
18-344 Lab 3

24 October, 2024

Introduction

In this lab you will implement parts of a software virtual memory system and
understand the role of hardware in optimizing virtual memory implementation.

The purpose of this lab is help you understand how virtual memory works,
including memory mapping, page fault handling, and Translation Lookaside
Buffers (TLBs), but not including page allocation and replacement.

Your first task in this lab is to implement a page table and then to use it for
mapping and memory accesses. Your implementation should count how many
memory accesses and how many page faults happen during an execution with a
page table of a particular size.

Your second task in this lab is to implement a TLB to cache translations
and avoid the need to access the page table. Your TLB’s size and associativ-
ity is up to you and you need to justify your design choice and argue for its
implementability in your write-up for this lab.

Your page table implementation should work approximately like the intel
Core i7 processor. The Core i7 has a 4 level page table hierarchy with 512
entries per page table.

You can and we will test your implementation using a driver program like
the one that we provide in vm test.cpp. This test driver sets up and initializes
a virtual memory system and then runs a series of memory mapping operations
and memory accesses. Throughout the end of the execution, your virtual mem-
ory implementation should track the number of accesses, page faults, and TLB
hits. At the end of the execution, the driver will report the number of each of
these.

Optional: You may choose to additionally implement a flat/linear hashing
implementation of a page table that uses chaining to resolve hashing conflicts,
instead of using a hierarchical page table, like we looked at in class. This
implementation variant will allow you to model and measure how the cost of
linear hashing differs from the cost of a hierarchical page table.

1



Starter Code

Your implementation should be built around the existing base code that we
provide with the lab. You are free to extend these files with anything you
need to add, but you should not substantially change vm-provided.cpp, nor
vm-util.h, nor pte-util.h. If you must change these files, please carefully
document the required changes in your write-up and justify why the interfaces
had to change.

vm-student.h/.cpp, vm-util.h

The top-level VM implementation. VM *vm is the pointer to the VM imple-
mentation that the driver code will use to manipulate your VM implemen-
tation. Here, you must implement vmPageFaultHandler(pte), vmMap(addr),
and vmTranslate(addr). These functions are documented in vm-student.cpp.
vmMap() will be called directly in the driver programs. vmTranslate() will
be called in VM::Load()/Store() on each memory access. You must call
vmPageFaultHandler() on page faults that you encounter during translation.
You must handle a page fault by attempting to allocate a new page (if there
are physical pages to allocate) or by replacing a page, if not. To allocate
a new page, you should use VM::bumpAllocate(). To replace a page, use
VM::replacePage(). Both of these functions are given in vm-provided.cpp.
Your VM implementation should update page faults, num accesses, and
tlb hits when each of these events happen during an execution.

ptab.h/.cpp

The page table interface. You should implement getEntry(addr,level) and
createEntry(addr,level). These functions get or create an entry in the page
table at the specified level based on the address provided. Recall: depending
on the level, a different subset of bits from the address determine that address’s
entry in the page table. getEntryDirect(index) is an alternative interface
that allows directly indexing into a page table to access the entry at index.
getEntryIdFromAddr(addr,level) is a convenience function you will probably
want to implement that computes the entry for an address in a page table at
the given level. An entry in a page table is of type PTE, which is a union that
you can interpret as either a pointer to another page table (pageTable *) or
a pointer to a PTE (pageTableEntry *). You may want to think through the
idiom that you use to traverse through the levels in your page table hierarchy,
computing the index based on the address and level. The table pointer in this
module is the storage for the table’s entries and should be allocated when the
object gets constructed.

2



pte.h/.cpp, pte-util.h

A page table entry. A page table entry holds the physical page number of a page.
Do not confuse this structure with a PTE, which is a related union, defined in
pte-util.h.

tlb.h/.cpp

The TLB implementation. The TLB should cache previous translations from
virtual to physical addresses. On each access your code should lookup(addr,

&PPN) the address in the TLB and populate the PPN reference parameter if a
valid mapping is cached. lookup() returns true if there was a valid mapping
cached. update(addr,new PPN) updates the TLB’s cache state with the new
translation from virtual address addr to the new physical page number new PPN.

What to Turn In

You should turn in your code and a writeup describing your implementation and
its behavior. Your writeup should describe how your page table and your TLB
works and should include a quantitative evaluation. Your evaluation should
include a quantitative argument justifying your TLB’s organization and should
specifically argue its implementability and cost-effectiveness. Planning and exe-
cuting an interesting and informative quantitative evaluation is part of the work
of this lab. You should design experiments and tests that demonstrate features
and interesting behavior in your design.

A few things to keep in mind:

• Your code should work on a variety of traces that include page faults,
access violations (e.g., segfaults), and normal accesses. It is your job
to create interesting traces that test interesting cases in the operation of
your paging system. We will run your system on your traces, which you
should turn in, and we may run your system on our traces, which will test
interesting behavior.

• You should not modify vm-provided.cpp, and we will use our own version
of that code during grading.

• As part of your quantitative justification for your TLB organization, you
should include a plot showing how the frequency of page table walks (i.e.,
TLB misses) changes with different TLB configurations (the subset of the
design space that you traverse for this study is up to you). Describe the
scale of the improvement in your system’s performance with reference to
the benefits of your TLB: how many fewer memory accesses does your
system have to make in order to do virtual memory translations with a
TLB vs. without a TLB?

3



• You should include an overall performance summary based on the total
number of program memory accesses, the number of memory accesses per
translation (without a TLB), and the number of TLB hits in your system.
The specific details of this performance summary are up to you, but the
point is to show that you can summarize the behavior of a system over a
design space in terms of several relevant and meaningful figures of merit.

• If you choose to implement a linear hashing page table, you should show
off your work by comparing its cost to the cost of the hierarchical version.
Are there cases where one or the other is better?

Errata

• There once was a bug that allowed VM::replacePage() to return a PPN
that is 0xDEADBEEF, AKA VM PAGEDOUT. We believe this bug is removed,
but if you encounter this condition please report it to the course staff. A
workaround is to repeatedly call replacePage() in a loop until the return
value is not VM PAGEDOUT.

4


