
Fall 2023

Lecture 6: Control Hazards and Branch Prediction

Credit: Brandon Lucia

Recap: Pipelined Datapath Microarchitecture

• Understanding pipelining as a general microarchitectural optimization

• Data hazards and their effect on the pipelined microarchitectural
datapath

• Forwarding as a mitigation for data hazards in a pipelined architecture

A Simple Pipelined Processor Datapath

ALU

Input
Read
Reg A

ALU: output C data
Memop: Effective Addr.
Branch: PC Source Select

Instruction
Memory

Instruction
Fetch

Control Signals:
Op select
op = [+, -, x, /]

Memory
Unit

Data
Memory

4

+

MUX

PC Source Select (1 if branch taken)

PC

PC Source
Select

Reg 1
Reg 2

Reg 3
Reg 4

Control
Signals

Read
Register
A & B
Select

Input
Read
Reg B

Write Reg C Data

+

Instruction PC+4

Branch Target

Branch
Target

Branch
Target
Offset

Instruction
PC + 4

Branch Target
AAddddrr
Reg A

Data
Reg B
(Ld Only)

RReeaadd
DDaattaa CC

Read Data C (Ld Only)

Register
Writeback

Output/Read
Reg C Data

Output/Read
Reg Select

Write
Reg C
Data

Write
Reg C
Select

Cont.
Sigs.:
Op.
Select
[Ld/St]

Instruction Fetch Instr. Decode Execute

Read Regs A & B Data

Write Register C Select

Write Register C Data

Memory Register Write-Back

Types of Data Hazards

sub x6 x5 x4

lw x16 0xabc

Read-After-Write (RAW) Write-After-Read (WAR)

sub x8 x16 x4

add x12 x6 x14 lw x16 0xabc

Write-After-Write (WAW)

Only Read-After-Write (RAW) hazards are possible in our simple pipeline

lw x6 0xabc

add x16 x6 x14 sub x6 x5 x4

add x12 x6 x14

Fetch Decode Execute Memory
Register
Write-Back

sub x6 x5 x4

Example: Pipelined Execution w/ RAW Hazard

add x12 x6 x14

reads the value of x6
sub x6 x5 x4

add x12 x6 x14 lw x16 0xabc

from

Read-After-Write (RAW) Hazard:
Input register does not contain updated data during
register read cycle due to yet-to-be-completed
register writeback from older instruction

x6 gets written back
here 2 cycles later!

Fetch Decode Execute Memory
Register
Write-Back

sub x6 x5 x4

Example: Pipelined Execution w/ RAW Hazard

add x12 x6 x14

Fetch Decode Execute Memory
Register
Write-Back

add x12 x6 x14 sub x6 x5 x4

Example: Pipelined Execution w/ RAW Hazard

Fetch Decode Execute Memory
Register
Write-Back

sub x6 x5 x4

Example: Pipelined Execution w/ RAW Hazard

add x12 x6 x14
stall

Fetch Decode Execute Memory
Register
Write-Back

sub x6 x5 x4

Example: Pipelined Execution w/ RAW Hazard

add x12 x6 x14
stall stall

Fetch Decode Execute Memory
Register
Write-Back

Example: Pipelined Execution w/ RAW Hazard

add x12 x6 x14
stall stall

Fetch Decode Execute Memory
Register
Write-Back

Example: Pipelined Execution w/ RAW Hazard

stall
add x12 x6 x14

Fetch Decode Execute Memory
Register
Write-Back

Example: Pipelined Execution w/ RAW Hazard

add x12 x6 x14

Fetch Decode Execute Memory
Register
Write-Back

sub x6 x5 x4

How do we avoid the stall cycles?

add x12 x6 x14
stall stall

Fetch Decode Execute Memory
Register
Write-Back

sub x6 x5 x4

Example: Pipelined Execution w/ RAW Hazard

add x12 x6 x14

Value of x6 is available after sub Executes

We can forward the value to the add!

Fetch Decode Execute Memory
Register
Write-Back

Value of x6 is available from EX/MEM
pipeline register!

add x12 x6 x14 sub x6 x5 x4

Forwarding to avoid a pipeline RAW Hazard

“x6”

We can forward the value in the EX/MEM
pipeline register from the sub back to Execute
to act as the input operand for the add

Fetch Decode Execute Memory
Register
Write-Back

Can also forward if there are
intervening instructions

add x12 x6 x14 add x9 x8 x7 sub x6 x5 x4

Forwarding to avoid a pipeline RAW Hazard

“x6”

Can forward the value in the MEM/WB pipeline
register from the sub back to Execute for the add
(going around the unrelated operation now in the
memory stage)

Fetch Decode Execute Memory
Register
Write-Back

lw x6 0xabc

Immediately preceding & dependent on load = stall

add x12 x6 x14

lw x6 0xabc

add x12 x6 x14

Value of x6 is available from Memory!

We can forward the value in Memory’s pipeline register
from the lw back to Execute’s input for the add

(Still requires stalling…)

stall

Adding Forwarding Support

ALU

ALU: output C data
Branch: PC Source Select

Instruction
Memory

Instruction
Fetch

Control Signals:
Op select
op = [+, -, x, /]

Memory
Unit

Data
Memory

4

+

MUX

PC

PC Source
Select

Reg 1
Reg 2

Reg 3
Reg 4

Control
Signals

Read
Register
A & B
Select

Input
Read
Reg B

Write Reg C Data

+

Instruction PC+4

Branch Target

PC Source Select (1 if branch taken)

Branch
Target

Branch
Target
Offset

Instruction
PC + 4

Read
Data C

Read Data C (Ld)

Register
Writeback

Output/Read
Reg C Data

Output/Read
Reg Select

Write
Reg C
Data

Write
Reg C
Select

Cont.
Sigs.:
Op.
Select
[Ld/St]

Instruction Fetch Instr. Decode Execute

Read Regs A & B Data

Write Register C Select

Write Register C Data

Memory Register Write-Back

Branch Target

Mem/WB to Exec
Forward

Ex/Mem to Exec
Forward

MUX

W
B

/E
x

Fw
d

Ex
/E

x
Fw

d

M
em

/E
x

Fw
d

Input
Read
Reg A

MUX

W
B

/E
x

Fw
d

Ex
/E

x
Fw

d

M
em

/E
x

Fw
d

MUXMUX

W
B

/M
em

 F
w

d
M

em
/M

em
 F

w
d

A

d
d

r
R

eg
 A

MUX

W
B

/M
em

 F
w

d
M

em
/M

em
 F

w
d

D
at

a
R

e
g

B

Fetch Decode Execute Memory
Register
Write-Back

lw x12 (x15) add x7 x8 x9invalid inssw x6 (x14)

Exception Handling

sw x0 (x13)

Basic Exception Idea: Nuke everything that started after the
current instruction, finish everything that started before the
current instruction, jump to exception handler

Exception!

Today: More Pipelined Microarchitecture

• Quick recap of pipeline mechanics

• Introduction to structural hazards

• Introduction to control hazards on branches

• Simple approaches to handling control hazards

• Branch prediction for handling control hazards

Pipeline Control Signals

Control signals also pipelined through stages

ALU

Input
Read
Reg A

ALU: output C data
Branch: PC Source Select

Instruction
Memory

Instruction
Fetch

Control Signals:
p select
p = [+, -, x, /]

Memory
Unit

Data
Memory

4

+

MUX

PC

PC Source
Select

Reg 1
Reg 2

Reg 3
Reg 4

Control
Signals

Read
Registe
A & B
Select

Input
Read
Reg B

Read Regs A & B Data

Write Register C Select

Write Register C Data

Write Reg C Data ALU

Branch
Target
Offset

+

Instruction PC+4

Branch Target

Branch
Target

I
P

r

O
o

nstruction
C + 4

Branch Target

Addr

RReeaadd
DDaattaa CC

Register
Writeback

Output/Read
Reg C Data

Output/Read
Reg Select

Write
Reg C
Select

MemRead/
MemWrite

Instruction Fetch Instr. Decode Execute Memory Register Write-Back

IF/
ID

ID/
EX

EX/
Mem

Mem
/WB Write

Reg C
Data

PC Source Select (1 if branch taken)

Wr
Data

Write Reg C Data Mem

Which pipeline control signals get set where?

Instruction
Memory

Instruction
Fetch

4

+

MUX

PC

PC Source
Select

Reg 1

Reg 2

Reg 3
Reg 4

C
Si

R
R
A
S

Read Regs A & B Data

Write Register C Select

Write Register C Data

Write Reg C Data ALU

Branch

Instruction PC+4

Branch Target

Branch
Target

I
P

r

O
o

Register
Writeback

Output/Read
Reg C Data

Output/Read
Reg Select

Write
Reg C
Select

Instruction Fetch Instr. Decode Execute Memory Register Write-Back

IF/
ID

Target AAddddrr Data
Offset Branch Target RReegg AA Reg B

ontrol nstruction
+

(Ld Only)
gnals C + 4

Cont. Memory

ead
Sigs.:

Unit RReeaadd

egiste Input Input Op.
 DaDattaa CC

ID/ EX/ Select
& B Read Read [Ld/St]

elect EX Reg A Reg B Mem Data

Memory
Control Signals:

p select ALU
p = [+, -, x, /]

ALU: output C data
Branch: PC Source Select

Mem
/WB Write

Reg C
Data

PC Source Select (1 if branch taken)

Instruction Fetch:
Instruction memory read control always asserted

PC write enable always asserted
no special control signal pipelining here

Write Reg C Data Mem

Which pipeline control signals get set where?

In
Re
Re

Instruction
Memory

Instruction
Fetch

Control Signal
p select
p = [+, -, x, /]

4

+

MUX

PC

PC Source
Select

Reg 1
Reg 2

Reg 3
Reg 4

Control
Signals

Read
Registe
A & B
Select

Read Regs A & B Data

Write Register C Select

Write Register C Data

Write Reg C Data ALU

Branch
Target
Offset

+

Instruction PC+4

Branch Target

Branch
Target

I
P

r

O
o

nstruction
C + 4

r
ack

utput/Read
g Select

Write
Reg C
Select

Instruction Fetch Instr. Decode Execute Memory Register Write-Back

IF/
ID

ID/
EX

AAddddrr Data Output/Read O
Branch Target RReegg AA Reg B Reg C Data Re

(Ld Only)

Cont. Memory Registe
Sigs.:
Op. Unit RReeaadd Writeb

put Input EX/ Select
DaDattaa CC

ad Read
[Ld/St] Mem

g A Reg B Mem Data /WB Write

Memory Reg C

s: Data

ALU

ALU: output C data
Branch: PC Source Select

PC Source Select (1 if branch taken)

Instruction Decode (/ Register Read):
In RISCV, source registers always in same location in all

instruction formats.
No special control signal pipelining here either.

Write Reg C Data Mem

Recall: R-type Arithmetic Operations

0100000 00101 00110 000 00111 0110011x7 = x5 - x6

OPSUB reg x7reg x6reg x5Func 7 = 32

https://metalcode.eu/2019-12-06-rv32i.html

Which pipeline control signals get set where?

ALU

Input
Read
Reg A

ALU: output C data
Branch: PC Source Select

Instruction
Memory

Instruction
Fetch

Control Signals:
Op select
op = [+, -, x, /]

4

+

MUX

PC

PC Source
Select

Reg 1
Reg 2

Reg 3
Reg 4

Control
Signals

Read
Registe
A & B
Select

Read Regs A & B Data

Write Register C Select

Write Register C Data

Write Reg C Data ALU

Branch
Target
Offset

+
Branch
Target

I
P

r

Branch Target

Instruction Fetch Instr. Decode Execute Memory Register Write-Back

IF/
ID

ID/
EX

EX/
Me

AAddddrr Data Output/Read Output/Read

RReegg AA Reg B Reg C Data Reg Select

(Ld Only)

Cont. Memory Register
Sigs.:
Op. Unit RReeaadd Writeback

DaDattaa CC
Select

m [Ld/St] Mem
Data /WB Write Write

Memory Reg C Reg C

Data Select

Immed.

Input
Read
Reg B

ALU Src
Select

Sign
Extend

Execute / Address Generation:

ALU Op Select: selects the ALU operation

ALU Src Select: (previously omitted, added here)
selects between read register B and a sign-extended
immediate extracted from the bits of the instruction

Instruction
C + 4

PC Source Select (1 if branch taken)

Instruction PC+4

Branch Target

Write Reg C Data Mem

Which pipeline control signals get set where?
PC Source Select

a
Branch: PC Source Select

Instr
Me

Instr
Fetc

Memory
Unit

Data
Memory

4

+

PC

Write Reg C Data ALU

Branch

Instruction PC+4

Branch Target

I
P

r

O
o

AAddddrr

RReeaadd
DDaattaa CC

Register
Writeback

Output/Read
Reg C Data

Output/Read
Reg Select

Write
Reg C
Select

Instruction Fetch
Reg 4

Instr. Decode Execute

Read Regs A & B Data

Write Register C Select

Write Register C Data

Memory Register Write-Back

EX/
Mem

Mem
/WB Write

Reg C
Data

d.

Target
Offset Branch Target

Branch Control nstruction
+

Imme
Target Signals C + 4

X PC Source Input Sign

Select Read Read
Extend

IF/ Registe ID/ Input Reg B
uction A & B Read ALU Src

h ID Select EX Reg A Select

Control Signals:
Reg 1 p select ALU

uction Reg 2 p = [+, -, x, /]

mory Reg 3 ALU: output C dat

Memory (/ Branch Resolution):

MU PC Source Select: Set to 1 if instruction is a branch and
branch taken (e.g., if ALU output is 0)

MemRead: Use incoming address from Ex stage as a
read address

MemWrite: Use incoming address from Ex stage as a
write address

Wr
Data

Write Reg C Data Mem

MemRead/
MemWrite

RReeaadd
DDaattaa CC

Which pipeline control signals get set where?
PC Source Select

a
Branch: PC Source Select

Instr
Me

Instr
Fetc

Memory
Unit

Data
Memory

4

+

MU

PC

Write Reg C Data ALU

Branch

Instruction PC+4

Branch Target

I
P

r

O
o

AAddddrr

Write Reg C Data Mem

Register
Writeback

Output/Read
Reg C Data

Output/Read
Reg Select

Write
Reg C
Select

Instruction Fetch
Reg 4

Instr. Decode Execute

Read Regs A & B Data

Write Register C Select

Write Register C Data

Memory Register Write-Back

EX/
Mem

Mem
/WB Write

Reg C
Data

d.

Target
Offset Branch Target

Branch Control nstruction
+

Imme
Target Signals C + 4

X PC Source Input Sign

Select Read Read
Extend

IF/ Registe ID/ Input Reg B
uction A & B Read ALU Src

h ID Select EX Reg A Select

Control Signals:
Reg 1 p select ALU

uction Reg 2 p = [+, -, x, /]

mory Reg 3 ALU: output C dat

Writeback:

MemOrALU: Select whether ALU result (from Ex) or
data from memory (from Mem) writes to register file

RegWrite: Enables register file write

Write Reg Select: Use instruction bits to choose write
register

Wr
Data

MemRead/
MemWrite

Which pipeline control signals get set where?
PC Source Select

ALU: output C data
Branch: PC Source Select

Instruction
Memory

Instruction
Fetch

4

+

MUX

PC

PC Source
Select

Reg 1
Reg 2

Reg 3

Control
Signal

Read
Regist
A & B
Select

Write Reg C Data ALU

Branch
Target
Offset

+

Instruction PC+4

Branch Target

Branch
Target

Instruction
Branch Target

AAddddrr

aadd t
taa CC

Write Reg C Data Mem

Register
Writeback

Output/Read
Reg C Data

Output/Read
Reg Select

Write
Reg C
Select

Instruction Fetch
Reg 4

Instr. Decode Execute

Read Regs A & B Data

Write Register C Select

Write Register C Data

Memory Register Write-Back

IF/
ID

Mem
/WB Write

Reg C
Data

Wr
Data

Immed.
s PC + 4

Input Sign
Memory

Read
Extend Unit RRee

er ID/ Input Reg B EX/
 DaDa

Read
EX Reg A

ALU Src Mem Data
Select

Memory
Control Signals:

Op select ALU MemRead/

op = [+, -, x, /] MemWrite

Takeaway point on pipeline control:
Need to route signals to a pipeline stage (from the

decoded instruction, or from an earlier stage)
and

need to have sufficient signals available to control
units in a pipeline stage.

More on Pipeline Hazards
Structural Hazards
Control Hazards

Structural Hazards

ALU: output C data
Branch: PC Source Select

Instruction
Memory

Instruction
Fetch

Memory
Unit

Data
Memory

4

+

MUX

PC

PC Sourc
Select

Reg 3

Write Reg C Data ALU

Instruction PC+4

Branch Target

Branch
Target

I
P

r

O
o

Addr

RReeaadd
DDaattaa CC

Register
Writeback

Output/Read
Reg C Data

Output/Read
Reg Select

Write
Reg C
Select

MemRead/
MemWrite

Instruction Fetch
Reg 4

Instr. Decode Execute

Read Regs A & B Data

Write Register C Select

Write Register C Data

Memory Register Write-Back

Branch
Target
Offset Branch Target

Control nstruction
+

Signals C + 4

e

Read

IF/ Registe ID/ Input Input EX/
A & B Read Read

ID Select EX Reg A Reg B Mem

Control Signals:
Reg 1 p select ALU
Reg 2 p = [+, -, x, /]

Mem
/WB Write

Reg C
Data

PC Source Select (1 if branch taken)

Wr
Data

Write Reg C Data Mem

Observation:
We have two memories, one for data, one for

instructions.

Structural Hazards

ALU

Input
Read
Reg A

ALU: output C data
Branch: PC Source Select

Unified
Memory
1 rd / 1wr

Instruction
Fetch

Control Signals:
p select
p = [+, -, x, /]

Memory
Unit

4

+

MUX

PC

PC Source
Select

Reg 1
Reg 2

Reg 3

Control
Signals

Read
Registe
A & B
Select

Input
Read
Reg B

Write Reg C Data ALU

Branch
Target
Offset

+

Instruction PC+4

Branch Target

Branch
Target

I
P

r

O
o

nstruction
C + 4

Branch Target

Addr

RReeaadd
DDaattaa CC

Register
Writeback

Output/Read
Reg C Data

Output/Read
Reg Select

Write
Reg C
Select

Instruction Fetch
Reg 4

Instr. Decode Execute

Read Regs A & B Data

Write Register C Select

Write Register C Data

Memory Register Write-Back

IF/
ID

ID/
EX

EX/
Mem

Mem
/WB Write

Reg C
Data

PC Source Select (1 if branch taken)

Wr
Data

Write Reg C Data Mem

What happens when we make
this small change?

Structural Hazards

Fetch Decode Execute Memory
Register
Write-Back

lw x12 (x15) add x7 x8 x9sw x6 (x14) sub x6 x5 x4 sw x0 (x13)

Load occupies unified
memory read port

Fetch is blocked with
no access to read port

stall

No software or clever architectural
mitigation. Need two memories or
two memory ports.

Control Hazards

beq x16 x12 PC+12

sub x6 x5 x4

add x12 x6 x14

add x12 x7 x9

Branch-induced Control Hazard

Fetch Decode Execute Memory
Register
Write-Back

Example: Pipelined Execution w/ Branch

beq x16 x12 PC+12

Problem: What to fetch next?

beq x16 x12 PC+12

sub x6 x5 x4

add x12 x6 x14

add x12 x7 x9

?

Fetch Decode Execute Memory
Register
Write-Back

Example: Pipelined Execution w/ Branch
Option #1: Stall on Branch

beq x16 x12 PC+12
stall stall

Proposal: We know the next PC only after beq finishes Ex
(What signals do we need to determine next PC?)

Determining the Next PC in the Pipeline

ALU

Input
Read
Reg A

ALU: output C data
Branch: PC Source Select

Instruction
Memory

Instruction
Fetch

Control Signals:
p select
p = [+, -, x, /]

Memory
Unit

Data
Memory

4

+

MUX

PC

PC Source
Select

Reg 1
Reg 2

Reg 3
Reg 4

Input
Read
Reg B

Read Regs A & B Data

Write Register C Select

Write Register C Data

Write Reg C Data ALU

Instruction PC+4

Branch Target

Branch
Target

I
P

O
o

Branch
Target

Offset Branch Target
nstruction

+

C + 4

Addr

RReeaadd
DDaattaa CC

Register
Writeback

Output/Read
Reg C Data

Output/Read
Reg Select

Write
Reg C
Select

MemRead/
MemWrite

Instruction Fetch Instr. Decode Execute Memory Register Write-Back

IF/
ID

ID/ EX/
Mem

Mem
/WB Write

Reg C
Data

PC Source Select (1 if branch taken)

Wr
Data

Write Reg C Data Mem

Control
Signals

Read
Register EX
A & B
Select

Fetch Decode Execute Memory
Register
Write-Back

Example: Pipelined Execution w/ Branch
Option #1: Stall on Branch

beq x16 x12 PC+12
stall stall

2 pipeline bubbles per branch!

sub x6 x5 x4

Fetch Decode Execute Memory
Register
Write-Back

Example: Pipelined Execution w/ Branch
Option #1: Stall on Branch

beq x16 x12 PC+12
stall stall

2 pipeline bubbles per branch!
Can we do better than 2 bubbles?

sub x6 x5 x4

Early Branch Resolution

ALU

Input
Read
Reg A

ALU: output C data
Branch: PC Source Select

Instruction
Memory

Instruction
Fetch

Control Signals:
p select
p = [+, -, x, /]

Memory
Unit

Data
Memory

4

+

MUX

PC

PC Source
Select

Reg 1
Reg 2

Reg 3
Reg 4

Input
Read
Reg B

Read Regs A & B Data

Write Register C Select

Write Register C Data

Write Reg C Data ALU

Instruction PC+4

Branch Target

Branch
Target

I
P

O
o

Branch
Target

Offset Branch Target
nstruction

+

C + 4

Addr

RReeaadd
DDaattaa CC

Register
Writeback

Output/Read
Reg C Data

Output/Read
Reg Select

Write
Reg C
Select

MemRead/
MemWrite

Instruction Fetch Instr. Decode Execute Memory Register Write-Back

IF/
ID

ID/ EX/
Mem

Mem
/WB Write

Reg C
Data

PC Source Select (1 if branch taken)

Wr
Data

Write Reg C Data Mem

Control
Signals

Read
Register EX
A & B
Select

Proposal: Resolve the branch
target and branch taken/not taken
outcome earlier than beq in Mem.

Early Branch Resolution

ALU

Input
Read
Reg A

ALU: output C data

Instruction
Memory

Instruction
Fetch

Control Signals:
O
o

p select
p = [+, -, x, /]

Memory
Unit

Data
Memory

4

+

MUX

PC

PC Source
Select

Reg 1
Reg 2

Reg 3

Input
Read
Reg B

Write Reg C Data ALU

Instruction PC+4

Branch Target

Branch
Target

Branch
Target
Offset

Instruction
+

PC + 4

B
ran

ch
Target

Addr

RReeaadd
DDaattaa CC

Register
Writeback

Output/Read
Reg C Data

Output/Read
Reg Select

Write
Reg C
Select

MemRead/
MemWrite

Instruction Fetch
Reg 4

Instr. Decode Execute

Read Regs A & B Data

Write Register C Select

Write Register C Data

Memory Register Write-Back

IF/
ID

ID/ EX/
Mem

Mem
/WB Write

Reg C
Data

Wr
Data

Control
Signals

Read
Register EX
A & B
Select

P
C

 S
o

u
rc

e
 S

el
ec

t
(1

 if
 b

ra
n

ch
 t

ak
en

)

Key Idea: Move Branch Target logic to ID
and add forwarding path for PC Source
Select from Ex for IF to use in same cycle.

Write Reg C Data Mem

Fairly aggressive optimization in MIPS: resolve branch in EX in
first half of cycle, use PC Src Select in second half of cycle in IF
to fetch the correct instruction. Could limit clock frequency…

Fetch Decode Execute Memory
Register
Write-Back

Example: Pipelined Execution w/ Early Resolution

beq x16 x12 PC+12

Problem: What to fetch next?

beq x16 x12 PC+12

sub x6 x5 x4

add x12 x6 x14

add x12 x7 x9

?

Fetch Decode Execute Memory
Register
Write-Back

beq x16 x12 PC+12stall

We know the next PC when beq is in Ex

Example: Pipelined Execution w/ Early Resolution

Fetch Decode Execute Memory
Register
Write-Back

beq x16 x12 PC+12
stall

1 pipeline bubble per branch!

sub x6 x5 x4

Example: Pipelined Execution w/ Early Resolution

Fetch Decode Execute Memory
Register
Write-Back

beq x16 x12 PC+12
stall

Can we do even better than 1 stall per branch?

sub x6 x5 x4

Example: Pipelined Execution w/ Early Resolution

Fetch Decode Execute Memory
Register
Write-Back

beq x16 x12 PC+12
stall

Branch takes an extra cycle to resolve, so how about
just fetching some instruction in the “delay slot”?

sub x6 x5 x4

MIPS-style Delayed Branch Execution

Branch Delay Slot

Fetch Decode Execute Memory
Register
Write-Back

beq x16 x12 PC+12

Only useful if branch ends up resolving not-taken
Otherwise, need to erase the effects of the sub when
branch finally resolves

Branch Delay Slot
filled w/ not-taken
instruction

sub x6 x5 x4

Filling Branch Delay Slots

beq x16 x12 PC+12

sub x6 x5 x4

add x12 x6 x14

add x12 x7 x9

Fetch Decode Execute Memory
Register
Write-Back

beq x16 x12 PC+12

Branch Delay Slot
filled w/ taken
instruction

add x12 x7 x9

Filling Branch Delay Slots

beq x16 x12 PC+12

sub x6 x5 x4

add x12 x6 x14

add x12 x7 x9

Only useful if branch ends up resolving taken
Otherwise, need to erase the effects of the add when
branch finally resolves

Fetch Decode Execute Memory
Register
Write-Back

beq x16 x12 PC+12

Why is it OK for the compiler to reorder the mul and
the beq in this instance?

Branch Delay Slot
filled w/ other
independent insn

mul x8 x15 x1

Filling Branch Delay Slots
mul x8 x15 x1

beq x16 x12 PC+12

sub x6 x5 x4

add x12 x6 x14

beq x16 x12 PC+12

mul x8 x15 x1

sub x6 x5 x4

add x12 x6 x14

add x12 x7 x9 add x12 x7 x9

Compiler reorders code to fill slot

Fetch Decode Execute Memory
Register
Write-Back

beq x16 x12 PC+12

Why is it OK for the compiler to reorder the mul and the beq in
this instance?
• Data-independent and control-equivalent
• We will come back to compiler reordering in a few lectures
• Compiler knows about branch delay slot (it is architectural)

Branch Delay Slot
filled w/ other
independent insn

mul x8 x15 x1

Filling Branch Delay Slots
mul x8 x15 x1

beq x16 x12 PC+12

sub x6 x5 x4

add x12 x6 x14

add x12 x7 x9

mul x8 x15 x1

sub x6 x5 x4

add x12 x6 x14

add x12 x7 x9

Compiler reorders code to fill slot

beq x16 x12 PC+12

Fetch Decode Execute Memory
Register
Write-Back

beq x16 x12 PC+12

nop

sub x6 x5 x4

add x12 x6 x14

add

beq x16 x12 PC+12

x12 x7 x9

Not really sure what to put in the delay slot. Cannot (or do not
want to) slot in taken/not-taken conditional next instructions…
No data-independent, control-equivalent ops to put in slot

Branch Delay Slot
filled w/ nop

nop

Filling Branch Delay Slots

Fetch Decode Execute Memory
Register
Write-Back

beq x16 x12 PC+12
stall

sub x6 x5 x4

RISCV does not have/allow/require delay slots

Branch Delay Slot

From the RISCV RV32I Spec: “Control transfer instructions in
RV32I do not have architecturally visible delay slots.”
• What is “architecturally visible”?
• Why do they ban delayed branches at the ISA level?

Why do they ban delayed branches at the ISA level?
“For their first microprocessor with a 5-stage pipeline, this indecision
could have caused a one clock-cycle stall of the pipeline. MIPS-32 solved
this problem by redefining branch to occur in the instruction after the
next one. Thus, the following instruction is always executed. The job of the
programmer or compiler writer was to put something useful into the
delay slot. Alas, this “solution” didn’t help later MIPS-32 processors with
many more pipeline stages (hence many more instructions fetched
before the branch outcome is computed), but it made life harder for
MIPS-32 programmers, compiler writers, and processor designers ever
after, since incremental ISAs demand backwards compatibility (see
Section 1.2). In addition, it makes the MIPS-32 code much harder to
understand (see Figure 2.10 on page 29). While architects shouldn’t put
features that help just one implementation at a point in time, they also
shouldn’t put in features that hinder some implementations.”

The RISC-V Reader: An Open Architecture Atlas [Beta edition, 0.0.1] 099924910X, 9780999249109
https://dokumen.pub/the-risc-v-reader-an-open-architecture-atlas-beta-edition-001-099924910x-9780999249109.html

Fetch Decode Execute Memory
Register
Write-Back

Branch Prediction to avoid control hazards

beq x16 x12 PC+12

Fetch the best guess if we know
which way is most likely

beq x16 x12 PC+12

sub x6 x5 x4

add x12 x6 x14

add x12 x7 x9

?

Fetch Decode Execute Memory
Register
Write-Back

Branch Prediction to avoid control hazards

beq x16 x12 PC+12

Fetch the best guess if we know
which way is most likely

beq x16 x12 PC+12

sub x6 x5 x4

add x12 x6 x14

add x12 x7 x9

?

How to guess about which way
a branch is most likely to resolve?

There is “typical” branch behavior

beq x16 x12 PC+12

sub x6 x5 x4

add x12 x6 x14

add x12 x7 x9

sub x6 x5 x4

add x12 x6 x14

add x12 x7 x9

beq x16 x12 PC-12

What will these programs tend to do?

There is “typical” branch behavior

beq x16 x12 PC+12

sub x6 x5 x4

add x12 x6 x14

add x12 x7 x9

sub x6 x5 x4

add x12 x6 x14

add x12 x7 x9

beq x16 x12 PC-12

Forward and backward branches have different characteristics
2/3 of all branches are taken in general

Backward branch: 80% takenMost branch instructions jump forward

Statically defined hints about branches?

beq.t90 x16 x12 PC+12

sub x6 x5 x4

add x12 x6 x14

add x12 x7 x9

From the RISCV RV32I Spec:
“We considered but did not include static branch hints
in the instruction encoding. These can reduce the
pressure on dynamic predictors, but require more
instruction encoding space and software profiling for
best results, and can result in poor performance if
production runs do not match profiling runs.”

sub x6 x5 x4

add x12 x6 x14

add x12 x7 x9

beq.nt90 x16 x12 PC-12

From the Intel's manual:
"Branch hint prefixes (2EH, 3EH) allow a program to give a hint to
the processor about the most likely code path for a branch. Use
these prefixes only with conditional branch instructions (Jcc).“
From the internet:
“gcc is right to not generate the prefix, as they have no effect for
all processors since the Pentium 4.”

Dynamically predicting branch behavior

Fetch Decode Execute Memory
Register
Write-Back

0x100: beq x16 x12 PC+0xC

Branch Predictor

Outcome: taken

Target: 0x10C

Dynamically predicting branch behavior

Fetch Decode Execute Memory
Register
Write-Back

0x100: beq x16 x12 PC+0xC

Branch Predictor

Outcome:

Target:

0x10C: sub x6 x5 x4

A dynamic branch predictor is a circuit that learns the likely outcome of a
branch and keeps a record of its past target computations

Guess what happens after the current instruction and run speculatively.

Fetch the predicted instruction (sub,
here) and start executing with no delay.

Speculation entails guessing about what’s next

Fetch Decode Execute Memory
Register
Write-Back

Branch Predictor

Outcome:

Target:

sub x6 x5 x4 beq x16 x12 PC+0xC

Question: What do we do on a misprediction (also known as a branch mis-speculation)?

Resolved not taken
0x100

Predicted taken
0x10C

Fetch more…
0x110

lw x6 0xabc

Recovering from branch misprediction

Fetch Decode Execute Memory
Register
Write-Back

Resolved not taken
0x100

beq x16 x12 PC+0xC

Branch Predictor

Outcome:

Target:

Incorrectly predicted taken

nop nop

Recovery: Zero all control signals
(nop) & reset PC to PC+4 of beq

Recovery from mis-speculation entails wasted work in the pipeline.
What about other state? Register file? Anything else might end up
corrupted by speculative execution? Main cost? How cost scales?

Dynamically predicting branch behavior

Fetch Decode Execute Memory
Register
Write-Back

0x100: beq x16 x12 PC+0xC

Branch Predictor

Outcome:

Target:

0x10C: sub x6 x5 x4

Question: where does the branch predictor live in our pipeline?

Branch Predictor in the pipeline

ALU

Input
Read
Reg A

ALU: output C data

Instruction
Memory

Instruction
Fetch

Control Signals:
O
o

p select
p = [+, -, x, /]

Memory
Unit

Data
Memory

4

+

MUX

PC

PC Source
Select

Reg 1
Reg 2

Reg 3

Input
Read
Reg B

Write Reg C Data ALU

Instruction PC+4

Branch Target

Branch
Target

Branch
Target
Offset

Instruction
+

PC + 4

B
ran

ch
Target

Addr

RReeaadd
DDaattaa CC

Register
Writeback

Output/Read
Reg C Data

Output/Read
Reg Select

Write
Reg C
Select

MemRead/
MemWrite

Instruction Fetch
Reg 4

Instr. Decode Execute

Read Regs A & B Data

Write Register C Select

Write Register C Data

Memory Register Write-Back

IF/
ID

ID/ EX/
Mem

Mem
/WB Write

Reg C
Data

Wr
Data

Write Reg C Data Mem

Control
Signals

Read
Register EX
A & B
Select

P
C

 S
o

u
rc

e
 S

el
ec

t
(1

 if
 b

ra
n

ch
 t

ak
en

)

Key Idea: Add predictor to fetch
stage, allowing continuous fetch

Branch Predictor

Branch
Predictor

Outcome:

Branch

Target:

Dynamically predicting branch behavior

Branch Predictor

Outcome:

Target:

Branch

Address

Predictors learn from past behavior
• Need to predict branch outcome: 0/1
• Need to “predict” branch target: PC
• Need to validate prediction
• Need to update predictor

• Many different types of predictor

Predicting Branch Outcomes

0x100: beq x16 x12 PC+0xC

Branch

Address

What info do we have?

Outcome: taken

Branch Predictor

Predicting Branch Outcomes

Branch Predictor

Branch

Address

0x100: beq x16 x12 PC+0xC

Outcome: taken

What info do we have?
• History of prior branch outcomes

0x100: 111111111011111111101111111110…

Predicting Branch Outcomes

Branch Predictor

Branch

Address

0x100: beq x16 x12 PC+0xC

Outcome: taken

What info do we have?
• History of prior branch outcomes
• For every branch in the program
• Hardware idea: keep history in table

and choose most likely outcome

0x100: 111111111011111111101111111110…

0x10E: 111001111011111111101100000110…

0x200: 000000000011111111100000000000…

0x210: 100011111011110001101111000110…

0x214: 000000000000000000000000000000…

0x220: 111000000010000000001000000000…

Branch Predictor in the pipeline

ALU

Input
Read
Reg A

ALU: output C data

Instruction
Memory

Instruction
Fetch

Control Signals:
O
o

p select
p = [+, -, x, /]

Memory
Unit

Data
Memory

4

+

MUX

PC

PC Source
Select

Reg 1
Reg 2

Reg 3

Input
Read
Reg B

Write Reg C Data ALU

Instruction PC+4

Branch Target

Branch
Target

Branch
Target
Offset

Instruction
+

PC + 4

B
ran

ch
Target

Addr

RReeaadd
DDaattaa CC

Register
Writeback

Output/Read
Reg C Data

Output/Read
Reg Select

Write
Reg C
Select

MemRead/
MemWrite

Instruction Fetch
Reg 4

Instr. Decode Execute

Read Regs A & B Data

Write Register C Select

Write Register C Data

Memory Register Write-Back

IF/
ID

ID/ EX/
Mem

Mem
/WB Write

Reg C
Data

Wr
Data

Write Reg C Data Mem

Control
Signals

Read
Register EX
A & B
Select

P
C

 S
o

u
rc

e
 S

el
ec

t
(1

 if
 b

ra
n

ch
 t

ak
en

)

Proposal: Store predictor state in
fetch stage with prediction logic

0x100: 111111111011111O1u11t10c1o11m11e1:1110…
0x10E: B1r1a10n0c1h111011111111101100000110…
0x200: 000000000011111B1r11a10n0c00h0000000…
0x210:Pr1e00d0i1c1t1o1r1011110

T
0
a
01
r
10
g
1
e
11
t
10
:
00110…

0x214: 000000000000000000000000000000…

0x220: 111000000010000000001000000000…

Branch Predictor

Problems with this design?

Predicting Branch Outcomes

Branch Predictor

Branch

Address

Outcome: taken

Making branch history implementable
• Idea 1: Hash table from PC to entry
• Eliminates table size = #branch insns.

Branch History Table (BHT)

hash()

0x100

Branch PC

Predicting Branch Outcomes

Branch Predictor

Branch

Address

Predicted

Outcome: T/NT

Making branch history implementable
• Idea 2: Concise history of outcomes
• Eliminates entry size = #branch executions

Branch History Table (BHT)

hash()

0x100

10

00

00

11

Branch PC

01 1000 11

NT

NT NT NT T

Two-bit saturating counter branch predictor

T T T

Bimodal BHT Branch Predictor (Lab 1)

Branch Predictor

Branch

Address

Predicted

Outcome: T/NT

Making branch history implementable
• Idea 2: Concise history of outcomes
• Eliminates entry size = #branch executions

Branch History Table (BHT)

hash()

0x100

10

00

00

11

Branch PC

01 1000 11

NT

NT NT NT

Example history - 0x100: 1010110110110110…

T

Two-bit saturating counter branch predictor

T T T

Bimodal BHT Branch Predictor
[“Combining Branch Predictors”, McFarling ’93]

Predicting Branch Outcomes

Limitations of 2-bit BHT branch prediction
• Limitation 1: branch interference due to hash table collisions
• Limitation 2: single-branch decision making misses correlation
How to handle each of these problems?

Branch History Table (BHT)

hash()

0x100

10

00

00

11

Branch PC

01 1000 11

NT

NT NT NT

Example history - 0x100: 1010110110110110…

T

Two-bit saturating counter branch predictor

T T T

Avoiding collisions

Example history - 0x100: 1010110110110110…

Large table size (e.g., 16k entries) avoids collisions
• Each entry is small, making total cost tolerable (e.g., 32kb)
• Large enough table and collisions do not limit prediction accuracy

Branch History Table (BHT)

hash()

0x100

Branch PC

01 1000 11

NT

NT NT NT T

Two-bit saturating counter branch predictor

T T T

10

00

00

11

1
6

k
En

tr
ie

s

. .
 .

Catching correlated branches

There are correlation of the outcomes of consecutive branches
• The outcome of the third branch is correlated with the first two
• Our per-branch predictor cannot capture this common pattern

Branch History Table (BHT)

hash()

0x100

Branch PC

10

00

00

11

1
6

k
En

tr
ie

s

. .
 .

if(a == 1){ a=0 }

if(b == 1){ b=0 }

if(a != b){ ... }

Two-Level Branch Predictor (Option for Lab 1):
GAp (Global Adaptive w/ per-address table)

Track history of outcomes of all branches executed in GHT
• Use PC to select which PHT to use
• Use global pattern history to index into PHT
• Use PHT entry’s 2-bit counter to predict outcome
• After each branch resolves, updated predictor in per-address

pattern history table & shift its outcome (T=1, NT=0) into GHT

Per-address “pattern history table”

hash()

0x100

10 00

00 00

00 00

11 11

Branch PC

1
6

k
En

tr
ie

s

. .
 .

if(a == 1){ a=0 }

if(b == 1){ b=0 }

if(a != b){ ... }

. . .

11

11

00

11

10010110

Global History Table

Global Index Sharing Predictor

Index sharing predictor tracks local history in global context concisely
• XOR GHT with branch PC to select BHT
• Use 2-bit counter in BHT to make prediction for branch in GHT context
• XOR maps branches & contexts that matter to different BHTs
• Gshare combining addr bits with history bits often better

Branch History Table (BHT)

xor

0x100

Branch PC

10

00

00

11

1
6

k
En

tr
ie

s

. .
 .

if(a == 1){ a=0 }

if(b == 1){ b=0 }

if(a != b){ ... }

10010110

Global History Table

Local/Global Correlating Predictor (Optional for Lab 1):
PAg (Per-Address Adaptive global history table)

Per-PC Branch History Table

Use per-branch history to index into a global, shared table of
predictors. Per-PC branch history table stores history for that
branch only, not global history.
• Use PC to select which BHT to use
• Use branch history to index into global PHT
• Use PHT entry’s 2-bit counter to predict outcome

0x100

Branch PCif(a == 1){ a=0 }

if(b == 1){ b=0 }

if(a != b){ ... }

11

11

00

11

10010110

10010110

10010110

10010110

. .
 .

. .
 .

Global Pattern History Table

hash()

n
 e

n
tr

ie
s

(2
5

6
 e

n
tr

ie
s

h
er

e)

log n bits
(8 bits here)

(Choose best option)

Quantifying Predictor Accuracy

Dynamically predicting branch behavior

Fetch Decode Execute Memory
Register
Write-Back

0x100: beq x16 x12 PC+0xC

Branch Predictor Target: 0x10C

Need to predict branch target
• Target gets resolved only in Decode, which leads to 1-cycle stall
• Predict outcome and target both in Fetch & avoid all stalls

Branch Target Buffer Implementation

Branch Target Buffer

hash()

0x1a2100

BranchID

1a2ABC

1A210C

Branch Tag

Tag Target

1A22EE

1A2112

1A2 Target:

0x1A210C

Branch Target Buffer (BTB) logs branch target
• BTB is associative memory table indexed by branch PC low order bits
• Need tag because some PCs do not point to branches
• Associative memory can be set-, fully-associative or direct-mapped

Branch PC = Tag + ID

Putting it all together:
A Gshare branch predictor + BTB

Branch Target Buffer

hash()

0x1a2100

BranchID

1a2ABC

1A210C

Branch Tag

Tag Target

1A22EE

1A2112

1A2
Target:

0x1A210C

Branch History Table (BHT)

xor

0x100

Branch PC

10

00

00

11

1
6

k
En

tr
ie

s

. .
 .

10010110

Global History Table

Outcome:

Taken

Branch predictors resolve branches
in the fetch stage avoiding stalls
• Need misprediction detection

logic added to decode stage
• Need logic to flush instructions

on predicted path after
misprediction

• Flushed instructions are
effectively stalls in the pipeline,
but worse: wasted work.

Branch Predictor in the pipeline

ALU

Input
Read
Reg A

ALU: output C data

Instruction
Memory

Instruction
Fetch

Control Signals:
O
o

p select
p = [+, -, x, /]

Memory
Unit

Data
Memory

4

+

MUX

PC

PC Source
Select

Reg 1
Reg 2

Reg 3

Input
Read
Reg B

Write Reg C Data ALU

Instruction PC+4

Branch Target

Branch
Target

Branch
Target
Offset

Instruction
+

PC + 4

B
ran

ch
Target

Addr

RReeaadd
DDaattaa CC

Register
Writeback

Output/Read
Reg C Data

Output/Read
Reg Select

Write
Reg C
Select

MemRead/
MemWrite

Instruction Fetch
Reg 4

Instr. Decode Execute

Read Regs A & B Data

Write Register C Select

Write Register C Data

Memory Register Write-Back

IF/
ID

ID/ EX/
Mem

Mem
/WB Write

Reg C
Data

Wr
Data

Write Reg C Data Mem

Control
Signals

Read
Register EX
A & B
Select

P
C

 S
o

u
rc

e
 S

el
ec

t
(1

 if
 b

ra
n

ch
 t

ak
en

)

Branch Predictor

. . .

What did we just learn?

• Control hazards introduce stalls because on a branch the pipeline
doesn’t know what to fetch next

• Single stall cycle with early branch resolution (in Decode)

• Branch delay slots and static prediction do OK, but still need stalls and
nops often

• Dynamic Branch Prediction uses per-branch information and global
branch outcome history information to predict outcomes and targets

• Branch predictor accuracies are in the 90+% in a lot of cases (you will
see these figures in Lab 1)

What to think about next?

• Caches as a microarchitectural optimization (next time)
• Implementation of cache hierarchies

• Cache design tradeoffs

• Performance Evaluation (next next time)
• Design spaces, Pareto Frontiers, and design space exploration

	Slide 1
	Slide 2: Recap: Pipelined Datapath Microarchitecture
	Slide 3: A Simple Pipelined Processor Datapath
	Slide 4: Types of Data Hazards
	Slide 5: Example: Pipelined Execution w/ RAW Hazard
	Slide 6: Example: Pipelined Execution w/ RAW Hazard
	Slide 7: Example: Pipelined Execution w/ RAW Hazard
	Slide 8: Example: Pipelined Execution w/ RAW Hazard
	Slide 9: Example: Pipelined Execution w/ RAW Hazard
	Slide 10: Example: Pipelined Execution w/ RAW Hazard
	Slide 11: Example: Pipelined Execution w/ RAW Hazard
	Slide 12: Example: Pipelined Execution w/ RAW Hazard
	Slide 13: How do we avoid the stall cycles?
	Slide 14: Example: Pipelined Execution w/ RAW Hazard
	Slide 15: Forwarding to avoid a pipeline RAW Hazard
	Slide 16: Forwarding to avoid a pipeline RAW Hazard
	Slide 17: Immediately preceding & dependent on load = stall
	Slide 18: Adding Forwarding Support
	Slide 19: Exception Handling
	Slide 20: Today: More Pipelined Microarchitecture
	Slide 21: Pipeline Control Signals
	Slide 22: Control signals also pipelined through stages
	Slide 23: Which pipeline control signals get set where?
	Slide 24: Which pipeline control signals get set where?
	Slide 25: Recall: R-type Arithmetic Operations
	Slide 26: Which pipeline control signals get set where?
	Slide 27: Which pipeline control signals get set where? PC Source Select
	Slide 28: Which pipeline control signals get set where? PC Source Select
	Slide 29: Which pipeline control signals get set where? PC Source Select
	Slide 30: More on Pipeline Hazards Structural Hazards Control Hazards
	Slide 31: Structural Hazards
	Slide 32: Structural Hazards
	Slide 33: Structural Hazards
	Slide 34: Control Hazards
	Slide 35: Example: Pipelined Execution w/ Branch
	Slide 36: Example: Pipelined Execution w/ Branch Option #1: Stall on Branch
	Slide 37: Determining the Next PC in the Pipeline
	Slide 38: Example: Pipelined Execution w/ Branch Option #1: Stall on Branch
	Slide 39: Example: Pipelined Execution w/ Branch Option #1: Stall on Branch
	Slide 40: Proposal: Resolve the branch target and branch taken/not taken outcome earlier than beq in Mem.
	Slide 41: Early Branch Resolution
	Slide 42: Example: Pipelined Execution w/ Early Resolution
	Slide 43: Example: Pipelined Execution w/ Early Resolution
	Slide 44: Example: Pipelined Execution w/ Early Resolution
	Slide 45: Example: Pipelined Execution w/ Early Resolution
	Slide 46: MIPS-style Delayed Branch Execution
	Slide 47: Filling Branch Delay Slots
	Slide 48: Filling Branch Delay Slots
	Slide 49: Filling Branch Delay Slots
	Slide 50: Filling Branch Delay Slots
	Slide 51: Filling Branch Delay Slots
	Slide 52: RISCV does not have/allow/require delay slots
	Slide 53: Why do they ban delayed branches at the ISA level?
	Slide 54: Branch Prediction to avoid control hazards
	Slide 55: Branch Prediction to avoid control hazards
	Slide 56: There is “typical” branch behavior
	Slide 57: There is “typical” branch behavior
	Slide 58: Statically defined hints about branches?
	Slide 59: Dynamically predicting branch behavior
	Slide 60: Dynamically predicting branch behavior
	Slide 61: Speculation entails guessing about what’s next
	Slide 62: Recovering from branch misprediction
	Slide 63: Dynamically predicting branch behavior
	Slide 64: Branch Predictor in the pipeline
	Slide 65: Dynamically predicting branch behavior
	Slide 66: Predicting Branch Outcomes
	Slide 67: Predicting Branch Outcomes
	Slide 68: Predicting Branch Outcomes
	Slide 69: Proposal: Store predictor state in fetch stage with prediction logic
	Slide 70: Predicting Branch Outcomes
	Slide 71: Predicting Branch Outcomes
	Slide 72: Bimodal BHT Branch Predictor (Lab 1)
	Slide 73: Bimodal BHT Branch Predictor
	Slide 74: Predicting Branch Outcomes
	Slide 75: Avoiding collisions
	Slide 76: Catching correlated branches
	Slide 77: Two-Level Branch Predictor (Option for Lab 1): GAp (Global Adaptive w/ per-address table)
	Slide 78: Global Index Sharing Predictor
	Slide 79: Local/Global Correlating Predictor (Optional for Lab 1): PAg (Per-Address Adaptive global history table)
	Slide 80
	Slide 81: Dynamically predicting branch behavior
	Slide 82: Branch Target Buffer Implementation
	Slide 83: Putting it all together: A Gshare branch predictor + BTB
	Slide 84: Branch Predictor in the pipeline
	Slide 85: What did we just learn?
	Slide 86: What to think about next?

