
Fall 2023

Lecture 8: Cache Replacement Policies and Enhancements

Credit: Brandon Lucia

Replacement Policies

Replacement Policies

L3$

Se
t

0
Se

t
1

Se
t

2
Se

t
3

Way 0 Way 1 Way 2 Way 3

Line

lb x6 0x7fff0053

1,0,0x7fff10,… 1,0,0x000000,… 1,1,0x001e00,… 0,0,0x7fff00,…

ache
ontroller

0011

fset
9

Byte 2

Byte 1

Byte 0

. .
 .

Byte M

. .
 .

3
2

 B
yt

e
B

lo
ck

@
 0

x7
ff

f0
00

0Which block in the set should we evict
to make space for the new block?

Replacement Policies – Round Robin

L3$

Se
t

0
Se

t
1

Se
t

2
Se

t
3

Way 0 Way 1 Way 2 Way 3

Line

lb x6 0x7fff0053

1,0,0x7fff10,… 1,0,0x000000,… 1,1,0x001e00,… 0,0,0x7fff00,…

ache
ontroller

0011

fset
9

Byte 2

Byte 1

Byte 0

. .
 .

Byte M

. .
 .

3
2

 B
yt

e
B

lo
ck

@
 0

x7
ff

f0
00

0

Evict
Next

Replacement Policies – Round Robin

L3$

Se
t

0
Se

t
1

Se
t

2
Se

t
3

Way 0 Way 1 Way 2 Way 3

Line

lb x6 0x7fff0053

1,0,0x7fff10,… 1,0,0x000000,… 1,1,0x001e00,… 0,0,0x7fff00,…

ache
ontroller

0011

fset
9

Byte 2

Byte 1

Byte 0

. .
 .

Byte M

. .
 .

3
2

 B
yt

e
B

lo
ck

@
 0

x7
ff

f0
00

0

Evict
Next

Replacement Policies – Round Robin

L3$

Se
t

0
Se

t
1

Se
t

2
Se

t
3

Way 0 Way 1 Way 2 Way 3

Line

lb x6 0x7fff0053

1,0,0x7fff10,… 1,0,0x000000,… 1,1,0x001e00,… 0,0,0x7fff00,…

ache
ontroller

0011

fset
9

Byte 2

Byte 1

Byte 0

. .
 .

Byte M

. .
 .

3
2

 B
yt

e
B

lo
ck

@
 0

x7
ff

f0
00

0

Evict
Next

Replacement Policies – Round Robin

L3$

Se
t

0
Se

t
1

Se
t

2
Se

t
3

Way 0 Way 1 Way 2 Way 3

Line

lb x6 0x7fff0053

1,0,0x7fff10,… 1,0,0x000000,… 1,1,0x001e00,… 0,0,0x7fff00,…

ache
ontroller

0011

fset
9

Byte 2

Byte 1

Byte 0

. .
 .

Byte M

. .
 .

3
2

 B
yt

e
B

lo
ck

@
 0

x7
ff

f0
00

0

Evict
Next

Replacement Policies – Round Robin

L3$

Se
t

1
Se

t
2

Se
t

3
Way 0 Way 1 Way 2 Way 3

Line

lb x6 0x7fff0053

1,0,0x7fff10,… 1,0,0x000000,… 1,1,0x001e00,… 0,0,0x7fff00,…

ache
ontroller

0011

fset
9

Byte 2

Byte 1

Byte 0

. .
 .

Byte M

. .
 .

3
2

 B
yt

e
B

lo
ck

@
 0

x7
ff

f0
00

0

Se
t

0

Evict
NNeexxtt

lb x6 0xe

lb x6 0xb

lb x6 0xc

lb x6 0xd

lb x6 0xa

Replacement Policies – Round-Robin Analysis

Se
t

0

ba c d

Evict
Next

Advantage: Simple to implement and understand
Disadvantage: Hopefully the next to evict isn’t going to be the next to be accessed…

Replacement Policies – Round-Robin Analysis

Se
t

0

ea c d

Evict
Next

Advantage: Simple to implement and understand
Disadvantage: Hopefully the next to evict isn’t going to be the next to be accessed…

lb x6 0xe

lb x6 0xb

lb x6 0xc

lb x6 0xd

lb x6 0xa

Replacement Policies – Round-Robin Analysis

Se
t

0

ea b d

Evict
Next

Advantage: Simple to implement and understand
Disadvantage: Hopefully the next to evict isn’t going to be the next to be accessed…

lb x6 0xe

lb x6 0xb

lb x6 0xc

lb x6 0xd

lb x6 0xa

Replacement Policies – Round-Robin Analysis

Se
t

0

ea b c

Evict
Next

Advantage: Simple to implement and understand
Disadvantage: Hopefully the next to evict isn’t going to be the next to be accessed…

lb x6 0xe

lb x6 0xb

lb x6 0xc

lb x6 0xd

lb x6 0xa

Replacement Policies – Round-Robin Analysis

Se
t

0

ed b c

Evict
Next

Advantage: Simple to implement and understand
Disadvantage: Hopefully the next to evict isn’t going to be the next to be accessed…

lb x6 0xe

lb x6 0xb

lb x6 0xc

lb x6 0xd

lb x6 0xa

Replacement Policies – Round-Robin Analysis

Se
t

0

ad b c

Evict
Next

Advantage: Simple to implement and understand
Disadvantage: Hopefully the next to evict isn’t going to be the next to be accessed…

lb x6 0xe

lb x6 0xb

lb x6 0xc

lb x6 0xd

lb x6 0xa

lb x6 0xe

lb x6 0xb

lb x6 0xc

lb x6 0xd

lb x6 0xa

Minimum Number of Misses?

Se
t

0

ba c d

What is the best replacement strategy to minimize misses & why?

lb x6 0xe

lb x6 0xb

lb x6 0xc

lb x6 0xd

lb x6 0xa

Minimum Number of Misses?

Se
t

0

ba c d

Evict
Next

lb x6 0xe

lb x6 0xb

lb x6 0xc

lb x6 0xd

lb x6 0xa

When are we going to re-use cached data?

Se
t

0

be c d

Miss

Hit

Hit

Hit

Miss

Replacement decisions must be informed by the next reuse of a block of data.
Think: what is an optimal policy? How far in the future is something going to be used again?

lb x6 0xe

lb x6 0xb

lb x6 0xc

lb x6 0xd

lb x6 0xa

When are we going to re-use cached data?

Se
t

0

ad b c

Miss

Hit

Hit

Hit

Miss

What defines optimality for a cache replacement algorithm?

lb x6 0xe

lb x6 0xb

lb x6 0xc

lb x6 0xd

lb x6 0xa

Belady’s MIN Algorithm for Optimal Replacement

Miss

Hit

Hit

Hit

Miss

Bélády László:
“What defines optimality for a cache replacement algorithm?”
Evict the cached element that will be used furthest in the future.

Se
t

0

ad b c

lb x6 0xe

lb x6 0xa

lb x6 0xb

lb x6 0xa

lb x6 0xc

lb x6 0xa

lb x6 0xd

lb x6 0xa

lb x6 0xe

lb x6 0xa

lb x6 0xf

lb x6 0xe

Belady’s MIN Algorithm for Optimal Replacement

Se
t

0

ad b c

lb x6 0xe

lb x6 0xa

lb x6 0xb

lb x6 0xa

lb x6 0xc

lb x6 0xa

lb x6 0xd

lb

lb

x6

x6

0xa

0xe

lb x6 0xa

lb x6 0xf

lb x6 0xe

Belady’s MIN Algorithm for Optimal Replacement

Se
t

0

ad b c

reuse distance: 6 reuse distance: 1 reuse distance: 2 reuse distance: 4

lb x6 0xe

lb x6 0xa

lb x6 0xb

lb x6 0xa

lb x6 0xc

lb x6 0xa

lb x6 0xd

lb

lb

x6

x6

0xa

0xe

lb x6 0xa

lb x6 0xf

lb x6 0xe

Belady’s MIN Algorithm for Optimal Replacement

Se
t

0

ad b c

Evict
Next

reuse distance: 6 reuse distance: 1 reuse distance: 2 reuse distance: 4

lb x6 0xe

lb x6 0xa

lb x6 0xb

lb x6 0xa

lb x6 0xc

lb x6 0xa

lb x6 0xd

lb

lb

x6

x6

0xa

0xe

lb x6 0xa

lb x6 0xb

lb x6 0xa

Belady’s MIN Algorithm for Optimal Replacement

Se
t

0

ae b c

reuse distance: 2 reuse distance: 1 reuse distance: 4 reuse distance: ∞

lb x6 0xe

lb x6 0xa

lb x6 0xb

lb x6 0xa

lb x6 0xc

lb x6 0xa

lb x6 0xd

lb

lb

x6

x6

0xa

0xe

lb x6 0xa

lb x6 0xb

lb x6 0xa

Belady’s MIN Algorithm for Optimal Replacement

Se
t

0

ae b c

reuse distance: 2 reuse distance: 1 reuse distance: 4 reuse distance: ∞

Evict
Next

Belady’s MIN Algorithm for Optimal Replacement

findBlockMIN(){

0://init reuse distances

1:for each block in cache, b:

2: RD[b] = 0; RD_done[b] = false;

3://look forward in the execution trace

4:for each access, a, forward in execution trace:

5://increment reuse distance for each block not already seen

6:

7:

8:

9:

for each block in cache, b:

if RD_done[b] == false:

RD[b]++;

RD_done[a.block] = true

10://MIN finds the block with maximum RD

11:return argmax(b,RD[b])

MIN results in the MINimum number of replacements in a cache for an execution trace.

Belady’s MIN Algorithm for Optimal Replacement

findBlockMIN(){

0://init reuse distances

1:for each block in cache, b:

2: RD[b] = 0; RD_done[b] = false;

3://look forward in the execution trace

4:for each access, a, forward in execution trace:

5://increment reuse distance for each block not already seen

6:

7:

8:

9:

for each block in cache, b:

if RD_done[b] == false:

RD[b]++;

RD_done[a.block] = true

10://MIN finds the block with maximum RD

11:return argmax(b,RD[b])

See any limitations of the MIN algorithm for cache replacement?

Belady’s MIN Algorithm for Optimal Replacement

findBlockMIN(){

0://init reuse distances

1:for each block in cache, b:

2: RD[b] = 0; RD_done[b] = false;

3://look forward in the execution trace

4:for each access, a, forward in execution trace:

5://increment reuse distance for each block not already seen

6:

7:

8:

9:

for each block in cache, b:

if RD_done[b] == false:

RD[b]++;

RD_done[a.block] = true

10://MIN finds the block with maximum RD

11:return argmax(b,RD[b])

Need omniscient future knowledge of the execution trace of your program!
MIN is optimal, but not practically implementable

lb x6 0xe

lb x6 0xa

lb x6 0xb

lb x6 0xa

lb x6 0xc

lb x6 0xa

lb x6 0xd

lb x6 0xa

lb x6 0xe

lb x6 0xa

lb x6 0xb

lb x6 0xe

Practical Replacement Algorithms

Se
t

0

ae b c

General idea: Assume the near future is similar to the recent past

kn
o

w
ab

le
gu

es
sa

b
le

If a block was used recently, it will be used again soon

lb x6 0xe

lb x6 0xa

lb x6 0xb

lb x6 0xa

lb x6 0xc

lb x6 0xa

lb x6 0xd

lb x6 0xa

lb x6 0xe

lb x6 0xa

lb x6 0xb

lb x6 0xe

Least-Recently Used (LRU) Replacement

Se
t

0

ae b c

Evict the block that was used the furthest in the execution’s past

kn
o

w
ab

le
gu

es
sa

b
le

If a block was not used recently, it will not be used again soon

lb x6 0xe

lb x6 0xa

lb x6 0xb

lb x6 0xa

lb x6 0xc

lb x6 0xa

lb x6 0xd

lb x6 0xa

lb x6 0xe

lb x6 0xa

lb x6 0xb

lb x6 0xe

Least-Recently Used (LRU) Replacement
Evict the block that was used the furthest in the execution’s past

Se
t

0

ae b c

kn
o

w
ab

le
gu

es
sa

b
lelast use: -6 last use: -1 last use: -4 last use: -2

LRU’s Gamble: “Haven’t used block 0xe for longest,
probably won’t use it again any time soon, either”

If a block was not used recently, it will not be used again soon

Evict
Next

lb x6 0xe

lb x6 0xa

lb x6 0xb

lb x6 0xa

lb x6 0xc

lb x6 0xa

lb x6 0xd

lb x6 0xa

lb x6 0xe

lb x6 0xa

lb x6 0xb

lb x6 0xe

Least-Recently Used (LRU) Replacement
Evict the block that was used the furthest in the execution’s past

Se
t

0

ae b c

kn
o

w
ab

le
gu

es
sa

b
lelast use: -6 last use: -1 last use: -4 last use: -2

Caveat: LRU is wrong if past does not predict future
Caveat to caveat: past usually predicts future well

If a block was not used recently, it will not be used again soon

LRU
Evicts

MIN
Evicts

(Naïve) LRU Algorithm & Implementability

accessCacheLRU(access a){

for each block in cache, b:

if b != a.block:

LRU_Age[b]++

LRU_Age[b] = 0

}

findBlockLRU(){

return argmax(b,LRU_Age)

}

Implementability and limitations of LRU?

(Naïve) LRU Algorithm & Implementability

accessCacheLRU(access a){

for each block in cache, b:

if b != a.block:

LRU_Age[b]++

LRU_Age[b] = 0

}

findBlockLRU(){

return argmax(b,LRU_Age)

}

Implementability! Does not require unknowable information about future of execution

Limitation! Requires accessing metadata for every block on each access to any block.

Time & energy cost to update ages. Area & power cost to store age values.
Does not scale beyond about 4 way set associativity.

lb x6 0xe

lb x6 0xa

lb x6 0xb

lb x6 0xa

lb x6 0xc

lb x6 0xa

lb x6 0xd

lb x6 0xa

lb x6 0xe

lb x6 0xa

lb x6 0xb

lb x6 0xe

Bit-Pseudo-Least-Recently Used (Bit-PLRU)
Evict a block that was definitely not most recently used

Se
t

0

ae b c

kn
o

w
ab

le
gu

es
sa

b
le

Set MRU bit when block is used (most recently), clear all MRU bits when
all MRU bits are set, evict the left-most block with unset MRU bit

MRU: 0 MRU: 1 MRU: 0 MRU: 0

lb x6 0xe

lb x6 0xa

lb x6 0xb

lb x6 0xa

lb x6 0xc

lb x6 0xa

lb x6 0xd

lb x6 0xa

lb x6 0xe

lb x6 0xa

lb x6 0xb

lb x6 0xe

Bit-Pseudo-Least-Recently Used (Bit-PLRU)
Evict a block that was definitely not most recently used

Se
t

0

ae b c

kn
o

w
ab

le
gu

es
sa

b
le

Set MRU bit when block is used (most recently), clear all MRU bits when
all MRU bits are set, evict the left-most block with unset MRU bit

MRU: 0 MRU: 1 MRU: 0 MRU: 0

Bit-PLRU

Evicts

lb x6 0xe

lb x6 0xa

lb x6 0xb

lb x6 0xa

lb x6 0xc

lb x6 0xa

lb x6 0xd

lb x6 0xa

lb x6 0xe

lb x6 0xa

lb x6 0xb

lb x6 0xe

Bit-Pseudo-Least-Recently Used (Bit-PLRU)

Se
t

0

ae b c

Evict a block that was definitely not most recently used

kn
o

w
ab

le
gu

es
sa

b
le

Bit-PLRU is a decent approximation of LRU

MRU: 0 MRU: 1 MRU: 0 MRU: 0

Bit-PLRU

Evicts

LRU
Evicts

MIN
Evicts

Bit-PLRU Algorithm & Implementability
accessCachePLRU(access a){

MRU_Bit[a.block] = 1

if ++MRU_BitSum == setSize:

for each block in cache, b:

MRU_Bit[b] = 0

MRU_BitSum = 0

}

findBlockLRU(){

for i in 0..setSize:

if !MRU_Bit[i]:

return block(i);

}

Implementability and limitations of Bit-PLRU?

Bit-PLRU Algorithm & Implementability
accessCachePLRU(access a){

MRU_Bit[a.block] = 1

if ++MRU_BitSum == setSize:

for each block in cache, b:

MRU_Bit[b] = 0

MRU_BitSum = 0

}

findBlockLRU(){

for i in 0..setSize:

if !MRU_Bit[i]:

return block(i);

}

Implementability! No future knowledge, 1 bit/block overhead, block-local metadata
updates on access (no O(n) aging operation)

Limitation! Approximates LRU, which approximates MIN by guessing based on history…

Bit-
PLRU

LRU MIN

M
is

se
s

p
er

 K
ilo

In
st

ru
ct

io
n

 (
M

P
K

I)

Notional Plot: not real
data (You measure these
in Lab 2!)

RR

Replacement Policies – Performance &
Complexity Cost/Benefit Analysis

RR: log(set size) bits per set to track next
to evict, no action on access

Bit-PLRU: 1 MRU bit per block + log(set
size) bits per set (or equivalent logic) to
detect all set,
Clear bits on access if all bits set

LRU: 1 age per block + logic to track max.
Update (set size - 1) ages on any access

MIN: unimplementable, requires future
knowledge of execution trace.

More cache-related optimizations

L3$

Se
t

0
Se

t
1

Se
t

2
Se

t
3

Way 0 Way 1 Way 2 Way 3

Line

Recall a Set Associative Caches

L3$

Se
t

0
Se

t
1

Se
t

2
Se

t
3

Way 0 Way 1 Way 2 Way 3

Line

What type of miss can be addressed by
cache design?

• Cold?

• Capacity?

• Conflict?

What can we do to address those misses
without doing the impractical:

• Increasing cache size
significantly(costly)

• Increasing associativity (slower)

Address the most glaring misses caused by
partitioning, i.e. conflict misses

• But how?

Miss Cache

L1

Miss Cache

L2

Just a few lines, i.e. 2 – 4, but
fully associative

Set associative
Probably write-through (Why?)

The most recent few reads brought
into L1 from L2 also hang out for a
very short time in the “Miss Cache”
which is fully associative. L1 misses
that is satisfied by the “Miss Cache”
very low penalty.

Miss Cache

L1

Miss Cache

L2

But, most of the time, the miss cache
stores values that are already stored
in the L1 cache, as they were just
read into both L1 and the miss cache
from the L2 cache, which is a waste
of space.

What can we do about that?

Victim Caches/Buffers

LL33$$

Way 0 Way 1 Way 2 Way 3

Se
t

0 Line

Se
t

1
Se

t
2

Se
t

3

Victim Cache

Only store things into the cache upon
eviction – then the only copy is in the
small cache between L1 and L2, now called
victim buffer.

Block evicted from cache goes into (usually
fully associative, small) victim buffer.

Victim Caches/Buffers

LL33$$

Way 0 Way 1 Way 2 Way 3

Se
t

0 Line

Se
t

1
Se

t
2

Se
t

3

Victim Cache

Block evicted from cache goes into (usually
fully associative, small) victim buffer.

On next access, “victim” can be re-cached
without going down the hierarchy.

Victim Caches/Buffers

LL33$$

Way 0 Way 1 Way 2 Way 3

Se
t

0 Line

Se
t

1
Se

t
2

Se
t

3

Victim Cache

What problem does a victim cache solve?

Block evicted from cache goes into (usually
fully associative, small) victim buffer.

On next access, “victim” can be re-cached
without going down the hierarchy.

Miss Caching vs Victim Caching

Norman P. Jouppi. 1990. Improving direct-mapped cache performance by the addition of a small fully-associative
cache and prefetch buffers. SIGARCH Computer Architecture News 18(3):388-397.

• Victim Caches better than Miss Caches
• But, butter for d-Caches than i-Caches. Why? (Think about locality and distance)

Stream Buffer

L1

Stream Buffer

L2

Benefits i-caches
Upon miss, prefetch next n instructions
Gets back ahead after jumps

Non-blocking Writes & Write Buffering

Byte 2

Byte 1

Byte 0

. .
 .

Byte M

. .
 .

Byte 0xF

Byte 0xE

Byte 0xD

Byte 0xC

Memory
Unit

Read
Data CCont.

Sigs.:
Op.
Select
[Ld/St]

Memory

MUXMUX

W
B

/M
em

 F
w

d
M

em
/M

em
 F

w
d

A

d
d

r
R

eg
 A

MUX

W
B

/M
em

 F
w

d
M

em
/M

em
 F

w
d

D
at

a
R

eg
 B

Cache

Write buffer: single cycle to add write op to write buffer
What problem does a write buffer solve?
What are key challenges associated with a write buffer?

sw 0xc $1000

…memory, if write-through
(why WB important for
write-through caches?)

Memory unit can read
from write buffer

Write Buffer Entry (e.g.)

Write Buffer

WB drains to…

…cache if
write-back

Non-blocking Writes & Write Buffering

Byte 2

Byte 1

Byte 0

. .
 .

Byte M

. .
 .

Byte 0xF

Byte 0xE

Byte 0xD

Byte 0xC

Memory
Unit

Read
Data CCont.

Sigs.:
Op.
Select
[Ld/St]

Memory

MUXMUX

W
B

/M
em

 F
w

d
M

em
/M

em
 F

w
d

A

d
d

r
R

eg
 A

MUX

W
B

/M
em

 F
w

d
M

em
/M

em
 F

w
d

D
at

a
R

eg
 B

Cache
Completed memory operations’ effects not yet in memory (complicated stuff,
later in the semester…)
What is the latency of a write if it ends up buffered?
Unpredictable write completion latency. Need ordering logic.

sw 0xc $1000

…memory, if write-through
(why WB important for
write-through caches?)

Memory unit can read
from write buffer

Write Buffer Entry (e.g.)

Write Buffer

WB drains to…

…cache if
write-back

Non-temporal/Streaming Stores

Byte 2

Byte 1

Byte 0

. .
 .

. .
 .

Byte 0xF

Byte 0xE

Byte 0xD

Byte 0xC

Memory
Unit

Read
Data CCont.

Sigs.:
Op.
Select
[Ld/St]

Memory

MUXMUX

W
B

/M
em

 F
w

d
M

em
/M

em
 F

w
d

A

d
d

r
R

eg
 A

MUX

W
B

/M
em

 F
w

d
M

em
/M

em
 F

w
d

D
at

a
R

eg
 B

Cache

Non-temporal Store: Acts like no-write-allocate+write-through even if
write-allocate+write-back for rest of cache.
When would you use a non-temporal store instruction?

…memory, if write-through
or non-temporal instruction

Memory unit can read
from write buffer

…cache if write-back
& not non-temporal

Byte M

In x86: movntdq r15, 0xC

Write Buffer

WB drains to…

Non-temporal/Streaming Stores

Byte 2

Byte 1

Byte 0

. .
 .

. .
 .

Byte 0xF

Byte 0xE

Byte 0xD

Byte 0xC

Memory
Unit

Read
Data CCont.

Sigs.:
Op.
Select
[Ld/St]

Memory

MUXMUX

W
B

/M
em

 F
w

d
M

em
/M

em
 F

w
d

A

d
d

r
R

eg
 A

MUX

W
B

/M
em

 F
w

d
M

em
/M

em
 F

w
d

D
at

a
R

eg
 B

Cache

When would you use a non-temporal store instruction?
Data streaming, accesses that are sure to have no locality

…memory, if write-through
or non-temporal instruction

Memory unit can read
from write buffer

…cache if write-back
& not non-temporal

Byte M

In x86: movntdq r15, 0xC

Write Buffer

WB drains to…

Not in RISCV (yet)!

RISCV Specification:
“RV32I reserves a large encoding space for
HINT instructions, which are usually used to
communicate performance hints to the
microarchitecture. HINTs are encoded as
integer computational instructions with
rd=x0. Hence, like the NOP instruction, HINTs
do not change any architecturally visible
state, except for advancing the pc and any
applicable performance counters.
Implementations are always allowed to
ignore the encoded hints.”

Scratchpad Memories

Byte 2

Byte 1

Byte 0

. .
 .

. .
 .

Byte 0xF

Byte 0xE

Byte 0xD

Byte 0xC

Memory
Unit

Read
Data CCont.

Sigs.:
Op.
Select
[Ld/St]

Memory

MUXMUX

W
B

/M
em

 F
w

d
M

em
/M

em
 F

w
d

A

d
d

r
R

eg
 A

MUX

W
B

/M
em

 F
w

d
M

em
/M

em
 F

w
d

D
at

a
R

eg
 B

Scratchpad Memory: Software controlled memory with
explicit, scratch-pad-private physical memory space

Cache

Write Buffer

…memory, if write-through
or non-temporal instruction

Memory unit can read
from write buffer

WB drains to…

…cache if write-back
& not non-temporal

BByyttee MM

Byte S.0 Byte S.N

Memory Unit controls loading
data from memory to SP

Memory unit can load from and
store to SP separately from Mem

Scratchpad Memories

Byte 2

Byte 1

Byte 0

. .
 .

. .
 .

Byte 0xF

Byte 0xE

Byte 0xD

Byte 0xC

Memory
Unit

Read
Data CCont.

Sigs.:
Op.
Select
[Ld/St]

Memory

MUXMUX

W
B

/M
em

 F
w

d
M

em
/M

em
 F

w
d

A

d
d

r
R

eg
 A

MUX

W
B

/M
em

 F
w

d
M

em
/M

em
 F

w
d

D
at

a
R

eg
 B

Why would you use a scratchpad when a cache makes
everything transparent to software and automatic???

Cache

Write Buffer

…memory, if write-through
or non-temporal instruction

Memory unit can read
from write buffer

WB drains to…

…cache if write-back
& not non-temporal

BByyttee MM

Byte S.0 Byte S.N

Memory Unit controls loading
data from memory to SP

Memory unit can load from and
store to SP separately from Mem

Scratchpad Memories

Byte 2

Byte 1

Byte 0

. .
 .

. .
 .

Byte 0xF

Byte 0xE

Byte 0xD

Byte 0xC

Memory
Unit

Read
Data CCont.

Sigs.:
Op.
Select
[Ld/St]

Memory

MUXMUX

W
B

/M
em

 F
w

d
M

em
/M

em
 F

w
d

A

d
d

r
R

eg
 A

MUX

W
B

/M
em

 F
w

d
M

em
/M

em
 F

w
d

D
at

a
R

eg
 B

Most important thing about scratchpads:
Software control is as good (or bad) as the programmer.

Cache

Write Buffer

…memory, if write-through
or non-temporal instruction

Memory unit can read
from write buffer

WB drains to…

…cache if write-back
& not non-temporal

BByyttee MM

Byte S.0 Byte S.N

Memory Unit controls loading
data from memory to SP

Most often manipulated by accessing
special range of addresses mapped to SP

Review Questions to Ponder: The Memory
Hierarchy and the Hardware Software Boundary

Part of the architecture: Cache? Scratchpad? Replacement
policy?
Part of the HW/SW boundary: Cache? Scratchpad?
Replacement policy?
What does a programmer need to know about how the
cache works?
What does the architect need to know about how the
machine will be used?

What did we just learn?

• Replacement is a one of the key dimensions of cache design

• Different replacement algorithms present different design trade offs

• Optimal replacement is infeasible, practical replacement is non-optimal

• Many microarchitectural and architectural choices make up a memory
hierarchy and the architect and programmer need to share information

What to think about next?

• Performance Evaluation (next time)
• Design spaces, Pareto Frontiers, and design space exploration

• Miscellaneous (micro)architectural tricks & optimizations (future)
• Vector processors, SIMD/SIMT, dataflow

What to think about next?

• Caches as a microarchitectural optimization (next time)
• Implementation of cache hierarchies

• Cache design tradeoffs

• Performance Evaluation (next next time)
• Design spaces, Pareto Frontiers, and design space exploration

• Miscellaneous (micro)architectural tricks & optimizations (future)
• Vector processors, SIMD/SIMT, dataflow

	Slide 1
	Slide 2: Replacement Policies
	Slide 3: Replacement Policies
	Slide 4: Replacement Policies – Round Robin
	Slide 5: Replacement Policies – Round Robin
	Slide 6: Replacement Policies – Round Robin
	Slide 7: Replacement Policies – Round Robin
	Slide 8: Replacement Policies – Round Robin
	Slide 9: Replacement Policies – Round-Robin Analysis
	Slide 10: Replacement Policies – Round-Robin Analysis
	Slide 11: Replacement Policies – Round-Robin Analysis
	Slide 12: Replacement Policies – Round-Robin Analysis
	Slide 13: Replacement Policies – Round-Robin Analysis
	Slide 14: Replacement Policies – Round-Robin Analysis
	Slide 15: Minimum Number of Misses?
	Slide 16: Minimum Number of Misses?
	Slide 17: When are we going to re-use cached data?
	Slide 18: When are we going to re-use cached data?
	Slide 19: Belady’s MIN Algorithm for Optimal Replacement
	Slide 20: Belady’s MIN Algorithm for Optimal Replacement
	Slide 21: Belady’s MIN Algorithm for Optimal Replacement
	Slide 22: Belady’s MIN Algorithm for Optimal Replacement
	Slide 23: Belady’s MIN Algorithm for Optimal Replacement
	Slide 24: Belady’s MIN Algorithm for Optimal Replacement
	Slide 25: Belady’s MIN Algorithm for Optimal Replacement
	Slide 26: Belady’s MIN Algorithm for Optimal Replacement
	Slide 27: Belady’s MIN Algorithm for Optimal Replacement
	Slide 28: Practical Replacement Algorithms
	Slide 29: Least-Recently Used (LRU) Replacement
	Slide 30: Least-Recently Used (LRU) Replacement Evict the block that was used the furthest in the execution’s past
	Slide 31: Least-Recently Used (LRU) Replacement Evict the block that was used the furthest in the execution’s past
	Slide 32: (Naïve) LRU Algorithm & Implementability
	Slide 33: (Naïve) LRU Algorithm & Implementability
	Slide 34: Bit-Pseudo-Least-Recently Used (Bit-PLRU) Evict a block that was definitely not most recently used
	Slide 35: Bit-Pseudo-Least-Recently Used (Bit-PLRU) Evict a block that was definitely not most recently used
	Slide 36: Bit-Pseudo-Least-Recently Used (Bit-PLRU)
	Slide 37: Bit-PLRU Algorithm & Implementability
	Slide 38: Bit-PLRU Algorithm & Implementability
	Slide 39: Replacement Policies – Performance & Complexity Cost/Benefit Analysis RR: log(set size) bits per set to track next to evict, no action on access
	Slide 40: More cache-related optimizations
	Slide 41: Recall a Set Associative Caches
	Slide 42: Miss Cache
	Slide 43: Miss Cache
	Slide 44: Victim Caches/Buffers
	Slide 45: Victim Caches/Buffers
	Slide 46: Victim Caches/Buffers
	Slide 47: Miss Caching vs Victim Caching
	Slide 48: Stream Buffer
	Slide 49: Non-blocking Writes & Write Buffering
	Slide 50: Non-blocking Writes & Write Buffering
	Slide 51: Non-temporal/Streaming Stores
	Slide 52: Non-temporal/Streaming Stores
	Slide 53: Not in RISCV (yet)!
	Slide 54: Scratchpad Memories
	Slide 55: Scratchpad Memories
	Slide 56: Scratchpad Memories
	Slide 57: Review Questions to Ponder: The Memory Hierarchy and the Hardware Software Boundary
	Slide 58: What did we just learn?
	Slide 59: What to think about next?
	Slide 60: What to think about next?

