure from “Optimizing Cache Performance for Graph Analytics” ArXiv v1;

30

LLC Miss Rate (%)

Irregular Accesses Lead to Poor Locality

Running on RMAT27
Graph w/ 35MB LLC

0 0 0 0 0

dstData
Remember: dstData[e.dst] ++
and e.dst is random, from edge list

Dst coordinate of edge is index in dstData:
totally input dependent & random!!!

Right Figure from “Optimizing Cache Performance for Graph Analytics” ArXiv v1;

31

LLC Miss Rate (%)

Irregular Accesses Lead to Poor Locality

Running on RMAT27
Graph w/ 35MB LLC

0 0 0 0 0

dstData
Remember: dstData[e.dst] ++
and e.dst is random, from edge list

0

miss

Dst coordinate of edge is index in dstData:
totally input dependent & random!!!

Right Figure from “Optimizing Cache Performance for Graph Analytics” ArXiv v1;

32

LLC Miss Rate (%)

Irregular Accesses Lead to Poor Locality

Running on RMAT27
Graph w/ 35MB LLC

0

0 0 0 0

dstData
Remember: dstData[e.dst] ++
and e.dst is random, from edge list

0

0

miss

Dst coordinate of edge is index in dstData:
totally input dependent & random!!!

Right Figure from “Optimizing Cache Performance for Graph Analytics” ArXiv v1;

33

LLC Miss Rate (%)

Irregular Accesses Lead to Poor Locality

Running on RMAT27
Graph w/ 35MB LLC

0

0 0 0 0

dstData
Remember: dstData[e.dst] ++
and e.dst is random, from edge list

0

0

hit

Dst coordinate of edge is index in dstData:
totally input dependent & random!!!

(You get lucky sometimes)

Right Figure from “Optimizing Cache Performance for Graph Analytics” ArXiv v1;

34

LLC Miss Rate (%)

Irregular Accesses Lead to Poor Locality

Running on RMAT27
Graph w/ 35MB LLC

0 0 0 0

dstData
Remember: dstData[e.dst] ++
and e.dst is random, from edge list

0

0

miss

0

Dst coordinate of edge is index in dstData:
totally input dependent & random!!!

Right Figure from “Optimizing Cache Performance for Graph Analytics” ArXiv v1;

35

LLC Miss Rate (%)

Irregular Accesses Lead to Poor Locality

Running on RMAT27
Graph w/ 35MB LLC

0 0 0 0

dstData
Remember: dstData[e.dst] ++
and e.dst is random, from edge list

0

miss

0 0

Dst coordinate of edge is index in dstData:
totally input dependent & random!!!

Right Figure from “Optimizing Cache Performance for Graph Analytics” ArXiv v1;

36

LLC Miss Rate (%)

Irregular Accesses Lead to Poor Locality

Running on RMAT27
Graph w/ 35MB LLC

0 0 0 0

dstData
Remember: dstData[e.dst] ++
and e.dst is random, from edge list

0

miss

0

Dst coordinate of edge is index in dstData:
totally input dependent & random!!!

0

Right Figure from “Optimizing Cache Performance for Graph Analytics” ArXiv v1;

37

LLC Miss Rate (%)

Irregular Accesses Lead to Poor Locality

Running on RMAT27
Graph w/ 35MB LLC

0 0 0 0

dstData
Remember: dstData[e.dst] ++
and e.dst is random, from edge list

0

miss

0

Dst coordinate of edge is index in dstData:
totally input dependent & random!!!

0

Right Figure from “Optimizing Cache Performance for Graph Analytics” ArXiv v1;

38

Cycles stalled on DRAM / Total CyclesLLC Miss Rate (%)

Irregular Accesses Lead to Poor Locality

Cache miss latency cannot be hidden by anything else
in the program. Each miss incurs DRAM latency!

Right Figure from “Optimizing Cache Performance for Graph Analytics” ArXiv v1;

39

Cycles stalled on DRAM / Total CyclesLLC Miss Rate (%)

Irregular Accesses Lead to Poor Locality

Problem: Sparse representations make processing large graphs feasible, but
graph processing still entails a large working set with poor locality

Even Building the CSR / CSC is an Irregular Access Pattern!
for e in EL:
 neigh_count[e.dst]++;

2 1 1 2 1 neigh_count

Why is this irregular?

Even Building the CSR / CSC is an Irregular Access Pattern!
for e in EL:
 neigh_count[e.dst]++; /*e.src*/

2 1 1 2 1 neigh_count

Updates to the neigh_count
array are to random elements
determined by order of edges
in edge list

Even Building the CSR / CSC is an Irregular Access Pattern!

Why is the NA update part irregular?

for e in EL:
 NA[OA[e.src]++] = e.dst

0 2 3 4 6 OA

1 0 0 0 0 NA2 2

Completed CSC

Even Building the CSR / CSC is an Irregular Access Pattern!

Updates to NA based on EL order & OA[e.src]
NA[OA[e.src]++] = e.dst

for e in EL:
 NA[OA[e.src]++] = e.dst

0 2 3 4 6 OA

1 0 0 0 0 NA2 2

Completed CSC

Roofline Performance Analysis of Graph Applications

44

The Roofline Model

45

Throughput
(operations per

second)

Operational Intensity
(operations per byte)

Peak ops/s

Compute-
Bound

Memory-
Bound

GFLOPS = Giga-Floating
Point Operations Per Second

Yes, this is not a proper acronym

The Roofline Model

46

Throughput
(GFLOP/s)

Operational Intensity
(FLOPS/Byte)

Compute-
Bound

Memory-
Bound

Peak FLOPS

App 2

App 1

What does Roofline help us
understand about a program?

The Roofline Model

47

Throughput
(GFLOP/s)

Operational Intensity
(FLOPS/Byte)

Compute-
Bound

Memory-
Bound

Peak FLOPS

App 2

App 1
What does Roofline help us

understand about a program?
Tell us what limits performance
& how close to peak an app is.

The Roofline Model

48

Throughput
(GFLOP/s)

Operational Intensity
(FLOPS/Byte)

Compute-
Bound

Memory-
Bound

Peak FLOPS

App 2

App 1

“Ridge point” is a
property of a
particular machine

What does Roofline help us
understand about a program?

Tell us what limits performance
& how close to peak an app is.

The Roofline Model

49

Throughput
(GFLOP/s)

Operational Intensity
(FLOPS/Byte)

Compute-
Bound

Memory-
Bound

Peak FLOPS

App 2

App 1
As a program does more operations per
byte, memory has more time to deliver
next byte, relieving Mem BW pressure

& increasing compute pressure

“Ridge point” is a
property of a
particular machine

The Roofline Model

50

Throughput
(GFLOP/s)

Operational Intensity
(FLOPS/Byte)

Compute-
Bound

Memory-
Bound

Peak FLOPS

App 2

App 1

“Ridge point” is a
property of a
particular machine

What is this point?

As a program does more operations
per byte, memory has more time to

deliver next byte, relieving Mem BW
pressure & increasing compute

pressure

The Roofline Model

51

Throughput
(GFLOP/s)

Operational Intensity
(FLOPS/Byte)

Compute-
Bound

Memory-
Bound

Peak FLOPS

App 2

App 1
What is this point?

As a program does more operations
per byte, memory has more time to

deliver next byte, relieving Mem BW
pressure & increasing compute

pressure

Compare App1 and App2. What
are they doing differently from
one another?

Operational Intensity of Irregular Graph Applications

52

for e in EL:
 dstData[e.dst] += srcData[e.src]

What is the operational intensity of a
random update kernel like this one?

Operational Intensity of Irregular Graph Applications

53

for e in EL:
 dstData[e.dst] += srcData[e.src]

What is the operational intensity of a
random update kernel like this one?
Operations per byte:

Operational Intensity of Irregular Graph Applications

54

for e in EL:
 dstData[e.dst] += srcData[e.src]

What is the operational intensity of a random
update kernel like this one?
Operations per byte:
Operations: 1 addition
Bytes to Load: 8B for edge, 4B srcData, 4B dstData
Operational Intensity = 1 / (8+4+4) = 1/16

Graph Applications are Memory-Bound

55

Throughput
(GFLOP/s)

Operational Intensity
(FLOPS/Byte)

Compute-
Bound

Memory-
Bound

Peak
FLOPS

2501/16

Graph Applications are Memory-Bound

56

Throughput
(GFLOP/s)

Operational Intensity
(FLOPS/Byte)

Compute-
Bound

Memory-
Bound

Peak
FLOPS

2501/16

DRAM BW utilization in graph
apps is ~50%

Why would we have spare
BW capacity to go to
memory and not use it?

Graph Applications are Memory-Bound

57

Throughput
(GFLOP/s)

Operational Intensity
(FLOPS/Byte)

Compute-
Bound

Memory-
Bound

Peak
FLOPS

2501/16

DRAM BW utilization in
graph apps is ~50%

Why would we have
spare BW capacity to go
to memory and not use
it?

Don’t know what to fetch
next (no temporal
locality), can’t use extra
stuff we fetch (no spatial
locality). Limited ability
to send more memory
requests (limited mem.
parallelism).

Graph Applications are Memory-Bound

58

Throughput
(GFLOP/s)

Operational Intensity
(FLOPS/Byte)

Compute-
Bound

Memory-
Bound

Peak
FLOPS

2501/16

How to improve BW
utilization?

Option #1: Improve Locality →
Reduce Bytes moved → Improve OI

Graph Applications are Memory-Bound

59

Throughput
(GFLOP/s)

Operational Intensity
(FLOPS/Byte)

Compute-
Bound

Memory-
Bound

Peak
FLOPS

2501/16

Option #1: Improve Locality →
Reduce Mem→ Improve OI

Option #2: Improve Memory to
handle more parallel requests

How to improve BW
utilization?

Operational Intensity of Irregular Graph Applications

60

for e in EL:
 dstData[e.dst] += srcData[e.src]

Ideal Best Possible Operational Intensity?
Operations per byte:
Operations: 1 addition
Bytes to Load:
Operational Intensity =

Ideal Operational Intensity of Irregular Graph Applications

61

for e in EL:
 dstData[e.dst] += srcData[e.src]

Ideal Best Possible Operational Intensity?
Operations per byte:
Operations: 1 addition
Bytes to Load: 8B for edge, 0B srcData, 0B dstData
Operational Intensity = 1 / (8+0+0) = 1/8

62

Throughput
(GFLOP/s)

Operational Intensity
(FLOPS/Byte)

Compute-
Bound

Memory-
Bound

Peak
FLOPS

2501/16 1/8

Improving Performance by Improving Locality

63

Throughput
(GFLOP/s)

Operational Intensity
(FLOPS/Byte)

Compute-
Bound

Memory-
Bound

Peak
FLOPS

2501/16 1/8

Improving Performance by Improving Locality

Locality wins: If we can operate
out of cache, higher ceiling.

Why is cache BW > DRAM BW?

64

Throughput
(GFLOP/s)

Operational Intensity
(FLOPS/Byte)

Compute-
Bound

Memory-
Bound

Peak
FLOPS

2501/16 1/8

Improving Performance by Improving Locality

Locality wins: If we can operate out
of cache, higher ceiling & more
leftward ridge point.

Why is cache BW > DRAM BW?
Smaller SRAM caches much faster.

65

Throughput
(GFLOP/s)

Operational Intensity
(FLOPS/Byte)

Compute-
Bound

Memory-
Bound

Peak
FLOPS

2501/16 1/8

Improving Performance by Improving Locality

Locality wins: If we can operate out
of cache, higher ceiling & more
leftward ridge point.

Why is cache BW > DRAM BW?
Smaller SRAM caches much faster.

Key Question: How to improve
locality, to reduce data movement,
for peak performance?

Propagation Blocking: Optimizing Sparse
Irregular Writes to Improve Cache Locality

67

Propagation Blocking: Reorganize Input to Make
Memory Being Randomly Written Fit in Cache

0 0 0 0 0

Recall: irregular accesses into
vertex data array based on
e.dst which are essentially random

Bad for the cache: the size of the domain of
vertex data array entries is |V|, but the
cache holds only |C| << |V| entries|Domain| = |V| = 5 vertices

|Cache| = 2 vertices

68

Propagation Blocking: Reorganize Input to Make
Memory Being Randomly Written Fit in Cache

0 0 0 0 0

Recall: irregular accesses into
vertex data array based on
e.dst which are essentially random

Bad for the cache: the size of the domain of
vertex data array entries is |V|, but the
cache holds only |C| << |V| entries|Domain| = |V| = 5 vertices

|Cache| = 2 vertices

Key idea in propagation blocking: Limit the domain of updates to a sub-space of vertices,
V*, so that |V*| <= |C| and do multiple sub-spaces of V*s, so that all V*s together = V

69

Propagation Blocking: Reorganize Input to Make
Memory Being Randomly Written Fit in Cache

0 0 0 0 0

dstData
Remember: dstData[e.dst] ++
and e.dst is random, from edge list

Create “Bins” that hold input elements (edges
from the edge list)

Bin 0:
dst 0-1

Bin 1:
dst 2-3

Bin 2:
dst 4-5

0 1

2 0

1 0

0 2

2 3

0 3

0 4

70

Propagation Blocking: Reorganize Input to Make
Memory Being Randomly Written Fit in Cache

0 0 0 0 0

dstData
Remember: dstData[e.dst] ++
and e.dst is random, from edge listExecute the kernel for one bin at a time

Bin 0:
dst 0-1

Bin 1:
dst 2-3

Bin 2:
dst 4-5

0 1

2 0

1 0

0 2

2 3

0 3

0 4

71

Propagation Blocking: Reorganize Input to Make
Memory Being Randomly Written Fit in Cache

0 0 0 0 0

dstData
Remember: dstData[e.dst] ++
and e.dst is random, from edge listExecute the kernel for one bin at a time

Bin 0:
dst 0-1

Bin 1:
dst 2-3

Bin 2:
dst 4-5

0 1

2 0

1 0

0 2

2 3

0 3

0 4

0

72

Propagation Blocking: Reorganize Input to Make
Memory Being Randomly Written Fit in Cache

0 0 0 0 0

dstData
Remember: dstData[e.dst] ++
and e.dst is random, from edge listExecute the kernel for one bin at a time

Bin 0:
dst 0-1

Bin 1:
dst 2-3

Bin 2:
dst 4-5

0 1

2 0

1 0

0 2

2 3

0 3

0 4

00

73

Propagation Blocking: Reorganize Input to Make
Memory Being Randomly Written Fit in Cache

0 0 0 0 0

dstData
Remember: dstData[e.dst] ++
and e.dst is random, from edge listExecute the kernel for one bin at a time

Bin 0:
dst 0-1

Bin 1:
dst 2-3

Bin 2:
dst 4-5

0 1

2 0

1 0

0 2

2 3

0 3

0 4

00

hit

74

Propagation Blocking: Reorganize Input to Make
Memory Being Randomly Written Fit in Cache

0 0 0 0 0

dstData
Remember: dstData[e.dst] ++
and e.dst is random, from edge listExecute the kernel for one bin at a time

Bin 0:
dst 0-1

Bin 1:
dst 2-3

Bin 2:
dst 4-5

0 1

2 0

1 0

0 2

2 3

0 3

0 4

00

75

Propagation Blocking: Reorganize Input to Make
Memory Being Randomly Written Fit in Cache

0 0 0 0 0

dstData
Remember: dstData[e.dst] ++
and e.dst is random, from edge listExecute the kernel for one bin at a time

Bin 0:
dst 0-1

Bin 1:
dst 2-3

Bin 2:
dst 4-5

0 1

2 0

1 0

0 2

2 3

0 3

0 4

0 0

76

Propagation Blocking: Reorganize Input to Make
Memory Being Randomly Written Fit in Cache

0 0 0 0 0

dstData
Remember: dstData[e.dst] ++
and e.dst is random, from edge listExecute the kernel for one bin at a time

Bin 0:
dst 0-1

Bin 1:
dst 2-3

Bin 2:
dst 4-5

0 1

2 0

1 0

0 2

2 3

0 3

0 4

0 0

hit

77

Propagation Blocking: Reorganize Input to Make
Memory Being Randomly Written Fit in Cache

0 0 0 0 0

dstData
Remember: dstData[e.dst] ++
and e.dst is random, from edge list

How to decide how many vertices go in
each of your Propagation Blocker’s bins?

Bin 0:
dst 0-1

Bin 1:
dst 2-3

Bin 2:
dst 4-5

0 1

2 0

1 0

0 2

2 3

0 3

0 4

0 0

hit

78

Propagation Blocking: Reorganize Input to Make
Memory Being Randomly Written Fit in Cache

0 0 0 0 0

dstData
Remember: dstData[e.dst] ++
and e.dst is random, from edge list

Match destinations per bin to number of
vertices worth of dstData that can fit in cache
at one time

Bin 0:
dst 0-2

Bin 1:
dst 3-5

0 1

2 0

1 0

0 2 2 3

0 3 0

hit

0 0

0 4

79

Propagation Blocking: Performance Analysis

0 0 0 0 0

dstData
Remember: dstData[e.dst] ++
and e.dst is random, from edge list

Traverse the edge list twice instead of once

Bin 0:
dst 0-2

Bin 1:
dst 3-5

0 1

2 0

1 0

0 2 2 3

0 3 0

hit

0 0

0 4

Binning Bin Read
All locations written fit in cache! Compulsory
misses on dstData[] only: all the rest hit.

80

Propagation Blocking: Performance Analysis

0 0 0 0 0

dstData
Remember: dstData[e.dst] ++
and e.dst is random, from edge list

Traverse the edge list twice instead of once

Bin 0:
dst 0-2

Bin 1:
dst 3-5

0 1

2 0

1 0

0 2 2 3

0 3 0

hit

0 0

0 4

Binning Bin Read
All locations written fit in cache! Compulsory
misses on dstData[] only: all the rest hit.

What about the performance of reading the
edge list during binning?

81

Propagation Blocking: Performance Analysis

0 0 0 0 0

dstData
Remember: dstData[e.dst] ++
and e.dst is random, from edge list

Traverse the edge list twice instead of once

Bin 0:
dst 0-2

Bin 1:
dst 3-5

0 1

2 0

1 0

0 2 2 3

0 3 0 0 0

0 4

Binning Bin Read

Usually save a little space in cache for
streaming edge list data. Easy to cache.

What about propagation blocking for irregular reads?

Streaming

Random Access, but always in cache

Propagation Blocking

PropagationBlocking_EdgeCount(EdgeList E){

 Bins B[];

 for edge in E{

 add_to_bin(find_bin(edge))

 }

 for bin in B{

 for e in bin{

 dstData[e.dst]++

 }

 }

}

Application of Propagation Blocking for Graph Applications (Page Rank only, at first) discovered in 2017
(Prior work on “radix partitioning” applied the idea to other domains, but not graphs)

Cache Locality determines Overall Performance
What about better replacement policies?

83

Existing Replacement Policies Are Insufficient

84

Lower is
Better

Existing Replacement Policies Are Insufficient

85

State-of-the-Art
Policies

Lower
is

Better

Existing Replacement Policies Are Insufficient

86

State-of-the-Art
Policies

Marginal Benefit
over LRU

Lower is
Better

Existing Replacement Policies Are Insufficient

87

State-of-the-
Art

Policies

Marginal Benefit
over LRU

Lower
is

BetterProblem: Heuristics used by SOTA policies fail to
capture the complex reuse patterns of graph data

88

Is It Possible To Do Better Cache Replacement?

E1
...

Enew

Elements
in Cache

Element To Be
Inserted

E2

Ek

Belady’s MIN Replacement Policy

89

E1
...

Enew

Elements
in Cache

Element To Be
Inserted

E2

Ek

Time

Belady’s MIN Replacement Policy

Next
References

Is It Possible To Do Better Cache Replacement?

90

E1
...

Enew

Elements
in Cache

Element To
Be Inserted

E2

Ek

Time

Evict the element
accessed furthest in the

future

Next
References

Belady’s MIN Replacement Policy

Is It Possible To Do Better Cache Replacement?

91

E1
...

Enew

Elements
in Cache

Element To Be
Inserted

E2

Ek

Time

Evict the element
accessed furthest in the

future

Next
References

Belady’s MIN Replacement Policy

Is It Possible To Do Better Cache Replacement?

Recall: Prescience
required. Problem?

92

E1
...

Enew

Elements
in Cache

Element To Be
Inserted

E2

Ek

Time

Evict the element
accessed furthest in the

future

Key Observation: The Graph’s Transpose Efficiently Encodes Future Accesses

Belady’s MIN Replacement Policy

Is It Possible To Do Better Cache Replacement? YES!

Prescience is a
flawed requirement:

any hope?

93

Key Graph Application Property That Enables Belady’s OPT

Key Graph Application Property That Enables Belady’s OPT

94

Src

Dst

for dst in G:
 for src in in_neighs(dst):
 dstData[dst] += srcData[src]

Pull Execution (CSC Traversal)

OA

NA

CSC

95

Src

Dst

for dst in G:
 for src in in_neighs(dst):
 dstData[dst] += srcData[src]

OA

NA

CSC

srcData[S1]

srcData[S2]

srcData[S4]

srcData[S2]

srcData[S3]

D0

D0

D0

D1

D1

. .
.

Time

Irregular Data StreamCurrDs
t

Key Graph Application Property That Enables Belady’s OPT
Pull Execution (CSC Traversal)

96

Src

Dst

for dst in G:
 for src in in_neighs(dst):
 dstData[dst] += srcData[src]

OA

NA

CSC

srcData[S1]

srcData[S2]

srcData[S4]

srcData[S2]

srcData[S3]

D0

D0

D0

D1

D1

. .
.

Time

Key Property: Dst-IDs
are like timestamps for

irregular accesses

Irregular Data StreamCurrDs
t

Key Graph Application Property That Enables Belady’s OPT
Pull Execution (CSC Traversal)

97

Src

Dst

for dst in G:
 for src in in_neighs(dst):
 dstData[dst] += srcData[src]

OA

NA

CSC

srcData[S1]

srcData[S2]

srcData[S4]

srcData[S2]

srcData[S3]

D0

D0

D0

D1

D1

. .
 .

Time

Irregular Data StreamCurrDs
t

Key Graph Application Property That Enables Belady’s OPT

Key Property: Dst-IDs
are like timestamps for

irregular accesses

Pull Execution (CSC Traversal)

98

Src

Dst

for dst in G:
 for src in in_neighs(dst):
 dstData[dst] += srcData[src]

OA

NA

CSC

srcData[S1]

srcData[S2]

srcData[S4]

srcData[S2]

srcData[S3]

D0

D0

D0

D1

D1

. .
 .

Time

Irregular Data StreamCurrDs
t

Key Graph Application Property That Enables Belady’s OPT

Key Property: Dst-IDs
are like timestamps for

irregular accesses

Pull Execution (CSC Traversal)

99

Src

Dst

for dst in G:
 for src in in_neighs(dst):
 dstData[dst] += srcData[src]

OA

NA

CSC

srcData[S1]

srcData[S2]

srcData[S4]

srcData[S2]

srcData[S3]

D0

D0

D0

D1

D1

. .
.

Time

srcData[S2] is accessed
at D0 ⇒ D1 ⇒ D3

Irregular Data StreamCurrDs
t

Key Graph Application Property That Enables Belady’s OPT

Key Property: Dst-IDs
are like timestamps for

irregular accesses

Pull Execution (CSC Traversal)

100

Using The Graph’s Transpose For Optimal Replacement

101

Src

Dst

for dst in G:
 for src in in_neighs(dst):
 dstData[dst] += srcData[src]

srcData[S1]

srcData[S2]

srcData[S4]

srcData[S2]

srcData[S3]

D0

D0

D0

D1

D1

. .
.

Time

2-way Set-Associative
Cache

Assumptions:
1. One srcData elem per line
2. Only irregular data enters

the cache

Irregular Data StreamCurrDs
t

Using The Graph’s Transpose For Optimal Replacement
Pull Execution (CSC Traversal)

102

Src

Dst

for dst in G:
 for src in in_neighs(dst):
 dstData[dst] += srcData[src]

srcData[S1]

srcData[S2]

srcData[S4]

srcData[S2]

srcData[S3]

D0

D0

D0

D1

D1

. .
.

Time

2-way Set-Associative
Cache

Irregular Data StreamCurrDs
t

Using The Graph’s Transpose For Optimal Replacement
Pull Execution (CSC Traversal)

103

Src

Dst

for dst in G:
 for src in in_neighs(dst):
 dstData[dst] += srcData[src]

srcData[S1]

srcData[S2]

srcData[S4]

srcData[S2]

srcData[S3]

D0

D0

D0

D1

D1

. .
.

Time

srcData[S1]

2-way Set-Associative
Cache

Irregular Data StreamCurrDs
t

Using The Graph’s Transpose For Optimal Replacement
Pull Execution (CSC Traversal)

104

Src

Dst

for dst in G:
 for src in in_neighs(dst):
 dstData[dst] += srcData[src]

srcData[S1]

srcData[S2]

srcData[S4]

srcData[S2]

srcData[S3]

D0

D0

D0

D1

D1

. .
.

Time

srcData[S1]

srcData[S2]

2-way Set-Associative
Cache

Irregular Data StreamCurrDs
t

Using The Graph’s Transpose For Optimal Replacement
Pull Execution (CSC Traversal)

105

Src

Dst

for dst in G:
 for src in in_neighs(dst):
 dstData[dst] += srcData[src]

srcData[S1]

srcData[S2]

srcData[S4]

srcData[S2]

srcData[S3]

D0

D0

D0

D1

D1

. .
.

Time

srcData[S1]

srcData[S2]

2-way Set-Associative
Cache

Which line should we evict?:
● srcData[S1]
● srcData[S2]

Irregular Data StreamCurrDs
t

Using The Graph’s Transpose For Optimal Replacement
Pull Execution (CSC Traversal)

106

Src

Dst

for dst in G:
 for src in in_neighs(dst):
 dstData[dst] += srcData[src]

srcData[S1]

srcData[S2]

srcData[S4]

srcData[S2]

srcData[S3]

D0

D0

D0

D1

D1

. .
.

Time

srcData[S1]

srcData[S2]

2-way Set-Associative
Cache

Which line should we evict?:
● srcData[S1] (nextRef @ D4)
● srcData[S2]

D0 D4Out-Neigh(S1):

Irregular Data StreamCurrDs
t

Using The Graph’s Transpose For Optimal Replacement

CS
R

Pull Execution (CSC Traversal)

107

Src

Dst

for dst in G:
 for src in in_neighs(dst):
 dstData[dst] += srcData[src]

srcData[S1]

srcData[S2]

srcData[S4]

srcData[S2]

srcData[S3]

D0

D0

D0

D1

D1

. .
.

Time

srcData[S1]

srcData[S2]

2-way Set-Associative
Cache

Which line should we evict?:
● srcData[S1] (nextRef @ D4)
● srcData[S2] (nextRef @ D1)

D0 D1Out-Neigh(S2): D3

Irregular Data StreamCurrDs
t

Using The Graph’s Transpose For Optimal Replacement

CS
R

Pull Execution (CSC Traversal)

108

Src

Dst

for dst in G:
 for src in in_neighs(dst):
 dstData[dst] += srcData[src]

srcData[S1]

srcData[S2]

srcData[S4]

srcData[S2]

srcData[S3]

D0

D0

D0

D1

D1

. .
 .

Time

srcData[S1]

srcData[S2]

2-way Set-Associative
Cache

Which line should we evict?:
● srcData[S1] (nextRef @ D4)
● srcData[S2] (nextRef @ D1)

Irregular Data StreamCurrDs
t

Using The Graph’s Transpose For Optimal Replacement
Pull Execution (CSC Traversal)

109

Src

Dst

for dst in G:
 for src in in_neighs(dst):
 dstData[dst] += srcData[src]

srcData[S1]

srcData[S2]

srcData[S4]

srcData[S2]

srcData[S3]

D0

D0

D0

D1

D1

. .
.

Time

srcData[S1]

srcData[S2]

2-way Set-Associative
Cache

Which line should we evict?:
● srcData[S1] (nextRef @ D4)
● srcData[S2] (nextRef @ D1)

Irregular Data StreamCurrDs
t

Using The Graph’s Transpose For Optimal Replacement
Pull Execution (CSC Traversal)

Key Question: how to query next
reference while running the program?

110

Src

Dst

for dst in G:
 for src in in_neighs(dst):
 dstData[dst] +=
srcData[src]

srcData[S1]

srcData[S2]

srcData[S4]

srcData[S2]

srcData[S3]

D0

D0

D0

D1

D1

. .
.

Time

srcData[S1]

srcData[S2]

2-way Set-Associative
Cache

Which line should we evict?:
● srcData[S1] (nextRef @ D4)

● srcData[S2] (nextRef @ D1)

Irregular Data
Stream

CurrDs
t

Using The Graph’s Transpose For Optimal Replacement
Pull Execution (CSC Traversal)

For a pull execution (CSC-traversal), the transpose (CSR) contains
all the necessary OPT replacement information

For a push execution (CSR-traversal), the transpose (CSC)
contains all the necessary OPT replacement information

111

Src

Dst

for dst in G:
 for src in in_neighs(dst):
 dstData[dst] +=
srcData[src]

srcData[S1]

srcData[S2]

srcData[S4]

srcData[S2]

srcData[S3]

D0

D0

D0

D1

D1

. .
 .

Time

srcData[S1]

srcData[S2]

2-way Set-Associative
Cache

Which line should we evict?:
● srcData[S1] (nextRef @ D4)

● srcData[S2] (nextRef @ D1)

Irregular Data
Stream

CurrDs
t

Using The Graph’s Transpose For Optimal Replacement
Pull Execution (CSC Traversal)

For a pull execution (CSC-traversal), the transpose (CSR) contains
all the necessary OPT replacement information

For a push execution (CSR-traversal), the transpose (CSC)
contains all the necessary OPT replacement information

Transpose-based OPT (T-OPT) Provides Large Gains

112

113

Transpose-based OPT (T-OPT) Provides Large Gains

1.7X

Transpose-based OPT (T-OPT) Incurs Overheads

114

Src

Dst

Set-Associative Cache

Finding Next References
Using The Transpose

SrcData[S2]

115

Src

Dst

Set-Associative Cache

Finding Next References
Using The Transpose

SrcData[S2] OA

NA

CSR (Transpose)

DRAM Access overhead

Transpose
accesses are

irregular

Transpose-based OPT (T-OPT) Incurs Overheads

116

Src

Dst

Set-Associative Cache

Finding Next References
Using The Transpose

SrcData[S2] OA

NA

CSR (Transpose)

DRAM Access overhead Runtime Traversal overhead

D0 D1Out-Neigh(S2): D3

Need to scan neighbors

Transpose-based OPT (T-OPT) Incurs Overheads

117

Src

Dst

Set-Associative Cache

Finding Next References
Using The Transpose

SrcData[S2]

DRAM Access overhead

Question: How do we retrieve the next reference
information from the graph’s transpose

without all the cost of traversing the graph?

Runtime Traversal overhead

Transpose-based OPT (T-OPT) Incurs Overheads

118

Src

Dst

OA

NA

CSR
(Transpose)

srcData[S2] Accessed at:

D0 ⇒ D1 ⇒ D3

Main Technique: Use Quantization To Compress The Transpose

119

Src

Dst

OA

NA

CSR
(Transpose)

Divide execution into
coarse-grained epochs

srcData[S2] Accessed at:

D0 ⇒ D1 ⇒ D3

Main Technique: Use Quantization To Compress The Transpose

120

Src

Dst

OA

NA

CSR
(Transpose)

srcData[S2] Accessed at:

E0 ⇒ E1

Divide execution into
coarse-grained epochs

srcData[S2] Accessed at:

D0 ⇒ D1 ⇒ D3

Main Technique: Use Quantization To Compress The Transpose

121

Src

Dst

OA

NA

CSR
(Transpose)

srcData[S2] Accessed at:

E0 ⇒ E1

No. of epochs ⇒ Next Ref Quantization
(accuracy vs metadata size trade-off)

Divide execution into
coarse-grained epochs

srcData[S2] Accessed at:

D0 ⇒ D1 ⇒ D3

Main Technique: Use Quantization To Compress The Transpose

122

Src

Dst

OA

NA

CSR
(Transpose)

Rereference Matrix
(Quantized Transpose)

Divide execution into
coarse-grained epochs

Quantization enables
compression of transpose data

Main Technique: Use Quantization To Compress The Transpose

Size the reref
matrix to fit in
cache!

8
8

8

P-OPT Improves Cache Locality

123

P-OPT Improves Cache Locality

124

P-OPT results are
only 12% away
from the Ideal

P-OPT’s LLC Miss Reductions Directly Translate To Speedups

125

P-OPT provides up to 1.56x
speedup over LRU. What does

this tell us about LRU?

What did we just learn?

• Sparse problems are ones that manipulate large, mostly-zero
matrices

• Sparsity makes caching a useful part of the matrix hard

• Roofline model shows how close to peak perf. an app is

• Propagation blocking bins updates making irregular data fit in cache

• P-OPT is a practical implementation of Belady’s OPT for graphs

(with acknowledgements to Vignesh Balaji, CMU ECE PhD 2021, now at Nvidia for contributions to this material)

Takeaways

127

❖ Heuristic-based policies are ineffective for irregular memory access patterns

❖ The graph’s transpose enables Belady’s MIN replacement policy

❖ P-OPT achieves close to ideal performance (quantization can be an effective tool in
making a design practical)

	Slide 1: CMU 18-344: Computer Systems and the Hardware/Software Interface
	Slide 2: Today: Sparse Problems
	Slide 3: Graph Processing Problems are Sparse Problems
	Slide 4: Machine Learning Problems are Sparse Problems
	Slide 5: What does a graph processing program look like?
	Slide 6: What does a graph processing program look like?
	Slide 7: Graph Analytics can be mapped to Sparse Linear Algebra
	Slide 8: Graph Analytics can be mapped to Sparse Linear Algebra
	Slide 9: Graph Analytics can be mapped to Sparse Linear Algebra
	Slide 10: How do graph applications correspond to linear algebra?
	Slide 11: How do graph applications correspond to linear algebra?
	Slide 12: How do graph applications correspond to linear algebra?
	Slide 13: How do graph applications correspond to linear algebra?
	Slide 14: How do graph applications correspond to linear algebra?
	Slide 15: How do graph applications correspond to linear algebra?
	Slide 16: How do graph applications correspond to linear algebra?
	Slide 17: Nobody EVER uses the adjacency matrix!
	Slide 18: Nobody EVER uses the adjacency matrix!
	Slide 19: Compressed Sparse Data Structures for Feasible Memory Size
	Slide 20: Compressed Sparse Data Structures for Feasible Memory Size
	Slide 21
	Slide 22: Building the CSR / CSC from a Graph’s Edge List
	Slide 23: Building the CSR / CSC from a Graph’s Edge List
	Slide 24: Building the CSR / CSC from a Graph’s Edge List
	Slide 25: Building the CSR / CSC from a Graph’s Edge List
	Slide 26: Compressed Representations ⇒ Irregular Memory Accesses
	Slide 27: Compressed Representations ⇒ Irregular Memory Accesses
	Slide 28: Compressed Representations ⇒ Irregular Memory Accesses
	Slide 29: Irregular Accesses Lead to Poor Locality
	Slide 30: Irregular Accesses Lead to Poor Locality
	Slide 31: Irregular Accesses Lead to Poor Locality
	Slide 32: Irregular Accesses Lead to Poor Locality
	Slide 33: Irregular Accesses Lead to Poor Locality
	Slide 34: Irregular Accesses Lead to Poor Locality
	Slide 35: Irregular Accesses Lead to Poor Locality
	Slide 36: Irregular Accesses Lead to Poor Locality
	Slide 37: Irregular Accesses Lead to Poor Locality
	Slide 38: Irregular Accesses Lead to Poor Locality
	Slide 39: Irregular Accesses Lead to Poor Locality
	Slide 40: Even Building the CSR / CSC is an Irregular Access Pattern!
	Slide 41: Even Building the CSR / CSC is an Irregular Access Pattern!
	Slide 42: Even Building the CSR / CSC is an Irregular Access Pattern!
	Slide 43: Even Building the CSR / CSC is an Irregular Access Pattern!
	Slide 44: Roofline Performance Analysis of Graph Applications
	Slide 45: The Roofline Model
	Slide 46: The Roofline Model
	Slide 47: The Roofline Model
	Slide 48: The Roofline Model
	Slide 49: The Roofline Model
	Slide 50: The Roofline Model
	Slide 51: The Roofline Model
	Slide 52: Operational Intensity of Irregular Graph Applications
	Slide 53: Operational Intensity of Irregular Graph Applications
	Slide 54: Operational Intensity of Irregular Graph Applications
	Slide 55: Graph Applications are Memory-Bound
	Slide 56: Graph Applications are Memory-Bound
	Slide 57: Graph Applications are Memory-Bound
	Slide 58: Graph Applications are Memory-Bound
	Slide 59: Graph Applications are Memory-Bound
	Slide 60: Operational Intensity of Irregular Graph Applications
	Slide 61: Ideal Operational Intensity of Irregular Graph Applications
	Slide 62: Improving Performance by Improving Locality
	Slide 63: Improving Performance by Improving Locality
	Slide 64: Improving Performance by Improving Locality
	Slide 65: Improving Performance by Improving Locality
	Slide 66: Propagation Blocking: Optimizing Sparse Irregular Writes to Improve Cache Locality
	Slide 67: Propagation Blocking: Reorganize Input to Make Memory Being Randomly Written Fit in Cache
	Slide 68: Propagation Blocking: Reorganize Input to Make Memory Being Randomly Written Fit in Cache
	Slide 69: Propagation Blocking: Reorganize Input to Make Memory Being Randomly Written Fit in Cache
	Slide 70: Propagation Blocking: Reorganize Input to Make Memory Being Randomly Written Fit in Cache
	Slide 71: Propagation Blocking: Reorganize Input to Make Memory Being Randomly Written Fit in Cache
	Slide 72: Propagation Blocking: Reorganize Input to Make Memory Being Randomly Written Fit in Cache
	Slide 73: Propagation Blocking: Reorganize Input to Make Memory Being Randomly Written Fit in Cache
	Slide 74: Propagation Blocking: Reorganize Input to Make Memory Being Randomly Written Fit in Cache
	Slide 75: Propagation Blocking: Reorganize Input to Make Memory Being Randomly Written Fit in Cache
	Slide 76: Propagation Blocking: Reorganize Input to Make Memory Being Randomly Written Fit in Cache
	Slide 77: Propagation Blocking: Reorganize Input to Make Memory Being Randomly Written Fit in Cache
	Slide 78: Propagation Blocking: Reorganize Input to Make Memory Being Randomly Written Fit in Cache
	Slide 79: Propagation Blocking: Performance Analysis
	Slide 80: Propagation Blocking: Performance Analysis
	Slide 81: Propagation Blocking: Performance Analysis
	Slide 82: Propagation Blocking
	Slide 83: Cache Locality determines Overall Performance What about better replacement policies?
	Slide 84: Existing Replacement Policies Are Insufficient
	Slide 85: Existing Replacement Policies Are Insufficient
	Slide 86: Existing Replacement Policies Are Insufficient
	Slide 87: Existing Replacement Policies Are Insufficient
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93: Key Graph Application Property That Enables Belady’s OPT
	Slide 94: Key Graph Application Property That Enables Belady’s OPT
	Slide 95: Key Graph Application Property That Enables Belady’s OPT
	Slide 96: Key Graph Application Property That Enables Belady’s OPT
	Slide 97: Key Graph Application Property That Enables Belady’s OPT
	Slide 98: Key Graph Application Property That Enables Belady’s OPT
	Slide 99: Key Graph Application Property That Enables Belady’s OPT
	Slide 100: Using The Graph’s Transpose For Optimal Replacement
	Slide 101: Using The Graph’s Transpose For Optimal Replacement
	Slide 102: Using The Graph’s Transpose For Optimal Replacement
	Slide 103: Using The Graph’s Transpose For Optimal Replacement
	Slide 104: Using The Graph’s Transpose For Optimal Replacement
	Slide 105: Using The Graph’s Transpose For Optimal Replacement
	Slide 106: Using The Graph’s Transpose For Optimal Replacement
	Slide 107: Using The Graph’s Transpose For Optimal Replacement
	Slide 108: Using The Graph’s Transpose For Optimal Replacement
	Slide 109: Using The Graph’s Transpose For Optimal Replacement
	Slide 110: Using The Graph’s Transpose For Optimal Replacement
	Slide 111: Using The Graph’s Transpose For Optimal Replacement
	Slide 112: Transpose-based OPT (T-OPT) Provides Large Gains
	Slide 113: Transpose-based OPT (T-OPT) Provides Large Gains
	Slide 114: Transpose-based OPT (T-OPT) Incurs Overheads
	Slide 115: Transpose-based OPT (T-OPT) Incurs Overheads
	Slide 116: Transpose-based OPT (T-OPT) Incurs Overheads
	Slide 117: Transpose-based OPT (T-OPT) Incurs Overheads
	Slide 118: Main Technique: Use Quantization To Compress The Transpose
	Slide 119: Main Technique: Use Quantization To Compress The Transpose
	Slide 120: Main Technique: Use Quantization To Compress The Transpose
	Slide 121: Main Technique: Use Quantization To Compress The Transpose
	Slide 122: Main Technique: Use Quantization To Compress The Transpose
	Slide 123: P-OPT Improves Cache Locality
	Slide 124: P-OPT Improves Cache Locality
	Slide 125: P-OPT’s LLC Miss Reductions Directly Translate To Speedups
	Slide 126: What did we just learn?
	Slide 127: Takeaways

