(O' 18-344: Computer Systems and the Hardware-Software Interface

Syllabus

Course Schedule
Lab Details
Homework Details
Recitation Slides
Slack

ome 1634 Computer Systems andthe Hardware-Sofware neface

Staff

Course Description

This course covers the design and implementation of computer systems from the perspective of the
hardware software interface. The purpose of this course is for students to understand the
relationship between the operating system, software, and computer architecture. Students that
complete the course will have learned operating system fundamentals, computer architecture
fundamentals, compilation to hardware abstractions, and how software actually executes from the
perspective of the hardware software/boundary. The course will focus especially on understanding
the relationships between software and hardware, and how those relationships influence the design
of a computer system's software and hardware. The course will convey these topics through a series
of practical, implementation-oriented lab assignments.

(O' 18-344: Computer Systems and the Hardware-Software Interface

Syllabus

Course Schedule
Lab Details
Homework Details
Recitation Slides
Slack

ome 1634 Computer Systems andthe Hardware-Sofware neface

Staff

Course Description

This course covers the design and implementation of computer systems from the perspective of the
hardware software interface. The purpose of this course is for students to understand the
relationship between the operating system, software, and computer architecture. Students that
complete the course will have learned operating system fundamentals, computer architecture
fundamentals, compilation to hardware abstractions, and how software actually executes from the
perspective of the hardware software/boundary. The course will focus especially on understanding
the relationships between software and hardware, and how those relationships influence the design
of a computer system's software and hardware. The course will convey these topics through a series
of practical, implementation-oriented lab assignments.

Akshitha Sriraman
(Call me “Akshitha”)

Pronouns: She/her
Assistant Professor
Research: Data center HW/SW systems

Course Staff & Logistics

* Prof. Akshitha Sriraman & Brandon Lucia
e akshitha@cmu.edu, blucia@andrew.cmu.edu
* C(CIC4114, CiC4107
* http://akshithasriraman.com, https://brandonlucia.com/

* Teaching Assistants (18-344 Veterans):
* Matthew Ngaw
* Nathan Serafin
* Liam Merino
* Yufei Shi

* Lecture: Monday & Wednesday, 3:30pm —4:50pm in SH 234
* Some lectures are designed to run short, some to run long. We may leave early, we may spill into next week.

* Recitation: Friday, 10-10:50am in MM A14
* Project focused + Reinforcement

* Webpage: https://course.ece.cmu.edu/~ece344

» Office Hours (per website)

* 5 labs (more later), 10 Homeworks

* Slack (for continuous Q&A)

* Late policy: -10% for each day late w/ 15 minute grace period for 11th hour submission problems. i.e., if assignment is due at
11:59:59pm ET Thursday, then at 12:15:00am ET on Friday your orig. score is multiplied by 0.9, at 12:00:00am ET on Saturday your

orig. score is multiplied by 0.8, etc. Do your best to not get behind. There are times we have back-to-back labs being assigned.
Having 2 labs at the same time will be very difficult to manage.

mailto:Akshitha@cmu.edu
mailto:blucia@andrew.cmu.edu
http://akshithasriraman.com/
https://brandonlucia.com/

What are your expectations from this course?

* Why did you decide to take this course?
 What are you excited about learning in this course?
* |s there anything that you’re nervous about regarding this course?

What is this course about?

_ops *ops,

mm_walk_o

ge(struct mm_struct *mm, unsigned long

m“n.u- .n-_... T r..:_

s B L

i *private)

rea_str

n -EINVAL;

E
E
=
S

n -EINVAL;

find_vma(walk.mm, start);

What is the hardware software boundary?

: COMPILER
INFRASTRUCTURE

What is computer (u)architecture?

Inst Name | Opcode | funct3 | funct7 | Description (C)
add ADD 0110011 | 0x0 0x00 rd = rs1 + rs2
sub SUB 0110011 | 0x@ 0x20 rd = rs1 - rs2
xor XOR 0110011 | Ox4 0x00 rd = rs1 " rs2
or OR 0110011 | 0x6 0x00 rd = rs1 | rs2
and AND 0110011 | Ox7 0x00 rd = rs1 & rs2

ar/4d

Next SEQ PC

RS1

RS2

¥

Register
File

Sign |Imm
Extend

x3a/al

Next SEQ PC

Branch
taken

\xni/ \xnin/

Waw / X3

Next PC

(L.

3
=
>

am / Wan

What constrains a computer system?

= “e
893 &
.
’ ne £
€ '.i A bt
4 a
»
2
-
-
o = +64%
per year

ating-Poi

djusted S

'm Intel Xeon

o

t Performance

» Intel Core
Intel Pentium

4 Intel tanium

» ntel Celeron
AMD FX

m AMD Opteron
AMD Phenom

* AMD Athlon
IBM POWER

» PowerPC

- Fujitsu SPARC
Sun SPARC
el AlDha

=« MIPS

'» HP PA-RISC

ow do you measure a computer’s performance?

AT

=10° = 10° %< 10° =10° = 10° % 10° *10° =107 =<10° *10°

La- 18- 300 25-
351
10 35 104 3.0
40- 124 154 25
304 20l 204
254
. 0.8+ 1o 12
25 304 20 4
30 -
2.0 151
w e
220 06 20 08 Lo
154
>
] 154

204

05 - 1.0+

... .-
s &
= =
= =
"
- ~
5 s
AFU s
s = e
s & 5 &
O E—
s -
2 =
:
——
S ——
—
° = -)
2 2 g b
AFU s
o
&
OF E——
) =
& =
" 7
——
——
-
S =
2 &
——
———
-
= -
& 5

057 I 02 - I
LU [T T LI T .ma‘oh!u;

BO mgY> sgY © O o o @ oY, o mgY> sgY ® O
= T"bzg wu= cbZ% TwmEZx wh= stZ% T"HEE T©HEE stE%

A= B3 B2z 52z B2Zz BlEz A2Ez oIz B3Iz aSg
>E§ >s5) >E§ >=5) >§E >=5 N >E§

FFT DWT Viterbi SMM DMM SCONV DCONV SMV DMV SORT

What makes software runnable?

mov Ox18(%rdi),%rl4

sub 0x10(%rdi),%rl4d

mov Ox8(%rdi),%rbp

add %rld,%rsi

mov %rld, %rdx

setb %al

add Ox30(%rdi),%rsi

setb %cl 18
shr $0x3, %rdx 10
cmp %rsi, (%rdi) 08
lea Ox64(xrsi,srdx,1),4rl2
cmovae (%rdi),%rsi

cmp %rl2,%rsi

cmovae %rsi,%rl2

test %rax,%rax

16aea:
l1l6aee:
16afl:
16af6:
16afa:
16afd:
16b0O1:

int walk_page_range(struct mm_struct *mm, unsigned long start,

unsigned long end, const struct mm_walk_ops *ops,

void *private)

int err = 0;

unsigned long next;

struct vm_area_struct *vma;

struct mm_walk walk = {
.ops ops,
.mm mm,
.private private,

3

if (start >= end)
return -EINVAL;

if (!walk.mm)
return -EINVAL;

mmap_assert_locked(walk.mm);

vma = find_vma(walk.mm, start);
do {

if (!vma) { /* after the last vma *
walk.vma = NULL;

next = end;

r
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

How do you improve software’s performance?

1.00

0.75 -

0.50 -

0.25 -

0.00

Are some programs intrinsically slow?

What are the lower-extremities of software?

How (& why?) to do two things at the same time?

[s e R R T)

|||||ﬁ11|||imuu|nmummmlmmlumm o1, R bt 5

Debug, ' i T o, ; ey e System Management Un

b

|
i

uCode ROM _

* 1 MiB L3$ Array 1 MiB L3§"Array.

FP Register

.

FP,U;Coq!rolv ¢.Zen3 Core

2 2 5 L2$ By A d
L3$ Control ' * . L3$ Tags L3¢ Tags L33 Control 13§ Tags o 3 - s
: . g 215 X : FPU Control

Zen3 Coré

FP Register
[

1 MiB L3$ Array

135 Array

4 L2$ >
L3$ Control L3$ Tags L3$.Tags L3¢ Tags
b - ¢ 5 2

1 MiB L3$ Array

uCode ROM

1 MiB L3 Array 1 MiB L3$ Array

v

FP Register

L3$ Control | * . L3$ Tags L3§ Tags L3$ Control 13§ Tags . w ST & ?
> . : FPU Control
Zen3 Core

FPU con

1 MiB L3$ Array
B

* 1 MiB L3$ Array 1 MiB L3§"Array.

)7 g e |Tags+\ S
- 3 L3$ Tags L3$ Tags L3$ Control 3% Tags — iy p A0
Ehulc " ’ : y 25
C i : . o mgm 5 Zen3 Core
;. v State & . # 2

'FP Register
.

FPY Control

FP Register
t

.

1 MiB L3$ Array

1 MiB L3$ Array, J L3$ Array.

FPiRegister.

ow does it all fit together in real systems?

Tartan-Artibeus-1 Batteryless Energy-
harvesting Nanosatellite System

ow does it all fit together in real systems?

Hyperscale computing in data centers

Setting expectations upfront

* Series of labs (Lab 0 — “bootstrapping” goes out soon, check slack)

* Do all labs except lab O in pairs. The pointis not to make you code or
experiment for the rest of your life. We want you to learn by doing.

* Labs released via AFS: /afs/ece.cmu.edu/class/ece344/assign

* For each lab, handout.txt is your main reference & documentation. READ IT
CAREFULLY because it will tell you what you need to know to do the lab

* Labs are not just “code & submit”. Instead, you'll be building,
studying, measuring, and evaluating systems. Coding it up is step 1.

Course Calendar

Date Topic 10/9/2024 Virtual Memory

08/26/2024 || Introduction to the Hardware/Software Boundary 10/14/2024 Fall Break
08/28/2024 || von Neumann Architectures

10/16/2024 Fall Break
09/04/2024 | Computer Architecture Basics

10/21/202 The Compiler 1s Here to Help (And, wrapping up VM)
09/09/2024 || ISAs: The RISC-V ISA /2 4 P P ’ PpimE up
09/11/2024 | Pipelines and Hazards [pptx] / [pdf] 10/23/2024 Sparse Problems Introduction
09/16/2024 || Control hazards and Branch Prediction 10/28/2024 | Sparse Problems Optimization (Propagation Blocking)
09/18/2024 || Caches and Memory Hierarchy 10/30/2024 || Parallelism, Coherency, and Concurrency Basics
09/23/202 Cache Replacement Policies and Enhancements . i

9/23/2024 - 11/4/2024 Synchronization and Transactional Memory

09/25/2024 || Introduction to Performance Evaluation

11/6/2024 Consistency, Coherency, and Understanding the Model
09/30/2024 | Design Space Exploration
10/02/2024 || Advanced Architecture: Superscalar and Out of Order 11/11/2024 Speclal LOpIG Introduction to Data Center Cumpunng
10/07/2024 || Advanced Dataflow Architectures 11/13/2024 Special Topic: Introduction to Building Ethical Computer Systems

Diving into Computer Architecture

Date

Topic

08/26/2024

Introduction to the Hardware/Software Boundary

08/28/2024

von Neumann Architectures

09/04/2024

Computer Architecture Basics

09/09/2024

ISAs: The RISC-V ISA

09/11/2024 Pipelines and Hazards [pptx] / [pdf]

09/16/2024 | Control hazards and Branch Prediction

09/18/2024 || Caches and Memory Hierarchy

09/23/2024 | Cache Replacement Policies and Enhancements
09/25/2024 | Introduction to Performance Evaluation

09/30/2024 | Design Space Exploration

10/02/2024 | Advanced Architecture: Superscalar and Out of Order

10/07/2024

Advanced Dataflow Architectures

Broad introduction to computer
architecture, understanding the
architecture / microarchitecture
distinction, what is an ISA?, what
limits computer performance?,
how to think about hardware
using abstractions, Amdahl’s Law

ILP & Dealing with Hazards

Date Topic
08/26/2024 || Introduction to the Hardware/Software Boundary
08/28/2024 | von Neumann Architectures
09/04/2024 | Computer Architecture Basics
09/09/2024 | 1SAs: The RISC-V ISA
09/11/2024 Pipelines and Hazards [pptx] / [pdf]

09/16/2024 | Control hazards and Branch Prediction

09/18/2024 || Caches and Memory Hierarchy

09/23/2024 | Cache Replacement Policies and Enhancements
09/25/2024 | Introduction to Performance Evaluation

09/30/2024 | Design Space Exploration

10/02/2024 | Advanced Architecture: Superscalar and Out of Order

10/07/2024

Advanced Dataflow Architectures

Introduction to ILP, pipelining and
what gets in its way, how control
flow happens at execution time,
branch prediction

Caches & Memory Hierarchies

Date Topic
08/26/2024 || Introduction to the Hardware/Software Boundary
08/28/2024 || von Neumann Architectures
09/04/2024 | Computer Architecture Basics
09/09/2024 | ISAs: The RISC-V ISA
09/11/2024 Pipelines and Hazards [pptx] / [pdf]

Control hazards and Branch Prediction

09,/16/2024

09/18/2024

Caches and Memory Hierarchy

09/23/2024

Cache Replacement Policies and Enhancements

09/25/2024 | Introduction to Performance Evaluation
09/30/2024 | Design Space Exploration
10/02/2024 | Advanced Architecture: Supersecalar and Out of Order

10/07/2024

Advanced Dataflow Architectures

Memory is the real problem!
Caches, memory hierarchies: an
architect’s view, cache
replacement and other cache
optimizations

Principled Performance Analysis

Date Topic
08/26/2024 || Introduction to the Hardware/Software Boundary
08/28/2024 | von Neumann Architectures
09/04/2024 | Computer Architecture Basics
09/09/2024 | ISAs: The RISC-V ISA
09/11/2024 Pipelines and Hazards [pptx] / [pdf]

09/16/2024 | Control hazards and Branch Prediction

09/18/2024 || Caches and Memory Hierarchy

09/23/2024 | Cache Replacement Policies and Enhancements
09/25/2024 | Introduction to Performance Evaluation

09/30/2024 | Design Space Exploration

10/02/2024 | Advanced Architecture: Superscalar and Out of Order

10/07/2024

Advanced Dataflow Architectures

Measuring a systemin a
meaningful way, understanding
performance measurement
pitfalls, Pareto analysis, design
space iteration & exploration,
Amdahl’s Law (again)

Microarchitectural Optimizations

Date Topic
08/26/2024 || Introduction to the Hardware/Software Boundary
08/28/2024 || von Neumann Architectures
09/04/2024 | Computer Architecture Basics
09/09/2024 | ISAs: The RISC-V ISA
09/11/2024 Pipelines and Hazards [pptx] / [pdf]

09/16/2024 | Control hazards and Branch Prediction

09/18/2024 | Caches and Memory Hierarchy

09/23/2024 | Cache Replacement Policies and Enhancements
09/25/2024 | Introduction to Performance Evaluation

09/30/2024 | Design Space Exploration

10/02/2024 | Advanced Architecture: Supersecalar and Out of Order

10/07/2024

Advanced Dataflow Architectures

Going beyond IPC=1, advanced ILP
techniques, superscalar & out-of-
order execution, vector
processors, Very Large Instruction
Word processors, other more
exotic architectures like dataflow

Virtual Memory

10/9/2024

Virtual Memory

10/14/2024

Fall Break

10/16/2024

Fall Break

10/21/2024

The Compiler Is Here to Help (And, wrapping up VM)

10/23/2024 | Sparse Problems Introduction

10/28/2024 | Sparse Problems Optimization (Propagation Blocking)
10/30/2024 | Parallelism, Coherency, and Concurrency Basics

11/4/2024 Synchronization and Transactional Memory

11/6/2024 Consistency, Coherency, and Understanding the Model
11/11/2024 Special Topic: Introduction to Data Center Computing
11/13/2024 Special Topie: Introduction to Building Ethical Computer Systems

Virtual Memory, virtualization basics,
bad ways to do VM,
hardware/software co-design for
virtualization, VM advanced topics,
huge pages, TLB design

Sparse Computation

10/9/2024 Virtual Memory

10/14/2024 Fall Break

10/16/2024 Fall Break

10/21/2024 | The Compiler Is Here to Help (And, wrapping up VM)

10/23/2024 | Sparse Problems Introduction Introduction to sparsity, what is a
10/28/2024 || Sparse Problems Optimization (Propagation Blocking) Spa rse problem and Why |S one
10/30/2024 | Parallelism, Coherency, and Concurrency Basics dlfflCUltp, understanding the
performance limiters, sparse
problem optimization strategies,
open problems

11/4/2024 Synchronization and Transactional Memory

11/6/2024 Consistency, Coherency, and Understanding the Model

11/11/2024 Special Topic: Introduction to Data Center Computing

11/13/2024 Special Topie: Introduction to Building Ethical Computer Systems

Parallelism & Concurrency

10/9/2024 Virtual Memory

10/14/2024 Fall Break

10/16/2024 Fall Break

10/21/2024 | The Compiler Is Here to Help (And, wrapping up VM)
10/23/2024 | Sparse Problems Introduction

10/28/2024 | Sparse Problems Optimization (Propagation Blocking)

10/30/2024

Parallelism, Coherency, and Concurrency Basics

11/4/2024

Synchronization and Transactional Memory

11/6/2024

11/11/2024

Consistency, Coherency, and Understanding the Model

Special Topic: Introduction to Data Center Computing

11/13/2024

Special Topic: Introduction to Building Ethical Computer Systems

Parallel computation, parallel
architectures concurrency, memory
consistency models, synchronization,
atomics, transactional memory
networks on chip

End of semester: emerging architecture topics

10/9/2024 Virtual Memory

10/14/2024 Fall Break

(Subject to change) What is
happening in the field of computer

10/16/2024 Fall Break

10/21/2024 | The Compiler Is Here to Help (And, wrapping up VM)

s 000 architecture and systems today?
10/28/2024 | e e What are the exciting new ideas?
10/30/2024 || Parallelism, Coherency, and Concurrency Basics Hypersca le data center

11/4/2024 || Synchronization and Transactional Memory architectures

11/6/2024 | IR L e e Q/A

11/11/2024 Special Topic: Introduction to Data Center Computing

11/13/2024 Special Topic: Introduction to Building Ethical Computer Systems

Lab O: Bootstrapping

* 18-344 has lots of moving parts. Lab 0 is about figuring them all out
* You'll be using each of them again in subsequent labs.

* SPEC2017: collection of benchmark programs designed for evaluating
computer architectures
* Needlessly complex and very difficult to change infrastructure. SPEC will be a
pain, but will give you the Real Computer Systems Experience.

* Pin: binary instrumentation tool used to insert code into program
binaries to implement computer architecture simulators

e Destiny: memory modeling tool useful for evaluating the time &
energy to access different cache/memory designs

Lab 1: Branch Prediction

* As you will learn, (and as you may recall from 213) microarchitectures
predict the outcome of their branch instructions

* Write a branch predictor simulator

* Evaluate different implementations
e Cost, accuracy, implementation feasibility

e Write-up in English prose characterizing and explaining your design,
and with quantitative evaluation of your design’s performance.

Lab 2: Memory Hierarchy Design Space

* Cache hierarchies are big complex microarchitectural components
* Which is best for a given set of programs?
* You will start by writing a cache, and then a whole memory hierarchy.

* Then you will run a design space exploration process to optimize your
memory hierarchy implementation, subject to physical constraints
and performance & efficiency goals

* You will explore different replacement policies

* Write-up in English prose summarizing your design space exploration
and conclusions, including quantitative evaluation.

Lab 3: Virtual Memory

* Virtual memory provides process isolation and access control using paging
and some hardware support

* You will implement an emulation of a page table and the basic functions
that you will use to manipulate the page table

* You will implement simulated hardware to accelerate translation of virtual
to physical addresses and evaluate its impact on system performance

* You will study your implementation and quantitatively analyze your page
table and hardware support

* Write-up describing your design, including quantitative evaluation of your
system and its performance

Lab 4: Sparse Workload Optimization

» Sparse workloads are programs that work on datasets that have
sparse structure, like graphs that have lots of vertices and far fewer
edges (sparse adjacency matrix). Sparse workloads are hard to cache.

* Given a simple unoptimized sparse workload implementation, you
will use a highly specialized optimization called Propagation Blocking
to optimize, yielding a much higher performance implementation

* You will study your optimized version, and quantitatively analyze your
design choices.

* Write-up including description of your implementation and summary
of quantitative results

Lab 5: Synchronization for Parallel Code

* Parallel programs require synchronizing to avoid confusing
interactions between threads.

* There are many ways to implement synchronization

* You will implement different synchronization mechanisms (from spin
locks to transactional memory) for two performance-sensitive test
programs

* You will quantitatively study your implementations and their
performance on the two test programs

* Write-up including description of your synchronization alternatives
and a quantitative analysis of performance

	Slide 1: CMU 18-344: Computer Systems and the Hardware/Software Interface
	Slide 2: CMU 18-344: Computer Systems and the Hardware/Software Interface
	Slide 3: Akshitha Sriraman (Call me “Akshitha”)
	Slide 4: Course Staff & Logistics
	Slide 5: What are your expectations from this course?
	Slide 6: What is this course about?
	Slide 7: What is the hardware software boundary?
	Slide 8: What is computer (μ)architecture?
	Slide 9: What constrains a computer system?
	Slide 10: Why are these processors different?
	Slide 11: How do you measure a computer’s performance?
	Slide 12: What makes software runnable?
	Slide 13: How do you improve software’s performance?
	Slide 14: Are some programs intrinsically slow?
	Slide 15: What are the lower-extremities of software?
	Slide 16: How (& why?) to do two things at the same time?
	Slide 17: How does it all fit together in real systems?
	Slide 18: How does it all fit together in real systems?
	Slide 19: Setting expectations upfront
	Slide 20: Course Calendar
	Slide 21: Diving into Computer Architecture
	Slide 22: ILP & Dealing with Hazards
	Slide 23: Caches & Memory Hierarchies
	Slide 24: Principled Performance Analysis
	Slide 25: Microarchitectural Optimizations
	Slide 26: Virtual Memory
	Slide 27: Sparse Computation
	Slide 28: Parallelism & Concurrency
	Slide 29: End of semester: emerging architecture topics
	Slide 30: Lab 0: Bootstrapping
	Slide 31: Lab 1: Branch Prediction
	Slide 32: Lab 2: Memory Hierarchy Design Space
	Slide 33: Lab 3: Virtual Memory
	Slide 34: Lab 4: Sparse Workload Optimization
	Slide 35: Lab 5: Synchronization for Parallel Code

