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Energy-minimal Computing
Edge architectures for extreme efficiency



Existing architectures are extremely inefficient

Control/Communication

Instruction energy* breakdown:

Useful 
compute 

(10%)

>90%

2*Horowitz ISSCC 2014 + measured values

Extreme Edge Computing Goal:
increase energy-efficiency and preserve programmability



Where does all the energy go in existing 
computer architectures?

Fetch/Decode (40-50%) Register file (20%) Other control
Useful 

compute 
(10%)

Something is fundamentally wrong here:

Instruction energy* breakdown:

ASICs/Accelerators would improve this, but forfeit programmability

3*Horowitz ISSCC 2014 + measured values



High 
Performance

Low Power

Fundamental extreme edge trade-offs
High 

Programmability

Opportunity for the
extreme edge

Well-studied
(GPUs, OOO, SIMD)

Well-studied (ASICs)
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High 
Performance

Low Power

Fundamental extreme edge trade-offs
High 

Programmability

Opportunity for 
the extreme edge

Manic

x
SNAFU

x

Well-studied 
(GPUs, OOO, SIMD)

Well-studied (ASICs)

RipTide

x

Key Idea:
Different architecture, different 

set of tradeoffs
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Extreme edge applications 
demand programmable & energy- 

minimal architectures



MANIC: Extreme Edge Vector-dataflow processor

• Reduce instruction supply energy + VRF energy

• Maintain high-degree of programmability to support future kernels

Energy

Model Insns RF Reads RF Writes

Scalar

Vector

Vector- 
Dataflow
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Scalar execution model

for i in 0...3: 

load r0, &a[i] 

mul r1, r0, r0 

add r2, r1, r0 

store &b[i], r2

load

mul

add

store

Dataflow
Energy

Model Insns
RF

Reads
RF

Writes

Scalar

Vector

Vector-
Dataflow

Example Program register

load

register

Dataflow

mul

register

add

register

store Control-flow
Related: MSP430, ARM M0

8



for i in 0...3: 

load r0, &a[i] 

mul r1, r0, r0 

add r2, r1, r0 

store &b[i], r2

load

mul

add

store

Dataflow

add

register

store

Energy

Model Insns
RF

Reads
RF

Writes

Scalar

Vector

Vector-
Dataflow

Example Program register

load

register

mul

register

Dataflow

Control-flow
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Scalar execution model



for i in 0...3: 

load r0, &a[i] 

mul r1, r0, r0 

add r2, r1, r0 

store &b[i], r2

load

mul

add

store

Dataflow

store

Energy

Model Insns
RF

Reads
RF

Writes

Scalar

Vector

Vector- 
Dataflow

Example Program register

load

register

mul

register

register

add

Dataflow

Scalar execution model

Control-flow

9



for i in 0...3: 

load r0, &a[i] 

mul r1, r0, r0 

add r2, r1, r0 

store &b[i], r2

load

mul

add

store

Dataflow register

load

register

mul

register

add

register

store

Energy

Model Insns
RF

Reads
RF

Writes

Scalar

Vector

Vector-
Dataflow

Repeat fetches + 
decodes

Read and write
to RF

Example Program

Dataflow

Control-flow

Scalar execution model
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Scalar execution is inefficient

Memory DCache access ICache access Compute + Control

• Energy wasted on instruction & data supply
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Vector execution

vload v0, &a 

vmul v1, v0, v0 

vadd v2, v1, v0 

vstore &b, v2

vload

vmul

vadd

vstore

Dataflow

Scalar

Energy

Model Insns
RF

Reads
RF

Writes

Vector

Vector-
Dataflow

Example Program
vload:

vmul: v[0] v[1] v[2]

Vector Register

vadd: v[0] v[1] v[2]

Vector Register

vstore: v[0] v[1] v[2]

v[1]v[0] v[2]

Vector Register

Dataflow

Control-flow
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vload v0, &a 

vmul v1, v0, v0 

vadd v2, v1, v0 

vstore &b, v2

vload

vmul

vadd

vstore

Dataflow

Scalar

Energy

Model Insns
RF

Reads
RF

Writes

Vector

Vector-
Dataflow

Example Program
vload:

vmul: v[1]v[0] v[2]

vadd: v[0] v[1] v[2]

Vector Register

vstore: v[0] v[1] v[2]

Vector Register

v[1]v[0] v[2]

Vector Register

Dataflow

Vector execution

Control-flow
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vload v0, &a 

vmul v1, v0, v0 

vadd v2, v1, v0 

vstore &b, v2

vload

vmul

vadd

vstore

Dataflow

Scalar

Energy

Model Insns
RF

Reads
RF

Writes

Vector

Vector-
Dataflow

Example Program
vload:

vmul:

vadd:

vstore: v[0] v[1] v[2]

Vector Register

v[1]v[0] v[2]

v[1]v[0] v[2]

Vector Register

v[1]v[0] v[2]

Vector Register

Dataflow

Vector execution

Control-flow
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vload v0, &a 

vmul v1, v0, v0 

vadd v2, v1, v0 

vstore &b, v2

vload

vmul

vadd

vstore

Dataflow

Scalar

Energy

Model Insns
RF

Reads
RF

Writes

Vector

Vector-
Dataflow

Example Program

Read and write 
to VRF

vload: v[0] v[1] v[2]

Vector Register

vmul: v[0] v[1] v[2]

Vector Register

vadd: v[0] v[1]

Vector Register

v[2]

vstore: v[0] v[1] v[2]

Dataflow

Control-flow

Vector execution
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Vector pays huge energy cost for VRF writes

Memory DCache access ICache access Compute + Control

Vector

Memory DCache access ICache Compute + 
Control

Vector register file
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MANIC’s Vector-dataflow execution

vload v0, &a 

vmul v1, v0, v0 

vadd v2, v1, v0 

vstore &b, v2

vload

vmul

vadd

vstore

Dataflow

Scalar

Vector

Energy

Model Insns
RF

Reads
RF

Writes

Vector-
Dataflow

Example Program

Vector Register

vload: v[0]

vmul: v[0]

vadd: v[0]

vstore: v[0]

V

v[1] v[2]

v[1] v[2]

v[1] v[2]

v[1] v[2]

ector Register
Dataflow

Control-flow
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vload v0, &a 

vmul v1, v0, v0 

vadd v2, v1, v0 

vstore &b, v2

vload

vmul

vadd

vstore

Dataflow

Scalar

Vector

Energy

Model Insns
RF

Reads
RF

Writes

Vector-
Dataflow

Example Program

Vector Register

vload:

vmul:

v[0]

vadd: v[0]

vstore: v[0]

V

v[1] v[2]

v[1] v[2]

v[1] v[2]

v[1] v[2]

ector Register

v[0]

Dataflow

MANIC’s Vector-dataflow execution

Control-flow
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vload v0, &a 

vmul v1, v0, v0 

vadd v2, v1, v0 

vstore &b, v2

vload

vmul

vadd

vstore

Dataflow

Scalar

Vector

Energy

Model Insns
RF

Reads
RF

Writes

Vector-
Dataflow

Example Program

Vector Register

vload:

vmul:

vadd:

v[0]

v[0]

vstore: v[0]

V

v[1] v[2]

v[1] v[2]

v[1] v[2]

v[1] v[2]

ector Register

v[0]

Dataflow

MANIC’s Vector-dataflow execution

Control-flow
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vload v0, &a 

vmul v1, v0, v0 

vadd v2, v1, v0 

vstore &b, v2

vload

vmul

vadd

vstore

Dataflow

Scalar

Vector

Energy

Model Insns
RF

Reads
RF

Writes

Vector-
Dataflow

Example Program

Vector Register

V

vload:

vmul:

vadd:

vstore:

v[0]

v[0]

v[1] v[2]

v[1] v[2]

v[1] v[2]

v[1] v[2]

ector Register

v[0]

v[0]

Dataflow

MANIC’s Vector-dataflow execution

Control-flow
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vload v0, &a 

vmul v1, v0, v0 

vadd v2, v1, v0 

vstore &b, v2

vload

vmul

vadd

vstore

Dataflow

Scalar

Vector

Energy

Model Insns
RF

Reads
RF

Writes

Vector-
Dataflow

Example Program

Vector Register

Vector Register

vload:

vmul:

vadd:

vstore:

v[0]

v[0]

v[1]

v[1]

v[1]

v[2]

v[2]

v[2]

v[2]

v[0]

v[0]

v[1]

Dataflow

MANIC’s Vector-dataflow execution

Control-flow
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vload v0, &a 

vmul v1, v0, v0 

vadd v2, v1, v0 

vstore &b, v2

vload

vmul

vadd

vstore

Dataflow

Scalar

Vector

Energy

Model Insns
RF

Reads
RF

Writes

Vector-
Dataflow

Example Program

Vector Register

Vector Register

vload:

vmul:

vadd:

vstore:

v[0]

v[0]

v[0]

v[0]

v[1]

v[1]

v[1]

v[1]

v[2]

v[2]

v[2]

v[2]

Dataflow
Forwarding

Dataflow

MANIC’s Vector-dataflow execution

Control-flow
22



Vector-dataflow reduces energy without costing 
programmability

Memory DCache access ICache access Compute + Control

• Vector-dataflow execution
• Vector execution reduces instructions fetched
• Dataflow execution eliminates VRF reads

• Software support to eliminate VRF writes

Vector

Memory DCache access ICache Compute + 
Control

Vector register file

Memory DCache access ICache Compute + 
Control

Dataflow

Vector register file
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MANIC is an energy-minimal computer 
architecture implementing vector-dataflow

RISC-V
Scalar Core

2KB
I$

4KB D$

I2C 4KB 
VRF

Boot 
ROM 64KB 

SRAM
256KB 
MRAMMain 

Memory

MANIC

Arbiter

Arbiter

GPIO

IO
 B

u
s

Block diagram
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Implementation Characteristics

• Complete standalone system

• Scalar, Vector & MANIC designs

• Intel 22nm bulk FinFet (HVT)

• Embedded MRAM

• SRAM, logic, MRAM power isolated



Intel 22nm FinFET 8 metal layers, MANIC +
Vector + Scalar, 256kB MRAM + 64kB SRAM

Evaluation Goals: Energy characterization
of first ever vector-dataflow chip.

Evaluating MANIC’s efficiency in a silicon prototype
MANIC

MRAM MRAM

Core Logic

$ + VRF

SRAM

Operational Characteristics:
Frequency: 4-50MHz Voltage: 0.4-1.0V
Power: 19.1uW Efficiency: 256 GOPS/W

Key Result: Power low & efficiency high 
enough to run on tiny solar panel indoors



More Pretty Chip Micrographs
Courtesy CMU’s Nanofabrication Laboratory & their electron microscope

MANIC
Scalar

Caches

SRAM

MANIC

MRAM
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Can we do even better?
Let’s eliminate all instruction control & caching costs!

Memory DCache access ICache access Compute + Control

Vector

Memory DCache access ICache Compute +
Control

Vector register file

Dataflow

Memory DCache access ICache Compute + 
Control

Memory

Coarse-grained Reconfigurable Array Architectures

29

Compute
Key idea: architecture eliminates 
instruction & control overheads



CGRA Overview

• Processing elements (PE) connected by Network-on-Chip (NoC)
• Heterogenous PE capability
• Connections configured by software compiler
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CGRA Overview

• Collection of processing elements (PE) connected via NoC
• Configure PE once, use many times: no instruction fetch/control costs
• Data move directly PE to PE: no RF/VRF/Cache costs
• Stream data through fabric: Reduced memory costs

dot_product():
1. vload v0, &a

2. vload v1, &b

3. vmul v2, v0, v1

4. vredsum v3, v2

5. vstore &c, v3

Vector assembly

Extract 3

4

5

1 2

r

rr

r r

r

r

r

r

r r

r

rr

r r

r

r

r

r r r r r

M M M M
r r r r r

S C B
r r r r

S B
r r r

S
r r

1 2 5

3 4Schedule

Nearly all energy for actually useful computation!
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Memory

Multiplier

Stream

Arithmetic 

Control-flow

CF-modules
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CGRAs provide efficiency & programmability
Dataflow compiler support avoids the need for programmer acrobatics

T
C

>

+

void test(int *a, int *b,

int *z, int n) {

for(int i = 0; i < n; i++) {

for(int j = 0; j < n; j++) {

if(a[j] < 0) { 

z[j] = 0;

}

z[j] += b[j];

}

}

}

Dataflow
Compiler

Optimized 
Dataflow Graph

C code

RipTide CGRA

R

R
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Dataflow Architecture



Dataflow Architecture: Dataflow Program Graphs

Conditional operations 
represented as dataflow

if( x > 3 ){ x += 2 }

else{ x -= 1 }

y = x * 4

Loop represented as dataflow

while( x

x -= 3

}

> 0 ){

Initial value



Dataflow: “Activity Template” implementation



Dataflow: Processing Element & Interconnect Arch.

Processing Element Architecture

Processing Element Interconnection Architecture

Question: what do we need to specify
in this ISA?



Dataflow: MIT Dataflow Architecture

What is the main difference in this architecture versus the
“basic” architecture on the previous slide?



Dataflow: The Riptide Ordered Dataflow Machine



Dataflow: The Riptide ISA

What program constructs do the carry and
invariant ISA ops support?

What does the order ISA op do?

What program construct(s) does the
stream ISA op support?



Background: What is a Dataflow Machine?
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Dataflow ISA matches CGRA Architecture
Dataflow compiler efficiently targets reconfigurable dataflow architecture!

T
C

>

+

void test(int *a, int *b,

int *z, int n) {

for(int i = 0; i < n; i++) {

for(int j = 0; j < n; j++) {

if(a[j] < 0) { 

z[j] = 0;

}

z[j] += b[j];

}

}

}

Dataflow
Compiler

Optimized 
Dataflow Graph

C code

RipTide CGRA

R

R
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Intermediate representation for dataflow compilation



Steering Sends Values Only Where They Are Needed

Steering instead of predication 

Avoids evaluating both sides of 

branch like predication does



Control-flow Operators Handle Loop-Carried Dependences

Generate fresh value tokens for 

loop carried dependences and 

loop-invariant values



Memory Ordering Gates Maintain Memory Consistency

Enforce logical time ordering of 

concurrent memory operations



Memory Ordering Reduction Analysis

Existing memory 

ordering analyses rely 

on transitive reduction of 

ordering graph

Dataflow ordering 

reduction requires path 

sensitivity or cuts 

required orders.



Stream Gates Optimize Patterned Address Computation

Generate new address value token 

every cycle according to affine(-ish) 

function established in program



End-to-end compilation flow



Energy-Minimal Network-on-Chip Tricks: 
No Buffers & Control-Flow in NoC

✓ Multi-hop, bufferless NoC

Buffer on every link Buffers @ producer

✓ Control-flow in the NoC

• Control-flow operations are numerous, but simple
➔ Wasteful to assign to PEs

C

r

B
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r

Allows broadcast to multiple 
consumers w/out duplication
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Duplicates data in
multiple buffers

v.
Switch

Router Switch
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Router CF-Modules



Riptide vs. COTS Extreme Edge MCUs
Energy savings Speedup
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Evaluating compute options for the extreme edge

HMB010 BLE

52

System overview:



HMB010 Scalar BLE
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System overview:

Evaluating compute options for the extreme edge



HMB010 Riptide BLE
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System overview:

Evaluating compute options for the extreme edge



HMB010 ASIC BLE
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System overview:

Evaluating compute options for the extreme edge



That was “Ordered Dataflow”

Axiom: Tokens proceed through the graph in the order of their generation

How do we ensure that tokens flow through the dataflow graph in order?
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What about allowing token reordering?

“Tagged-token dataflow architectures”

Two issues: Latency & Synchronization

Latency: time between when operation 
is issued and when completes

Synchronization: need to assure data 
properly written before read

ld Memory

t=0

t=?

(Memory) Latency: when can I

57

expect my value to come back?

Synchronization: which
value should I use?
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Tagged-token Dataflow Architecture

Token matching: synchronization of 
out-of-order inputs, using i-struc5t9s

I-structures: latency-tolerant memory
I-fetch send rd tok w/ addr+continuation
P: read & run; A/W: queue
I-store: send wr tok to populate table
A/W are non-blocking (why?)
I-allocate: make storage for fetch/stores



Parallelism is a resource congestion problem

I structure

Synchronization: which 
value should I use? Many 
options accumulating over 
time
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Varieties of Dataflow Execution
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Varieties of Dataflow Execution
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