
Brandon Lucia - Carnegie Mellon University - Challenges of Intermittent Computing

2

Energy-minimal Computing
Edge architectures for extreme efficiency

Existing architectures are extremely inefficient

Control/Communication

Instruction energy* breakdown:

Useful
compute

(10%)

>90%

2*Horowitz ISSCC 2014 + measured values

Extreme Edge Computing Goal:
increase energy-efficiency and preserve programmability

Where does all the energy go in existing
computer architectures?

Fetch/Decode (40-50%) Register file (20%) Other control
Useful

compute
(10%)

Something is fundamentally wrong here:

Instruction energy* breakdown:

ASICs/Accelerators would improve this, but forfeit programmability

3*Horowitz ISSCC 2014 + measured values

High
Performance

Low Power

Fundamental extreme edge trade-offs
High

Programmability

Opportunity for the
extreme edge

Well-studied
(GPUs, OOO, SIMD)

Well-studied (ASICs)

4

High
Performance

Low Power

Fundamental extreme edge trade-offs
High

Programmability

Opportunity for
the extreme edge

Manic

x
SNAFU

x

Well-studied
(GPUs, OOO, SIMD)

Well-studied (ASICs)

RipTide

x

Key Idea:
Different architecture, different

set of tradeoffs

5

Extreme edge applications
demand programmable & energy-

minimal architectures

MANIC: Extreme Edge Vector-dataflow processor

• Reduce instruction supply energy + VRF energy

• Maintain high-degree of programmability to support future kernels

Energy

Model Insns RF Reads RF Writes

Scalar

Vector

Vector-
Dataflow

7

Scalar execution model

for i in 0...3:

load r0, &a[i]

mul r1, r0, r0

add r2, r1, r0

store &b[i], r2

load

mul

add

store

Dataflow
Energy

Model Insns
RF

Reads
RF

Writes

Scalar

Vector

Vector-
Dataflow

Example Program register

load

register

Dataflow

mul

register

add

register

store Control-flow
Related: MSP430, ARM M0

8

for i in 0...3:

load r0, &a[i]

mul r1, r0, r0

add r2, r1, r0

store &b[i], r2

load

mul

add

store

Dataflow

add

register

store

Energy

Model Insns
RF

Reads
RF

Writes

Scalar

Vector

Vector-
Dataflow

Example Program register

load

register

mul

register

Dataflow

Control-flow

8

Scalar execution model

for i in 0...3:

load r0, &a[i]

mul r1, r0, r0

add r2, r1, r0

store &b[i], r2

load

mul

add

store

Dataflow

store

Energy

Model Insns
RF

Reads
RF

Writes

Scalar

Vector

Vector-
Dataflow

Example Program register

load

register

mul

register

register

add

Dataflow

Scalar execution model

Control-flow

9

for i in 0...3:

load r0, &a[i]

mul r1, r0, r0

add r2, r1, r0

store &b[i], r2

load

mul

add

store

Dataflow register

load

register

mul

register

add

register

store

Energy

Model Insns
RF

Reads
RF

Writes

Scalar

Vector

Vector-
Dataflow

Repeat fetches +
decodes

Read and write
to RF

Example Program

Dataflow

Control-flow

Scalar execution model

10

Scalar execution is inefficient

Memory DCache access ICache access Compute + Control

• Energy wasted on instruction & data supply

11

Vector execution

vload v0, &a

vmul v1, v0, v0

vadd v2, v1, v0

vstore &b, v2

vload

vmul

vadd

vstore

Dataflow

Scalar

Energy

Model Insns
RF

Reads
RF

Writes

Vector

Vector-
Dataflow

Example Program
vload:

vmul: v[0] v[1] v[2]

Vector Register

vadd: v[0] v[1] v[2]

Vector Register

vstore: v[0] v[1] v[2]

v[1]v[0] v[2]

Vector Register

Dataflow

Control-flow
12

vload v0, &a

vmul v1, v0, v0

vadd v2, v1, v0

vstore &b, v2

vload

vmul

vadd

vstore

Dataflow

Scalar

Energy

Model Insns
RF

Reads
RF

Writes

Vector

Vector-
Dataflow

Example Program
vload:

vmul: v[1]v[0] v[2]

vadd: v[0] v[1] v[2]

Vector Register

vstore: v[0] v[1] v[2]

Vector Register

v[1]v[0] v[2]

Vector Register

Dataflow

Vector execution

Control-flow
13

vload v0, &a

vmul v1, v0, v0

vadd v2, v1, v0

vstore &b, v2

vload

vmul

vadd

vstore

Dataflow

Scalar

Energy

Model Insns
RF

Reads
RF

Writes

Vector

Vector-
Dataflow

Example Program
vload:

vmul:

vadd:

vstore: v[0] v[1] v[2]

Vector Register

v[1]v[0] v[2]

v[1]v[0] v[2]

Vector Register

v[1]v[0] v[2]

Vector Register

Dataflow

Vector execution

Control-flow
14

vload v0, &a

vmul v1, v0, v0

vadd v2, v1, v0

vstore &b, v2

vload

vmul

vadd

vstore

Dataflow

Scalar

Energy

Model Insns
RF

Reads
RF

Writes

Vector

Vector-
Dataflow

Example Program

Read and write
to VRF

vload: v[0] v[1] v[2]

Vector Register

vmul: v[0] v[1] v[2]

Vector Register

vadd: v[0] v[1]

Vector Register

v[2]

vstore: v[0] v[1] v[2]

Dataflow

Control-flow

Vector execution

15

Vector pays huge energy cost for VRF writes

Memory DCache access ICache access Compute + Control

Vector

Memory DCache access ICache Compute +
Control

Vector register file

16

MANIC’s Vector-dataflow execution

vload v0, &a

vmul v1, v0, v0

vadd v2, v1, v0

vstore &b, v2

vload

vmul

vadd

vstore

Dataflow

Scalar

Vector

Energy

Model Insns
RF

Reads
RF

Writes

Vector-
Dataflow

Example Program

Vector Register

vload: v[0]

vmul: v[0]

vadd: v[0]

vstore: v[0]

V

v[1] v[2]

v[1] v[2]

v[1] v[2]

v[1] v[2]

ector Register
Dataflow

Control-flow
17

vload v0, &a

vmul v1, v0, v0

vadd v2, v1, v0

vstore &b, v2

vload

vmul

vadd

vstore

Dataflow

Scalar

Vector

Energy

Model Insns
RF

Reads
RF

Writes

Vector-
Dataflow

Example Program

Vector Register

vload:

vmul:

v[0]

vadd: v[0]

vstore: v[0]

V

v[1] v[2]

v[1] v[2]

v[1] v[2]

v[1] v[2]

ector Register

v[0]

Dataflow

MANIC’s Vector-dataflow execution

Control-flow
18

vload v0, &a

vmul v1, v0, v0

vadd v2, v1, v0

vstore &b, v2

vload

vmul

vadd

vstore

Dataflow

Scalar

Vector

Energy

Model Insns
RF

Reads
RF

Writes

Vector-
Dataflow

Example Program

Vector Register

vload:

vmul:

vadd:

v[0]

v[0]

vstore: v[0]

V

v[1] v[2]

v[1] v[2]

v[1] v[2]

v[1] v[2]

ector Register

v[0]

Dataflow

MANIC’s Vector-dataflow execution

Control-flow
19

vload v0, &a

vmul v1, v0, v0

vadd v2, v1, v0

vstore &b, v2

vload

vmul

vadd

vstore

Dataflow

Scalar

Vector

Energy

Model Insns
RF

Reads
RF

Writes

Vector-
Dataflow

Example Program

Vector Register

V

vload:

vmul:

vadd:

vstore:

v[0]

v[0]

v[1] v[2]

v[1] v[2]

v[1] v[2]

v[1] v[2]

ector Register

v[0]

v[0]

Dataflow

MANIC’s Vector-dataflow execution

Control-flow
20

vload v0, &a

vmul v1, v0, v0

vadd v2, v1, v0

vstore &b, v2

vload

vmul

vadd

vstore

Dataflow

Scalar

Vector

Energy

Model Insns
RF

Reads
RF

Writes

Vector-
Dataflow

Example Program

Vector Register

Vector Register

vload:

vmul:

vadd:

vstore:

v[0]

v[0]

v[1]

v[1]

v[1]

v[2]

v[2]

v[2]

v[2]

v[0]

v[0]

v[1]

Dataflow

MANIC’s Vector-dataflow execution

Control-flow
21

vload v0, &a

vmul v1, v0, v0

vadd v2, v1, v0

vstore &b, v2

vload

vmul

vadd

vstore

Dataflow

Scalar

Vector

Energy

Model Insns
RF

Reads
RF

Writes

Vector-
Dataflow

Example Program

Vector Register

Vector Register

vload:

vmul:

vadd:

vstore:

v[0]

v[0]

v[0]

v[0]

v[1]

v[1]

v[1]

v[1]

v[2]

v[2]

v[2]

v[2]

Dataflow
Forwarding

Dataflow

MANIC’s Vector-dataflow execution

Control-flow
22

Vector-dataflow reduces energy without costing
programmability

Memory DCache access ICache access Compute + Control

• Vector-dataflow execution
• Vector execution reduces instructions fetched
• Dataflow execution eliminates VRF reads

• Software support to eliminate VRF writes

Vector

Memory DCache access ICache Compute +
Control

Vector register file

Memory DCache access ICache Compute +
Control

Dataflow

Vector register file

23

MANIC is an energy-minimal computer
architecture implementing vector-dataflow

RISC-V
Scalar Core

2KB
I$

4KB D$

I2C 4KB
VRF

Boot
ROM 64KB

SRAM
256KB
MRAMMain

Memory

MANIC

Arbiter

Arbiter

GPIO

IO
 B

u
s

Block diagram

24

Implementation Characteristics

• Complete standalone system

• Scalar, Vector & MANIC designs

• Intel 22nm bulk FinFet (HVT)

• Embedded MRAM

• SRAM, logic, MRAM power isolated

Intel 22nm FinFET 8 metal layers, MANIC +
Vector + Scalar, 256kB MRAM + 64kB SRAM

Evaluation Goals: Energy characterization
of first ever vector-dataflow chip.

Evaluating MANIC’s efficiency in a silicon prototype
MANIC

MRAM MRAM

Core Logic

$ + VRF

SRAM

Operational Characteristics:
Frequency: 4-50MHz Voltage: 0.4-1.0V
Power: 19.1uW Efficiency: 256 GOPS/W

Key Result: Power low & efficiency high
enough to run on tiny solar panel indoors

More Pretty Chip Micrographs
Courtesy CMU’s Nanofabrication Laboratory & their electron microscope

MANIC
Scalar

Caches

SRAM

MANIC

MRAM

28

Can we do even better?
Let’s eliminate all instruction control & caching costs!

Memory DCache access ICache access Compute + Control

Vector

Memory DCache access ICache Compute +
Control

Vector register file

Dataflow

Memory DCache access ICache Compute +
Control

Memory

Coarse-grained Reconfigurable Array Architectures

29

Compute
Key idea: architecture eliminates
instruction & control overheads

CGRA Overview

• Processing elements (PE) connected by Network-on-Chip (NoC)
• Heterogenous PE capability
• Connections configured by software compiler

S

r

rr

r

B

r

rr

r

S

r

rr

r

S

r

rr

r

C

r

rr

r

B

r

rr

r

r

rr

r r

rr

r r

rr

r

M M M M

r

rr

r

30

CGRA Overview

• Collection of processing elements (PE) connected via NoC
• Configure PE once, use many times: no instruction fetch/control costs
• Data move directly PE to PE: no RF/VRF/Cache costs
• Stream data through fabric: Reduced memory costs

dot_product():
1. vload v0, &a

2. vload v1, &b

3. vmul v2, v0, v1

4. vredsum v3, v2

5. vstore &c, v3

Vector assembly

Extract 3

4

5

1 2

r

rr

r r

r

r

r

r

r r

r

rr

r r

r

r

r

r r r r r

M M M M
r r r r r

S C B
r r r r

S B
r r r

S
r r

1 2 5

3 4Schedule

Nearly all energy for actually useful computation!
31

RipTide CGRAT
C

>

+
CF

R R

RR

M
R R

RR

M
R R

RR

M
R R

RR

M
R R

RR

M
R R

RR

CF
R R

RR

St
R R

RR

A
R R

RR

A
R R

RR

St
R R

RR

M
R R

RR

M
R R

RR

A
R R

RR

A
R R

RR

A
R R

RR

A
R R

RR

CF
R R

RR

CF
R R

RR

A
R R

RR

A
R R

RR

A
R R

RR

A
R R

RR

M
R R

RR

M
R R

RR

St
R R

RR

A
R R

RR

A
R R

RR

St
R R

RR

CF
R R

RR

M
R R

RR

M
R R

RR

M
R R

RR

M
R R

RR

R R

RR

M CF
R R

RR

RISC-V
Scalar Core

CGRA
Control

CGRA
Configurator

Memory

Memory

Memory

Memory

M

M

St

CF

A

32

Memory

Multiplier

Stream

Arithmetic

Control-flow

CF-modules

R R R

R

R R

R RR R

R

R R

R

R

R

R

R R R R

R R R R

R R R R

R R R R

CGRAs provide efficiency & programmability
Dataflow compiler support avoids the need for programmer acrobatics

T
C

>

+

void test(int *a, int *b,

int *z, int n) {

for(int i = 0; i < n; i++) {

for(int j = 0; j < n; j++) {

if(a[j] < 0) {

z[j] = 0;

}

z[j] += b[j];

}

}

}

Dataflow
Compiler

Optimized
Dataflow Graph

C code

RipTide CGRA

R

R

33

Dataflow Architecture

Dataflow Architecture: Dataflow Program Graphs

Conditional operations
represented as dataflow

if(x > 3){ x += 2 }

else{ x -= 1 }

y = x * 4

Loop represented as dataflow

while(x

x -= 3

}

> 0){

Initial value

Dataflow: “Activity Template” implementation

Dataflow: Processing Element & Interconnect Arch.

Processing Element Architecture

Processing Element Interconnection Architecture

Question: what do we need to specify
in this ISA?

Dataflow: MIT Dataflow Architecture

What is the main difference in this architecture versus the
“basic” architecture on the previous slide?

Dataflow: The Riptide Ordered Dataflow Machine

Dataflow: The Riptide ISA

What program constructs do the carry and
invariant ISA ops support?

What does the order ISA op do?

What program construct(s) does the
stream ISA op support?

Background: What is a Dataflow Machine?

41

R R R

R

R R

R RR R

R

R R

R

R

R

R

R R R R

R R R R

R R R R

R R R R

Dataflow ISA matches CGRA Architecture
Dataflow compiler efficiently targets reconfigurable dataflow architecture!

T
C

>

+

void test(int *a, int *b,

int *z, int n) {

for(int i = 0; i < n; i++) {

for(int j = 0; j < n; j++) {

if(a[j] < 0) {

z[j] = 0;

}

z[j] += b[j];

}

}

}

Dataflow
Compiler

Optimized
Dataflow Graph

C code

RipTide CGRA

R

R

42

Intermediate representation for dataflow compilation

Steering Sends Values Only Where They Are Needed

Steering instead of predication

Avoids evaluating both sides of

branch like predication does

Control-flow Operators Handle Loop-Carried Dependences

Generate fresh value tokens for

loop carried dependences and

loop-invariant values

Memory Ordering Gates Maintain Memory Consistency

Enforce logical time ordering of

concurrent memory operations

Memory Ordering Reduction Analysis

Existing memory

ordering analyses rely

on transitive reduction of

ordering graph

Dataflow ordering

reduction requires path

sensitivity or cuts

required orders.

Stream Gates Optimize Patterned Address Computation

Generate new address value token

every cycle according to affine(-ish)

function established in program

End-to-end compilation flow

Energy-Minimal Network-on-Chip Tricks:
No Buffers & Control-Flow in NoC

✓ Multi-hop, bufferless NoC

Buffer on every link Buffers @ producer

✓ Control-flow in the NoC

• Control-flow operations are numerous, but simple
➔ Wasteful to assign to PEs

C

r

B

M

r

Allows broadcast to multiple
consumers w/out duplication

S

S

S

S
r

rr

r

B
r

rr

r

S
r

r

r

S
r

rr

r r

rr

r

C B
r

rr

r

r

rr

r r

rr

r r

rr

r

M M M M
r

rr

r

r

Duplicates data in
multiple buffers

v.
Switch

Router Switch

Switch

Router CF-Modules

Riptide vs. COTS Extreme Edge MCUs
Energy savings Speedup

51

Evaluating compute options for the extreme edge

HMB010 BLE

52

System overview:

HMB010 Scalar BLE

53

System overview:

Evaluating compute options for the extreme edge

HMB010 Riptide BLE

54

System overview:

Evaluating compute options for the extreme edge

HMB010 ASIC BLE

55

System overview:

Evaluating compute options for the extreme edge

That was “Ordered Dataflow”

Axiom: Tokens proceed through the graph in the order of their generation

How do we ensure that tokens flow through the dataflow graph in order?

56

What about allowing token reordering?

“Tagged-token dataflow architectures”

Two issues: Latency & Synchronization

Latency: time between when operation
is issued and when completes

Synchronization: need to assure data
properly written before read

ld Memory

t=0

t=?

(Memory) Latency: when can I

57

expect my value to come back?

Synchronization: which
value should I use?

58

Tagged-token Dataflow Architecture

Token matching: synchronization of
out-of-order inputs, using i-struc5t9s

I-structures: latency-tolerant memory
I-fetch send rd tok w/ addr+continuation
P: read & run; A/W: queue
I-store: send wr tok to populate table
A/W are non-blocking (why?)
I-allocate: make storage for fetch/stores

Parallelism is a resource congestion problem

I structure

Synchronization: which
value should I use? Many
options accumulating over
time

60

Varieties of Dataflow Execution

61

Varieties of Dataflow Execution

62

	Slide 1: Energy-minimal Computing Edge architectures for extreme efficiency
	Slide 2: Existing architectures are extremely inefficient
	Slide 3: Where does all the energy go in existing computer architectures?
	Slide 4: Fundamental extreme edge trade-offs High Programmability
	Slide 5: Fundamental extreme edge trade-offs High Programmability
	Slide 6: MANIC: Extreme Edge Vector-dataflow processor
	Slide 7: Scalar execution model
	Slide 8: Scalar execution model
	Slide 9: Scalar execution model
	Slide 10: Scalar execution model
	Slide 11: Scalar execution is inefficient
	Slide 12: Vector execution
	Slide 13: Vector execution
	Slide 14: Vector execution
	Slide 15: Vector execution
	Slide 16: Vector pays huge energy cost for VRF writes
	Slide 17: MANIC’s Vector-dataflow execution
	Slide 18: MANIC’s Vector-dataflow execution
	Slide 19: MANIC’s Vector-dataflow execution
	Slide 20: MANIC’s Vector-dataflow execution
	Slide 21: MANIC’s Vector-dataflow execution
	Slide 22: MANIC’s Vector-dataflow execution
	Slide 23: Vector-dataflow reduces energy without costing programmability
	Slide 24: MANIC is an energy-minimal computer architecture implementing vector-dataflow
	Slide 25: Evaluating MANIC’s efficiency in a silicon prototype
	Slide 26: More Pretty Chip Micrographs Courtesy CMU’s Nanofabrication Laboratory & their electron microscope
	Slide 27: Can we do even better? Let’s eliminate all instruction control & caching costs!
	Slide 28: CGRA Overview
	Slide 29: CGRA Overview
	Slide 30: RipTide CGRA
	Slide 31: CGRAs provide efficiency & programmability Dataflow compiler support avoids the need for programmer acrobatics
	Slide 32: Dataflow Architecture
	Slide 33: Dataflow Architecture: Dataflow Program Graphs
	Slide 34: Dataflow: “Activity Template” implementation
	Slide 35: Dataflow: Processing Element & Interconnect Arch.
	Slide 36: Dataflow: MIT Dataflow Architecture
	Slide 37: Dataflow: The Riptide Ordered Dataflow Machine
	Slide 38: Dataflow: The Riptide ISA
	Slide 39: Background: What is a Dataflow Machine?
	Slide 40: Dataflow ISA matches CGRA Architecture Dataflow compiler efficiently targets reconfigurable dataflow architecture!
	Slide 41: Intermediate representation for dataflow compilation
	Slide 42: Steering Sends Values Only Where They Are Needed
	Slide 43: Control-flow Operators Handle Loop-Carried Dependences
	Slide 44: Memory Ordering Gates Maintain Memory Consistency
	Slide 45: Memory Ordering Reduction Analysis
	Slide 46: Stream Gates Optimize Patterned Address Computation
	Slide 47: End-to-end compilation flow
	Slide 48: Energy-Minimal Network-on-Chip Tricks: No Buffers & Control-Flow in NoC
	Slide 49: Riptide vs. COTS Extreme Edge MCUs
	Slide 50: Evaluating compute options for the extreme edge
	Slide 51: Evaluating compute options for the extreme edge
	Slide 52: Evaluating compute options for the extreme edge
	Slide 53: Evaluating compute options for the extreme edge
	Slide 54: That was “Ordered Dataflow”
	Slide 55: What about allowing token reordering?
	Slide 56
	Slide 57: Tagged-token Dataflow Architecture
	Slide 58: Parallelism is a resource congestion problem
	Slide 59: Varieties of Dataflow Execution
	Slide 60: Varieties of Dataflow Execution

