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Pipelined Microarchitectural Implementation

• Pipelining for Instruction-Level Parallelism (ILP)

• Pipelined microarchitecture design sketch

• Control hazards

• Branch prediction for dealing with control hazards
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Private Laundry Room Model: only one
person at a time allowed in laundry room
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Analysis: With 3 resources ( , , ) and 3 units of
work ( , , ) our laundry took 12 units of time

Art attribution: Andrejs Kirma from the Noun ProjectKoson Rattanaphan from the Noun Project, Symbolon from the Noun Project

12 units of time? 

Why 12 units of time vs 9 units of time 
overall? 

Why 4 units of time per load vs  3 units of 
time?
• Processors and their workings are 

triggered devices. 

• It takes 4 triggers for the dirty 
laundry pile to be washed, dried, 
folded, and available.
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Let’s redesign our laundry room to make it more efficient
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Shared Laundry Room: single laundry task 
uses single machine at a time, not entire 
room. Multiple roommates allowed in at once.
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Analysis: With 3 resources ( , , ) and 3 units of
work ( , , ) our laundry took 6 units of time

Art attribution: Andrejs Kirma from the Noun ProjectKoson Rattanaphan from the Noun Project, Symbolon from the Noun Project



Pipelining in the abstract:
A laundry efficiency problem

Vs.

Art attribution: Andrejs Kirma from the Noun ProjectKoson Rattanaphan from the Noun Project, Symbolon from the Noun Project

General observations about private laundry room model vs. shared laundry room model?



Pipelining in the abstract:
A laundry efficiency problem

Vs.

Art attribution: Andrejs Kirma from the Noun ProjectKoson Rattanaphan from the Noun Project, Symbolon from the Noun Project

General observations about private laundry room model vs. shared laundry room model?
• Using machines in parallel in the shared laundry model
• At time step 3 (“steady state”) all machines are active
• Private model: always leaving 2/3 of laundry machines idle, despite laundry yet to wash!
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Shared Laundry Room: single laundry task 
uses single machine at a time, not entire 
room. Multiple roommates allowed in at once.

30min 60min 15min Improving Pipeline Performance

• If you could make washing take only 15 minutes 
what would be the impact upon throughput?

• What if you could make ironing take only 10 
minutes?

• What if you could make drying take 45 
minutes? Why is that different? 

• Hint: What (stage) limits the throughput? Why?
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A Simple 5-Stage Pipelined Processor Datapath
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What about an alternative decomposition?
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4-stage? Pro / con?
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What does ALU op do in Mem? Memop in EX?
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Cost of pipelining:
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What do we need to preserve in these pipeline registers?
For Example -- Store instruction: 

IF/ID:
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What do we need to preserve in these pipeline registers?
For Example -- Store instruction: 

IF/ID: 32-bit instruction + 32-bit PC+4 result
ID/EX:
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ID/EX: address parts (base/offset) & value to store 

Ex/Mem:
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What do we need to preserve in these pipeline registers?
For Example -- Store instruction: 

IF/ID: 32-bit instruction + 32-bit PC+4 result
ID/EX: address parts (base/offset) & value to store 

Ex/Mem: computed addr & value to store 
Mem/WB:
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What do we need to preserve in these pipeline registers?
For Example -- Store instruction: 

IF/ID: 32-bit instruction + 32-bit PC+4 result
ID/EX: address parts (base/offset) & value to store 

Ex/Mem: computed addr & value to store 
Mem/WB: nothing
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Fetch Decode Execute Memory
Register 
Write-Back

lw x12 (x15) add x7 x8 x9sub x6 x5 x4 sw x0 (x13)sw x6 (x14)

Example: Pipelined Execution

Key Idea:Pipelining unlocks
Instruction Level Parallelism (ILP)
one of the great ideas in computer architecture
Practical Implications of adding ILP to the system?



sub x6 x5 x4

sw x6 (x14)

Pipeline Diagram Illustrates Parallelism

sw x0 (x13)

lw x12 (x15)

IF ID EX/AG

ID

IF

Mem

EX/AG

ID

IF

WB

Mem

EX/AG

ID

IF

IF WB

Mem

EX/AG

ID

WB

Mem

EX/AG

WB

Time (Cycles)

1 2 3 4 5 6 7 8

add x31 x30 x29 Mem WB



sub x6 x5 x4

sw x6 (x14)

Pipeline Diagram Illustrates Parallelism

sw x0 (x13)

lw x12 (x15)

IF ID EX/AG

ID

IF

Mem

EX/AG

ID

IF

IF WB

Mem

EX/AG

ID

WB

Mem

EX/AG

WB

Time (Cycles)

1 2 3 4 6 75

WB

Me m

EX /AG

ID

IF

8

Parallelism Factor = 5!
Question:
What is this machine’s rate
of Instructions per Cycle?

add x31 x30 x29 Mem WB



sub x6 x5 x4

sw x6 (x14)

Pipeline Diagram Illustrates Parallelism

sw x0 (x13)

IF ID EX/AG

ID

IF

Mem

EX/AG

ID

IF

IF WB

Mem

EX/AG

ID

WB

Mem

EX/AG

Time

1 2 3 4 6 75

WB

Me m

EX /AG

ID

IF

8

Pipeline Drain

Parallelism Factor = 5!
Question:
What is this machine’s rate
of Instructions per Cycle?

lw x12 (x15) WB

x29Pipeline Filladd x31 x30 Mem WB



sub x6 x5 x4

sw x6 (x14)

Pipeline Diagram: Single Cycle Design

sw x0 (x13)

lw x12 (x15)

IF ID EX/AG Mem WB

Clock Cycle

1

IF ID EX/AG Mem WB

IF ID EX

2 3

Parallelism Factor = 1
Question:
What is this machine’s rate
of Instructions per Cycle?



IF ID EX/AG Mem WB

IF ID EX/AG Mem WB

IF ID EX/AG Mem WB

IF ID EX/AG Mem WB

IF ID EX/AG Mem WB

IF ID EX/AG Mem WB

What gives? IPC is 1 for both and each
instruction’s latency is still 5ns.

5ns 5ns

IF ID EX/AG Mem WB



IF ID EX/AG Mem WB

IF ID EX/AG Mem WB

IF ID EX/AG Mem WB

IF ID EX/AG Mem WB

IF ID EX/AG Mem WB

IF ID EX/AG Mem WB

5ns 5ns

IF ID EX/AG Mem WB

What gives? IPC is 1 in both cases!
Key Idea: Pipelined Instruction Throughput is higher.
Shorter clock period + parallelism = 1 completed instruction per ns 
even though each instruction takes 5ns to complete

Instructions/Cycle

Vs

Instructions/Second

5ns = (up to) 25(*) stages of work

vs 

5ns = 5 stages of work

* 15 here due to pipeline filling



Iron Law of Computer Performance

instructions
/ program

cycles /
instruction

seconds
/ cycle

X X



Iron Law of Computer Performance

instructions
/ program

cycles /
instruction

seconds
/ cycle

X X

Question: what term does pipelining optimize? how else might we 
approach optimization in light of this performance expression?



p = 0xabc; 

x = y – z 

m = *p;

t = x + w;

Pipelining Code Example

What is interesting about this short program?

sub x6 x5 x4 

lw x16 0xabc 

add x12 x6 x14



Pipelining Code Example

sub x6 x5 x4 

lw x16 0xabc 

add x12 x6 x14

What happens to x6 as we execute this code?



Fetch Decode Execute Memory
Register 
Write-Back

sub x6 x5 x4

Example: Pipelined Execution



Fetch Decode Execute Memory
Register 
Write-Back

lw x16 0xabc sub x6 x5 x4

Example: Pipelined Execution



Fetch Decode Execute Memory
Register 
Write-Back

sub x6 x5 x4

Example: Pipelined Execution

add x12 x6 x14 

reads the value of x6 
sub x6 x5 x4

add x12 x6 x14 lw x16 0xabc

from

Read-After-Write (RAW) Hazard:
Input register does not contain updated data during 
register read cycle due to yet-to-be-completed 
register writeback from older instruction

x6 gets written back 
here 2 cycles later!



Types of Data Hazards

sub x6 x5 x4 

lw x16 0xabc

Read-After-Write (RAW) Write-After-Read (WAR)

sub x8 x16 x4

add x12 x6 x14 lw x16 0xabc

Write-After-Write (WAW)

Only Read-After-Write (RAW) hazards are possible in our simple pipeline

lw x6 0xabc

add x16 x6 x14 sub x6 x5 x4

add x12 x6 x14



Types of Data Hazards
lw x6 0xabc 

sub x6 x5 x4 

add x12 x6 x14

Write-After-Write (WAW)

Fetch Decode Execute Memory
Register 
Write-BackMemory Memory

lw x6 0xabc



Types of Data Hazards
lw x6 0xabc 

sub x6 x5 x4 

add x12 x6 x14

Write-After-Write (WAW)

Fetch Decode Execute Memory
Register 
Write-BackMemory Memory

lw x6 0xabc

sub x6 x5 x4



Types of Data Hazards
lw x6 0xabc 

sub x6 x5 x4 

add x12 x6 x14

Write-After-Write (WAW)

Fetch Decode Execute Memory
Register 
Write-BackMemory Memory

lw x6 0xabc

sub x6 x5 x4



Types of Data Hazards
lw x6 0xabc 

sub x6 x5 x4 

add x12 x6 x14

Write-After-Write (WAW)

lw x6 0xabc

Fetch Decode Execute Memory
Register 
Write-BackMemory Memory

sub x6 x5 x4



Types of Data Hazards
lw x6 0xabc 

sub x6 x5 x4 

add x12 x6 x14

Write-After-Write (WAW)

lw x6 0xabc

Fetch Decode Execute Memory
Register 
Write-BackMemory Memory

sub x6 x5 x4



Types of Data Hazards
lw x6 0xabc 

sub x6 x5 x4 

add x12 x6 x14

Write-After-Write (WAW)

Multi-cycle latency memory op
lw x6 0xabc lw x6 0xabc lw x6 0xabc

Fetch Decode Execute Memory
Register 
Write-BackMemory Memory

sub x6 x5 x4 sub x6 x5 x4

Non-mem-op, single memory cycle

Earlier lw instruction finishes after later sub 
instruction. Both write x6. Wrong final value in x6. 
Explicitly handled with logic to maintain ordering in 
processors that allow this behavior (not our datapath)



Types of Data Hazards

Write-After-Read (WAR)

Fetch Decode Execute Memory
Register 
Write-Back

Stalled at decode/reg. read
(why? wait a few lectures & more in 447)

sub x8 x16 x4

add x16 x6 x14

Completes quickly and writes reg.

Later add instruction writes x16 before earlier
sub instruction reads x16. sub sees wrong value!

sub x8 x16 x4 

add x16 x6 x14 

lw x11 0xabc



What can we do about these data hazards?

sub x6 x5 x4 

lw x16 0xabc

Read-After-Write (RAW) Write-After-Read (WAR)

sub x8 x16 x4

add x12 x6 x14 lw x16 0xabc

Write-After-Write (WAW)

Only Read-After-Write (RAW) hazards are possible in our simple pipeline

lw x6 0xabc

add x16 x6 x14 sub x6 x5 x4

add x12 x6 x14



Fetch Decode Execute Memory
Register 
Write-Back

sub x6 x5 x4

Example: Pipelined Execution w/ RAW Hazard

add x12 x6 x14 

reads the value of x6 
sub x6 x5 x4

add x12 x6 x14 lw x16 0xabc

from

Read-After-Write (RAW) Hazard:
Input register does not contain updated data during 
register read cycle due to yet-to-be-completed 
register writeback from older instruction

x6 gets written back 
here 2 cycles later!



Fetch Decode Execute Memory
Register 
Write-Back

sub x6 x5 x4

Example: Pipelined Execution w/ RAW Hazard

add x12 x6 x14



Fetch Decode Execute Memory
Register 
Write-Back

add x12 x6 x14 sub x6 x5 x4

Example: Pipelined Execution w/ RAW Hazard



Fetch Decode Execute Memory
Register 
Write-Back

sub x6 x5 x4

Example: Pipelined Execution w/ RAW Hazard

add x12 x6 x14
stall



Fetch Decode Execute Memory
Register 
Write-Back

sub x6 x5 x4

Example: Pipelined Execution w/ RAW Hazard

add x12 x6 x14
stall stall



Fetch Decode Execute Memory
Register 
Write-Back

Example: Pipelined Execution w/ RAW Hazard

add x12 x6 x14
stall stall



Fetch Decode Execute Memory
Register 
Write-Back

Example: Pipelined Execution w/ RAW Hazard

stall
add x12 x6 x14



Fetch Decode Execute Memory
Register 
Write-Back

Example: Pipelined Execution w/ RAW Hazard

add x12 x6 x14



Fetch Decode Execute Memory
Register 
Write-Back

sub x6 x5 x4

How do we avoid the stall cycles?

add x12 x6 x14
stall stall



Fetch Decode Execute Memory
Register 
Write-Back

sub x6 x5 x4

Example: Pipelined Execution w/ RAW Hazard

add x12 x6 x14

Value of x6 is available after sub Executes

We can forward the value to the add!



Fetch Decode Execute Memory
Register 
Write-Back

Value of x6 is available from Execute!

add x12 x6 x14 sub x6 x5 x4

Forwarding to avoid a pipeline RAW Hazard

“x6”

We can forward the value in the EX/MEM 
pipeline register from the sub back to Execute 
to act as the input operand for the add



Fetch Decode Execute Memory
Register 
Write-Back

Can also forward if there are 
intervening instructions

add x12 x6 x14 add x9 x8 x7 sub x6 x5 x4

Forwarding to avoid a pipeline RAW Hazard

“x6”

We can forward the value in the MEM/WB pipeline register 
from the sub back to Execute to act as the input operand for the 
add (going around the unrelated operation in the memory stage)



Fetch Decode Execute Memory
Register 
Write-Back

lw x6 0xabc

Pipeline Can Forward Between Different Stages

add x12 x6 x14

lw x6 0xabc 

add x12 x6 x14

Value of x6 is available from Memory!

We can forward the value in Memory’s pipeline register
from the lw back to Execute’s input for the add

(Still requires stalling…)

stall



Adding Forwarding Support

ALU

ALU: output C data 
Branch: PC Source Select

Instruction 
Memory

Instruction 
Fetch

Control Signals:
Op select
op = [+, -, x, /]

Memory
Unit

Data 
Memory

4

+

MUX

PC

PC Source 
Select

Reg 1
Reg 2

Reg 3
Reg 4

Control 
Signals

Read 
Register 
A & B 
Select

Input 
Read 
Reg B

Write Reg C Data

+

Instruction PC+4 

Branch Target

PC Source Select (1 if branch taken)

Branch 
Target

Branch 
Target 
Offset

Instruction 
PC + 4

Read
Data C

Read Data C (Ld)

Register
Writeback

Output/Read 
Reg C Data

Output/Read 
Reg Select

Write 
Reg C 
Data

Write 
Reg C 
Select

Cont. 
Sigs.: 
Op. 
Select
[Ld/St]

Instruction Fetch Instr. Decode Execute

Read Regs A & B Data 

Write Register C Select

Write Register C Data

Memory Register Write-Back

Branch Target

Exec/Exec Forward

Mem/Exec Forward

MUX

W
B

/E
x 

Fw
d
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Fw
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Fetch

What if one of our instructions were to throw an
exception (e.g., illegal instruction in decode or page fault 
on a memop)?

Decode Execute Memory
Register 
Write-Back

lw x12 (x15) add x7 x8 x9sub x6 x5 x4 sw x0 (x13)sw x6 (x14)

Question: What is time in a pipelined system?



Fetch Decode Execute Memory
Register 
Write-Back

lw x12 (x15) add x7 x8 x9invalid inssw x6 (x14)

Exception Handling

sw x0 (x13)

Exception!

What if one of our instructions were to throw an
exception (e.g., illegal instruction in decode or page fault 
on a memop)?



Fetch Decode Execute Memory
Register 
Write-Back

lw x12 (x15) add x7 x8 x9invalid inssw x6 (x14)

Exception Handling

sw x0 (x13)

Basic Exception Idea: Nuke everything that started after the 
current instruction, finish everything that started before the 
current instruction, jump to exception handler

Exception!



Fetch Decode Execute Memory
Register 
Write-Back

lw x12 (x15) add x7 x8 x9BNE <ehreg>sw x6 (x14)

Exception Handling

sw x0 (x13)

Basic Exception Idea: Nuke everything that started after the 
current instruction, finish everything that started before the 
current instruction, jump to exception handler, no new insns

Exception! Exception Handler

Exception Reason

stall



What did we just learn?

• Basics of pipelining as a first technique for Instruction-level 
parallelism

• Datapath decomposition to support pipelined execution

• Hazards and their impediment to pipelined execution

• Forwarding in the pipeline to avoid stalling on data hazards



What to think about next?

• More microarchitectural concepts (next time)
• Control hazards & branch prediction

• Caches as a microarchitectural optimization (next time)
• Implementation of cache hierarchies

• Cache design tradeoffs

• Performance Evaluation (next next time)
• Design spaces, Pareto Frontiers, and design space exploration
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