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Lecture 8: Cache Replacement Policies and Enhancements

Credit: Brandon Lucia
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Replacement Policies – Round Robin
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Replacement Policies – Round Robin
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Replacement Policies – Round-Robin Analysis
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Advantage: Simple to implement and understand
Disadvantage: Hopefully the next to evict isn’t going to be the next to be accessed…
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Replacement Policies – Round-Robin Analysis
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Replacement decisions must be informed by the next reuse of a block of data.
Think: what is an optimal policy? How far in the future is something going to be used again?
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What defines optimality for a cache replacement algorithm?
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Bélády László:
“What defines optimality for a cache replacement algorithm?”
Evict the cached element that will be used furthest in the future.
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Belady’s MIN Algorithm for Optimal Replacement

findBlockMIN(){

0://init reuse distances 

1:for each block in cache, b:

2: RD[b] = 0; RD_done[b] = false;

3://look forward in the execution trace

4:for each access, a, forward in execution trace: 

5://increment reuse distance for each block not already seen

6:

7:

8:

9:

for each block in cache, b:

if RD_done[b] == false:

RD[b]++;

RD_done[a.block] = true

10://MIN finds the block with maximum RD 

11:return argmax(b,RD[b])

MIN results in the MINimum number of replacements in a cache for an execution trace.



Belady’s MIN Algorithm for Optimal Replacement

findBlockMIN(){

0://init reuse distances 

1:for each block in cache, b:

2: RD[b] = 0; RD_done[b] = false;

3://look forward in the execution trace

4:for each access, a, forward in execution trace: 

5://increment reuse distance for each block not already seen

6:

7:

8:

9:

for each block in cache, b:

if RD_done[b] == false:

RD[b]++;

RD_done[a.block] = true

10://MIN finds the block with maximum RD 

11:return argmax(b,RD[b])

See any limitations of the MIN algorithm for cache replacement?



Belady’s MIN Algorithm for Optimal Replacement

findBlockMIN(){

0://init reuse distances 

1:for each block in cache, b:

2: RD[b] = 0; RD_done[b] = false;

3://look forward in the execution trace

4:for each access, a, forward in execution trace:

5://increment reuse distance for each block not already seen

6:

7:

8:

9:

for each block in cache, b:

if RD_done[b] == false:

RD[b]++;

RD_done[a.block] = true

10://MIN finds the block with maximum RD 

11:return argmax(b,RD[b])

Need omniscient future knowledge of the execution trace of your program! 
MIN is optimal, but not practically implementable
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Least-Recently Used (LRU) Replacement
Evict the block that was used the furthest in the execution’s past
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LRU’s Gamble: “Haven’t used block 0xe for longest, 
probably won’t use it again any time soon, either”

If a block was not used recently, it will not be used again soon
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Evict the block that was used the furthest in the execution’s past
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Caveat: LRU is wrong if past does not predict future
Caveat to caveat: past usually predicts future well

If a block was not used recently, it will not be used again soon
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(Naïve) LRU Algorithm & Implementability

accessCacheLRU(access a){ 

for each block in cache, b:

if b != a.block: 

LRU_Age[b]++

LRU_Age[b] = 0

}

findBlockLRU(){

return argmax(b,LRU_Age)

}

Implementability and limitations of LRU?



(Naïve) LRU Algorithm & Implementability

accessCacheLRU(access a){ 

for each block in cache, b:

if b != a.block: 

LRU_Age[b]++

LRU_Age[b] = 0

}

findBlockLRU(){

return argmax(b,LRU_Age)

}

Implementability! Does not require unknowable information about future of execution 

Limitation! Requires accessing metadata for every block on each access to any block.

Time & energy cost to update ages. Area & power cost to store age values.
Does not scale beyond about 4 way set associativity.
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MRU: 0 MRU: 1 MRU: 0 MRU: 0
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Bit-PLRU is a decent approximation of LRU

MRU: 0 MRU: 1 MRU: 0 MRU: 0
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Bit-PLRU Algorithm & Implementability
accessCachePLRU(access a){

MRU_Bit[a.block] = 1

if ++MRU_BitSum == setSize: 

for each block in cache, b:

MRU_Bit[b] = 0

MRU_BitSum = 0

}

findBlockLRU(){

for i in 0..setSize: 

if !MRU_Bit[i]:

return block(i);

}

Implementability and limitations of Bit-PLRU?



Bit-PLRU Algorithm & Implementability
accessCachePLRU(access a){

MRU_Bit[a.block] = 1

if ++MRU_BitSum == setSize: 

for each block in cache, b:

MRU_Bit[b] = 0

MRU_BitSum = 0

}

findBlockLRU(){

for i in 0..setSize: 

if !MRU_Bit[i]:

return block(i);

}

Implementability! No future knowledge, 1 bit/block overhead, block-local metadata 
updates on access (no O(n) aging operation)

Limitation! Approximates LRU, which approximates MIN by guessing based on history…
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in Lab 2!)

RR

Replacement Policies – Performance & 
Complexity Cost/Benefit Analysis

RR: log(set size) bits per set to track next 
to evict, no action on access

Bit-PLRU: 1 MRU bit per block + log(set 
size) bits per set (or equivalent logic) to 
detect all set,
Clear bits on access if all bits set

LRU: 1 age per block + logic to track max. 
Update (set size - 1) ages on any access

MIN: unimplementable, requires future 
knowledge of execution trace.



More cache-related optimizations
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Recall a Set Associative Caches
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What type of miss can be addressed by 
cache design? 

• Cold?

• Capacity?

• Conflict?

What can we do to address those misses 
without doing the impractical:

• Increasing cache size 
significantly(costly)

• Increasing associativity (slower)

Address the most glaring misses caused by 
partitioning, i.e. conflict misses

• But how? 



Miss Cache

L1

Miss Cache

L2

Just a few lines, i.e. 2 – 4, but 
fully associative

Set associative
Probably write-through (Why?)

The most recent few reads brought 
into L1 from L2 also hang out for a 
very short time in the “Miss Cache” 
which is fully associative. L1 misses 
that is satisfied by the “Miss Cache” 
very low penalty. 



Miss Cache

L1

Miss Cache

L2

But, most of the time, the miss cache 
stores values that are already stored 
in the L1 cache, as they were just 
read into both L1 and the miss cache 
from the L2 cache, which is a waste 
of space. 

What can we do about that?



Victim Caches/Buffers
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Victim Cache

Only store things into the cache upon 
eviction – then the only copy is in the 
small cache between L1 and L2, now called  
victim buffer.  

Block evicted from cache goes into (usually
fully associative, small) victim buffer.
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Victim Cache

Block evicted from cache goes into (usually 
fully associative, small) victim buffer.

On next access, “victim” can be re-cached
without going down the hierarchy.



Victim Caches/Buffers
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Victim Cache

What problem does a victim cache solve?

Block evicted from cache goes into (usually 
fully associative, small) victim buffer.

On next access, “victim” can be re-cached
without going down the hierarchy.



Miss Caching vs Victim Caching

Norman P. Jouppi. 1990. Improving direct-mapped cache performance by the addition of a small fully-associative 
cache and prefetch buffers. SIGARCH Computer Architecture News 18(3):388-397.

• Victim Caches better than Miss Caches
• But, butter for d-Caches than i-Caches. Why? (Think about locality and distance)



Stream Buffer

L1

Stream Buffer

L2

Benefits i-caches
Upon miss, prefetch next n instructions
Gets back ahead after jumps



Non-blocking Writes & Write Buffering
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Cache

Write buffer: single cycle to add write op to write buffer 
What problem does a write buffer solve?
What are key challenges associated with a write buffer?

sw 0xc $1000

…memory, if write-through 
(why WB important for 
write-through caches?)

Memory unit can read 
from write buffer

Write Buffer Entry (e.g.)

Write Buffer

WB drains to…

…cache if
write-back



Non-blocking Writes & Write Buffering
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Cache
Completed memory operations’ effects not yet in memory (complicated stuff,
later in the semester…)
What is the latency of a write if it ends up buffered?
Unpredictable write completion latency. Need ordering logic.

sw 0xc $1000

…memory, if write-through 
(why WB important for 
write-through caches?)

Memory unit can read 
from write buffer

Write Buffer Entry (e.g.)

Write Buffer

WB drains to…

…cache if
write-back



Non-temporal/Streaming Stores
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Cache

Non-temporal Store: Acts like no-write-allocate+write-through even if 
write-allocate+write-back for rest of cache.
When would you use a non-temporal store instruction?

…memory, if write-through
or non-temporal instruction

Memory unit can read 
from write buffer

…cache if write-back
& not non-temporal

Byte M

In x86: movntdq r15, 0xC

Write Buffer

WB drains to…



Non-temporal/Streaming Stores
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Cache

When would you use a non-temporal store instruction?
Data streaming, accesses that are sure to have no locality

…memory, if write-through
or non-temporal instruction

Memory unit can read 
from write buffer

…cache if write-back
& not non-temporal

Byte M

In x86: movntdq r15, 0xC

Write Buffer

WB drains to…



Not in RISCV (yet)!

RISCV Specification:
“RV32I reserves a large encoding space for 
HINT instructions, which are usually used to 
communicate performance hints to the 
microarchitecture. HINTs are encoded as 
integer computational instructions with 
rd=x0. Hence, like the NOP instruction, HINTs 
do not change any architecturally visible 
state, except for advancing the pc and any 
applicable performance counters.
Implementations are always allowed to
ignore the encoded hints.”
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Scratchpad Memory: Software controlled memory with
explicit, scratch-pad-private physical memory space

Cache

Write Buffer

…memory, if write-through
or non-temporal instruction

Memory unit can read 
from write buffer

WB drains to…

…cache if write-back
& not non-temporal

BByyttee MM

Byte S.0 Byte S.N

Memory Unit controls loading 
data from memory to SP

Memory unit can load from and
store to SP separately from Mem
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Why would you use a scratchpad when a cache makes
everything transparent to software and automatic???

Cache

Write Buffer

…memory, if write-through
or non-temporal instruction

Memory unit can read 
from write buffer

WB drains to…

…cache if write-back
& not non-temporal

BByyttee MM

Byte S.0 Byte S.N

Memory Unit controls loading 
data from memory to SP

Memory unit can load from and
store to SP separately from Mem
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Most important thing about scratchpads:
Software control is as good (or bad) as the programmer.

Cache

Write Buffer

…memory, if write-through
or non-temporal instruction

Memory unit can read 
from write buffer

WB drains to…

…cache if write-back
& not non-temporal

BByyttee MM

Byte S.0 Byte S.N

Memory Unit controls loading 
data from memory to SP

Most often manipulated by accessing 
special range of addresses mapped to SP



Review Questions to Ponder: The Memory 
Hierarchy and the Hardware Software Boundary

Part of the architecture: Cache? Scratchpad? Replacement 
policy?
Part of the HW/SW boundary: Cache? Scratchpad? 
Replacement policy?
What does a programmer need to know about how the 
cache works?
What does the architect need to know about how the 
machine will be used?



What did we just learn?

• Replacement is a one of the key dimensions of cache design

• Different replacement algorithms present different design trade offs

• Optimal replacement is infeasible, practical replacement is non-optimal

• Many microarchitectural and architectural choices make up a memory 
hierarchy and the architect and programmer need to share information



What to think about next?

• Performance Evaluation (next time)
• Design spaces, Pareto Frontiers, and design space exploration

• Miscellaneous (micro)architectural tricks & optimizations (future)
• Vector processors, SIMD/SIMT, dataflow



What to think about next?

• Caches as a microarchitectural optimization (next time)
• Implementation of cache hierarchies

• Cache design tradeoffs

• Performance Evaluation (next next time)
• Design spaces, Pareto Frontiers, and design space exploration

• Miscellaneous (micro)architectural tricks & optimizations (future)
• Vector processors, SIMD/SIMT, dataflow
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