
Fall 2023

Lecture 5: Pipelines and Hazards

Credit: Brandon Lucia



Pipelined Microarchitectural Implementation

• Pipelining for Instruction-Level Parallelism (ILP)

• Pipelined microarchitecture design sketch

• Control hazards

• Branch prediction for dealing with control hazards



Pipelining in the abstract:
A laundry efficiency problem

Art attribution: Andrejs Kirma from the Noun ProjectKoson Rattanaphan from the Noun Project, Symbolon from the Noun Project



Pipelining in the abstract:
A laundry efficiency problem

To be washed

Art attribution: Andrejs Kirma from the Noun ProjectKoson Rattanaphan from the Noun Project, Symbolon from the Noun Project

Done being washed

Private Laundry Room Model: only one
person at a time allowed in laundry room



Pipelining in the abstract:
A laundry efficiency problem

To be washed

Time = 0

Art attribution: Andrejs Kirma from the Noun ProjectKoson Rattanaphan from the Noun Project, Symbolon from the Noun Project

Done being washed



Pipelining in the abstract:
A laundry efficiency problem

To be washed

Time = 1

Art attribution: Andrejs Kirma from the Noun ProjectKoson Rattanaphan from the Noun Project, Symbolon from the Noun Project

Done being washed



Pipelining in the abstract:
A laundry efficiency problem

To be washed

Time = 2

Art attribution: Andrejs Kirma from the Noun ProjectKoson Rattanaphan from the Noun Project, Symbolon from the Noun Project

Done being washed



Pipelining in the abstract:
A laundry efficiency problem

To be washed

Time = 3

Art attribution: Andrejs Kirma from the Noun ProjectKoson Rattanaphan from the Noun Project, Symbolon from the Noun Project

Done being washed



Pipelining in the abstract:
A laundry efficiency problem

To be washed

Time = 4

Art attribution: Andrejs Kirma from the Noun ProjectKoson Rattanaphan from the Noun Project, Symbolon from the Noun Project

Done being washed



Pipelining in the abstract:
A laundry efficiency problem

To be washed

Time = 5

Art attribution: Andrejs Kirma from the Noun ProjectKoson Rattanaphan from the Noun Project, Symbolon from the Noun Project

Done being washed



Pipelining in the abstract:
A laundry efficiency problem

To be washed

Time = 6

Art attribution: Andrejs Kirma from the Noun ProjectKoson Rattanaphan from the Noun Project, Symbolon from the Noun Project

Done being washed



Pipelining in the abstract:
A laundry efficiency problem

To be washed

Time = 7

Art attribution: Andrejs Kirma from the Noun ProjectKoson Rattanaphan from the Noun Project, Symbolon from the Noun Project

Done being washed



Pipelining in the abstract:
A laundry efficiency problem

To be washed

Time = 8

Art attribution: Andrejs Kirma from the Noun ProjectKoson Rattanaphan from the Noun Project, Symbolon from the Noun Project

Done being washed



Pipelining in the abstract:
A laundry efficiency problem

To be washed

Time = 9

Art attribution: Andrejs Kirma from the Noun ProjectKoson Rattanaphan from the Noun Project, Symbolon from the Noun Project

Done being washed



Pipelining in the abstract:
A laundry efficiency problem

To be washed

Time = 10

Art attribution: Andrejs Kirma from the Noun ProjectKoson Rattanaphan from the Noun Project, Symbolon from the Noun Project

Done being washed



Pipelining in the abstract:
A laundry efficiency problem

To be washed

Time = 11

Art attribution: Andrejs Kirma from the Noun ProjectKoson Rattanaphan from the Noun Project, Symbolon from the Noun Project

Done being washed



Pipelining in the abstract:
A laundry efficiency problem

To be washed

Art attribution: Andrejs Kirma from the Noun ProjectKoson Rattanaphan from the Noun Project, Symbolon from the Noun Project

Done being washed

Time = 12



Pipelining in the abstract:
A laundry efficiency problem

To be washed Done being washed

Analysis: With 3 resources ( , , ) and 3 units of
work ( , , ) our laundry took 12 units of time

Art attribution: Andrejs Kirma from the Noun ProjectKoson Rattanaphan from the Noun Project, Symbolon from the Noun Project



Pipelining in the abstract:
A laundry efficiency problem

To
 b

e
 w

as
h

ed

D
o

n
e

 b
e

in
g 

w
as

h
ed

Analysis: With 3 resources ( , , ) and 3 units of
work ( , , ) our laundry took 12 units of time

Art attribution: Andrejs Kirma from the Noun ProjectKoson Rattanaphan from the Noun Project, Symbolon from the Noun Project

12 units of time? 

Why 12 units of time vs 9 units of time 
overall? 

Why 4 units of time per load vs  3 units of 
time?
• Processors and their workings are 

triggered devices. 

• It takes 4 triggers for the dirty 
laundry pile to be washed, dried, 
folded, and available.



Pipelining in the abstract:
A laundry efficiency problem

To be washed

Art attribution: Andrejs Kirma from the Noun ProjectKoson Rattanaphan from the Noun Project, Symbolon from the Noun Project

Done being washed

Let’s redesign our laundry room to make it more efficient



Pipelining in the abstract:
A laundry efficiency problem

To be washed

Art attribution: Andrejs Kirma from the Noun ProjectKoson Rattanaphan from the Noun Project, Symbolon from the Noun Project

Done being washed

Shared Laundry Room: single laundry task 
uses single machine at a time, not entire 
room. Multiple roommates allowed in at once.



Pipelining in the abstract:
A laundry efficiency problem

To be washed

Time = 1

Art attribution: Andrejs Kirma from the Noun ProjectKoson Rattanaphan from the Noun Project, Symbolon from the Noun Project

Done being washed



Pipelining in the abstract:
A laundry efficiency problem

To be washed

Time = 2

Art attribution: Andrejs Kirma from the Noun ProjectKoson Rattanaphan from the Noun Project, Symbolon from the Noun Project

Done being washed



Pipelining in the abstract:
A laundry efficiency problem

To be washed

Time = 3

Art attribution: Andrejs Kirma from the Noun ProjectKoson Rattanaphan from the Noun Project, Symbolon from the Noun Project

Done being washed



Pipelining in the abstract:
A laundry efficiency problem

To be washed

Time = 4

Art attribution: Andrejs Kirma from the Noun ProjectKoson Rattanaphan from the Noun Project, Symbolon from the Noun Project

Done being washed



Pipelining in the abstract:
A laundry efficiency problem

To be washed

Art attribution: Andrejs Kirma from the Noun ProjectKoson Rattanaphan from the Noun Project, Symbolon from the Noun Project

Done being washed

Time = 5



Pipelining in the abstract:
A laundry efficiency problem

To be washed Done being washed

Analysis: With 3 resources ( , , ) and 3 units of
work ( , , ) our laundry took 6 units of time

Art attribution: Andrejs Kirma from the Noun ProjectKoson Rattanaphan from the Noun Project, Symbolon from the Noun Project



Pipelining in the abstract:
A laundry efficiency problem

Vs.

Art attribution: Andrejs Kirma from the Noun ProjectKoson Rattanaphan from the Noun Project, Symbolon from the Noun Project

General observations about private laundry room model vs. shared laundry room model?



Pipelining in the abstract:
A laundry efficiency problem

Vs.

Art attribution: Andrejs Kirma from the Noun ProjectKoson Rattanaphan from the Noun Project, Symbolon from the Noun Project

General observations about private laundry room model vs. shared laundry room model?
• Using machines in parallel in the shared laundry model
• At time step 3 (“steady state”) all machines are active
• Private model: always leaving 2/3 of laundry machines idle, despite laundry yet to wash!



Pipelining in the abstract:
A laundry efficiency problem

To be washed

Art attribution: Andrejs Kirma from the Noun ProjectKoson Rattanaphan from the Noun Project, Symbolon from the Noun Project

D
o

n
e

 b
e

in
g w

ash
ed

Shared Laundry Room: single laundry task 
uses single machine at a time, not entire 
room. Multiple roommates allowed in at once.

30min 60min 15min Improving Pipeline Performance

• If you could make washing take only 15 minutes 
what would be the impact upon throughput?

• What if you could make ironing take only 10 
minutes?

• What if you could make drying take 45 
minutes? Why is that different? 

• Hint: What (stage) limits the throughput? Why?



Input A Input B

ALU
ALU: output C

Reg 1
Reg 2

Reg 3
Reg 4

Register File

Output 
Register
Control

Input A 
Register 
Control

Input B 
Register 
Control

Instruction
Memory

In
st

ru
ct

io
n

 D
ec

o
d

eInstruction
FetchProgram 

Counter(PC)

In A reg select 

In B reg select

Op select
op = [+, -, x, /]

Out reg select

4

+

Memory 
Unit

Op select
op = [ld,st]

ld: data
st: data

ld/st: address

Branch Target Address Offset

MUX

PC+4

+

Branch: PC Source Select

Data
Memory

Let’s do some grouping together of functionality



Let’s do some grouping together of functionality

Input A Input B

ALU
ALU: output C

Reg 1
Reg 2

Reg 3
Reg 4

Register File

Output 
Register
Control

Input A 
Register 
Control

Input B 
Register 
Control

Instruction
Memory

In
st

ru
ct

io
n

 D
ec

o
d

eInstruction
FetchProgram 

Counter(PC)

In A reg select 

In B reg select

Op select
op = [+, -, x, /]

Out reg select

4

+

Memory 
Unit

Op select
op = [ld,st]

ld: data
st: data

ld/st: address

Branch Target Address Offset

MUX

PC+4

+

Branch: PC Source Select

Data
Memory



Let’s do some grouping together of functionality

ALU

Input 
Read 
Reg A

ALU: output C data 
Branch: PC Source Select

Instruction 
Memory

Instruction 
Fetch

Control Signals:
Op select
op = [+, -, x, /]

Memory
Unit

Data
Memory

4

+

MUX

PC Source Select (1 if branch taken)

PC

PC Source 
Select

Reg 1
Reg 2

Reg 3
Reg 4

Control 
Signals

Read 
Register 
A & B 
Select

Input 
Read 
Reg B

+

Instruction PC+4 

Branch Target

Branch 
Target

Branch 
Target 
Offset

Instruction 
PC + 4

Branch Target
AAddddrr 
Reg A

Data 
Reg B
(Ld Only)

RReeaadd 
DDaattaa CC

Read Data C (Ld Only)

Register
Writeback

Output/Read 
Reg C Data

Output/Read 
Reg Select

Write 
Reg C 
Data

Read Regs A & B Data

Write Register C Select 

Write Register C Data

Write Reg C Data

Write 
Reg C 
Select

Cont. 
Sigs.: 
Op. 
Select 
[Ld/St]



A Simple 5-Stage Pipelined Processor Datapath

ALU

Input 
Read 
Reg A

ALU: output C data 
Branch: PC Source Select

Instruction 
Memory

Instruction 
Fetch

Control Signals:
Op select
op = [+, -, x, /]

Memory
Unit

Data
Memory

4

+

MUX

PC Source Select (1 if branch taken)

PC

PC Source 
Select

Reg 1
Reg 2

Reg 3
Reg 4

Control 
Signals

Read 
Register 
A & B 
Select

Input 
Read 
Reg B

+

Instruction PC+4 

Branch Target

Branch 
Target

Branch 
Target 
Offset

Instruction 
PC + 4

Branch Target
AAddddrr 
Reg A

Data 
Reg B
(Ld Only)

RReeaadd 
DDaattaa CC

Read Data C (Ld Only)

Register
Writeback

Output/Read 
Reg C Data

Output/Read 
Reg Select

Write 
Reg C 
Data

Read Regs A & B Data

Write Register C Select 

Write Register C Data

Write Reg C Data

Write 
Reg C 
Select

Cont. 
Sigs.: 
Op. 
Select 
[Ld/St]

Instruction Fetch Instr. Decode Execute Memory Register Write-Back



What about an alternative decomposition?

ALU

Input 
Read 
Reg A

ALU: output C data 
Branch: PC Source Select

Instruction 
Memory

Instruction 
Fetch

Control Signals:
Op select
op = [+, -, x, /]

Memory
Unit

Data
Memory

4

+

MUX

PC Source Select (1 if branch taken)

PC

PC Source 
Select

Reg 1
Reg 2

Reg 3
Reg 4

Control 
Signals

Read 
Register 
A & B 
Select

Input 
Read 
Reg B

+

Instruction PC+4 

Branch Target

Branch 
Target

Branch 
Target 
Offset

Instruction 
PC + 4

Branch Target
AAddddrr 
Reg A

Data 
Reg B
(Ld Only)

RReeaadd 
DDaattaa CC

Read Data C (Ld Only)

Register
Writeback

Output/Read 
Reg C Data

Output/Read 
Reg Select

Write 
Reg C 
Data

Read Regs A & B Data

Write Register C Select 

Write Register C Data

Write Reg C Data

Write 
Reg C 
Select

Cont. 
Sigs.: 
Op. 
Select 
[Ld/St]

Instruction Fetch Instr. Decode Execute Memory Register Write-Back



4-stage? Pro / con?

ALU

Input 
Read 
Reg A

ALU: output C data 
Branch: PC Source Select

Instruction 
Memory

o
d

e

Instruction 
Fetch

Control Signals:
Op select
op = [+, -, x, /]

Memory
Unit

Data
Memory

4

+

MUX

PC

PC Source 
Select

Reg 1
Reg 2

Reg 3
Reg 4

Control 
Signals

Read 
Register 
A & B 
Select

Input 
Read 
Reg B

+

Instruction PC+4 

Branch Target

PC Source Select (1 if branch taken)

Branch 
Target

Branch 
Target 
Offset

Instruction 
PC + 4

Branch Target
AAddddrr 
Reg A

Data 
Reg B
(Ld Only)

RReeaadd 
DDaattaa CC

Read Data C (Ld Only)

Register
Writeback

Output/Read 
Reg C Data

Output/Read 
Reg Select

Write 
Reg C 
Data

Read Regs A & B Data

Write Register C Select 

Write Register C Data

Write Reg C Data

Write 
Reg C 
Select

Cont. 
Sigs.: 
Op. 
Select 
[Ld/St]

Instruction Fetch and Decode Execute Memory Register Write-Back



What does ALU op do in Mem? Memop in EX?

ALU

Input 
Read 
Reg A

ALU: output C data 
Branch: PC Source Select

Instruction 
Memory

Instruction 
Fetch

Control Signals:
Op select
op = [+, -, x, /]

Memory
Unit

Data
Memory

4

+

MUX

PC Source Select (1 if branch taken)

PC

PC Source 
Select

Reg 1
Reg 2

Reg 3
Reg 4

Control 
Signals

Read 
Register 
A & B 
Select

Input 
Read 
Reg B

+

Instruction PC+4 

Branch Target

Branch 
Target

Branch 
Target 
Offset

Instruction 
PC + 4

Branch Target
AAddddrr 
Reg A

Data 
Reg B
(Ld Only)

RReeaadd 
DDaattaa CC

Read Data C (Ld Only)

Register
Writeback

Output/Read 
Reg C Data

Output/Read 
Reg Select

Write 
Reg C 
Data

Read Regs A & B Data

Write Register C Select 

Write Register C Data

Write Reg C Data

Write 
Reg C 
Select

Cont. 
Sigs.: 
Op. 
Select 
[Ld/St]

Instruction Fetch Instr. Decode Execute Memory Register Write-Back



Cost of pipelining:
Need to register state between pipeline stages

ALU

Input 
Read 
Reg A

ALU: output C data 
Branch: PC Source Select

Instruction 
Memory

Instruction 
Fetch

Control Signals:
p select
p = [+, -, x, /]

Memory
Unit

Data
Memory

4

+

MUX

PC

PC Source 
Select

Reg 1
Reg 2

Reg 3
Reg 4

Control 
Signals

Read
Registe
A & B 
Select

Input 
Read 
Reg B

Branch 
Target 
Offset

+

Instruction PC+4 

Branch Target

PC Source Select (1 if branch taken)

Branch 
Target

I
P

r

O
o

nstruction 
C + 4

Branch Target
AAddddrr 
Reg A

Data 
Reg B
(Ld Only)

RReeaadd 
DDaattaa CC

Read Data C (Ld Only)

Register
Writeback

Output/Read 
Reg C Data

Output/Read 
Reg Select

Write 
Reg C 
Select

[Ld/St]

Instruction Fetch Instr. Decode Execute Memory Register Write-Back

IF/
ID

ID/
EX

Cont. 
Sigs.: 
Op.

EX/ Select

Mem
Mem
/WB   Write 

Reg C 
Data

Read Regs A & B Data

Write Register C Select 

Write Register C Data

Write Reg C Data



Cost of pipelining:
Need to register state between pipeline stages

ALU

Input 
Read 
Reg A

ALU: output C data 
Branch: PC Source Select

Instruction 
Memory

Instruction 
Fetch

Read Regs A & B Data

Control Signals:
p select
p = [+, -, x, /]

Memory
Unit

Data
Memory

4

+

MUX

PC

PC Source 
Select

Reg 1
Reg 2

Reg 3
Reg 4

Control 
Signals

Read
Registe
A & B 
Select

Input 
Read 
Reg B

Branch 
Target 
Offset

+

Instruction PC+4 

Branch Target

PC Source Select (1 if branch taken)

Branch 
Target

I
P

r

O
o

nstruction 
C + 4

Branch Target
AAddddrr 
Reg A

Data 
Reg B
(Ld Only)

RReeaadd 
DDaattaa CC

Read Data C (Ld Only)

Register
Writeback

Output/Read 
Reg C Data

Output/Read 
Reg Select

Write 
Reg C 
Select

[Ld/St]

Instruction Fetch Instr. Decode Execute Memory Register Write-Back

IF/
ID

ID/
EX

Cont. 
Sigs.: 
Op.

EX/ Select

Mem
Mem
/WB   Write 

Reg C 
Data

Pipeline Registers
Write Register C Select

Write Register C Data

Write Reg C Data



Need to store state between pipeline stages

4

Memory
Unit

Input

Instruction Read

Fetch Reg A Data
Memory

Control Signals:

select ALU

Instruction = [+, -, x, /]

Memory ALU: output C data

Branch: PC Source Select

Read Regs A & B Data

+

PC Source Select (1 if branch taken)

PC Branch
Target

Instruction PC+4 

Branch Target

I
P

r

O
o

AAddddrr Data

Read Data C (Ld Only)

Output/Read Output/Read
Offset Branch Target RReegg AA Reg B Reg C Data Reg Select

Branch Control nstruction 
+ 

(Ld Only)
Target Signals C + 4

MUX PC Source 
Cont. RegisterSigs.:

Select Read Op. 
RReeaadd Writeback

IF/ Registe ID/ Input EX/ Select 
DaDattaa CC

A & B Read 
[Ld/St] Mem

ID Select EX Reg B Mem /WB Write Write
Reg C Reg C
Data Select

Reg 1 p

Reg 2 p

Reg 3
Reg 4

Instruction Fetch Instr. Decode Execute Memory Register Write-Back

Write Register C Select 

Write Register C Data

Write Reg C Data

What do we need to preserve in these pipeline registers?



Need to store state between pipeline stages

4

Memory
Unit

Input

Instruction Read

Fetch Reg A Data
Memory

Control Signals:

select ALU

Instruction = [+, -, x, /]

Memory ALU: output C data

Branch: PC Source Select

Read Regs A & B Data

+

PC Source Select (1 if branch taken)

PC Branch
Target

Instruction PC+4 

Branch Target

I
P

r

O
o

AAddddrr Data

Read Data C (Ld Only)

Output/Read Output/Read
Offset Branch Target RReegg AA Reg B Reg C Data Reg Select

Branch Control nstruction 
+ 

(Ld Only)
Target Signals C + 4

MUX PC Source 
Cont. RegisterSigs.:

Select Read Op. 
RReeaadd Writeback

IF/ Registe ID/ Input EX/ Select 
DaDattaa CC

A & B Read 
[Ld/St] Mem

ID Select EX Reg B Mem /WB Write Write
Reg C Reg C
Data Select

Reg 1 p

Reg 2 p

Reg 3
Reg 4

Instruction Fetch Instr. Decode Execute Memory Register Write-Back

Write Register C Select 

Write Register C Data

Write Reg C Data

What do we need to preserve in these pipeline registers?
For Example -- Store instruction: 

IF/ID:



Need to store state between pipeline stages

4

Memory
Unit

Input

Instruction Read

Fetch Reg A Data
Memory

Control Signals:

select ALU

Instruction = [+, -, x, /]

Memory ALU: output C data

Branch: PC Source Select

Read Regs A & B Data

+

PC Source Select (1 if branch taken)

PC Branch
Target

Instruction PC+4 

Branch Target

I
P

r

O
o

AAddddrr Data

Read Data C (Ld Only)

Output/Read Output/Read
Offset Branch Target RReegg AA Reg B Reg C Data Reg Select

Branch Control nstruction 
+ 

(Ld Only)
Target Signals C + 4

MUX PC Source 
Cont. RegisterSigs.:

Select Read Op. 
RReeaadd Writeback

IF/ Registe ID/ Input EX/ Select 
DaDattaa CC

A & B Read 
[Ld/St] Mem

ID Select EX Reg B Mem /WB Write Write
Reg C Reg C
Data Select

Reg 1 p

Reg 2 p

Reg 3
Reg 4

Instruction Fetch Instr. Decode Execute Memory Register Write-Back

Write Register C Select 

Write Register C Data

Write Reg C Data

What do we need to preserve in these pipeline registers?
For Example -- Store instruction: 

IF/ID: 32-bit instruction + 32-bit PC+4 result
ID/EX:



Need to store state between pipeline stages

4

Memory
Unit

Input

Instruction Read

Fetch Reg A Data
Memory

Control Signals:

select ALU

Instruction = [+, -, x, /]

Memory ALU: output C data

Branch: PC Source Select

Read Regs A & B Data

+

PC Source Select (1 if branch taken)

PC Branch
Target

Instruction PC+4 

Branch Target

I
P

r

O
o

AAddddrr Data

Read Data C (Ld Only)

Output/Read Output/Read
Offset Branch Target RReegg AA Reg B Reg C Data Reg Select

Branch Control nstruction 
+ 

(Ld Only)
Target Signals C + 4

MUX PC Source 
Cont. RegisterSigs.:

Select Read Op. 
RReeaadd Writeback

IF/ Registe ID/ Input EX/ Select 
DaDattaa CC

A & B Read 
[Ld/St] Mem

ID Select EX Reg B Mem /WB Write Write
Reg C Reg C
Data Select

Reg 1 p

Reg 2 p

Reg 3
Reg 4

Instruction Fetch Instr. Decode Execute Memory Register Write-Back

Write Register C Select 

Write Register C Data

Write Reg C Data

What do we need to preserve in these pipeline registers?
For Example -- Store instruction: 

IF/ID: 32-bit instruction + 32-bit PC+4 result
ID/EX: address parts (base/offset) & value to store 

Ex/Mem:



Need to store state between pipeline stages

4

Memory
Unit

Input

Instruction Read

Fetch Reg A Data
Memory

Control Signals:

select ALU

Instruction = [+, -, x, /]

Memory ALU: output C data

Branch: PC Source Select

Read Regs A & B Data

+

PC Source Select (1 if branch taken)

PC Branch
Target

Instruction PC+4 

Branch Target

I
P

r

O
o

AAddddrr Data

Read Data C (Ld Only)

Output/Read Output/Read
Offset Branch Target RReegg AA Reg B Reg C Data Reg Select

Branch Control nstruction 
+ 

(Ld Only)
Target Signals C + 4

MUX PC Source 
Cont. RegisterSigs.:

Select Read Op. 
RReeaadd Writeback

IF/ Registe ID/ Input EX/ Select 
DaDattaa CC

A & B Read 
[Ld/St] Mem

ID Select EX Reg B Mem /WB Write Write
Reg C Reg C
Data Select

Reg 1 p

Reg 2 p

Reg 3
Reg 4

Instruction Fetch Instr. Decode Execute Memory Register Write-Back

Write Register C Select 

Write Register C Data

Write Reg C Data

What do we need to preserve in these pipeline registers?
For Example -- Store instruction: 

IF/ID: 32-bit instruction + 32-bit PC+4 result
ID/EX: address parts (base/offset) & value to store 

Ex/Mem: computed addr & value to store 
Mem/WB:



Need to store state between pipeline stages

4

Memory
Unit

Input

Instruction Read

Fetch Reg A Data
Memory

Control Signals:

select ALU

Instruction = [+, -, x, /]

Memory ALU: output C data

Branch: PC Source Select

Read Regs A & B Data

+

PC Source Select (1 if branch taken)

PC Branch
Target

Instruction PC+4 

Branch Target

I
P

r

O
o

AAddddrr Data

Read Data C (Ld Only)

Output/Read Output/Read
Offset Branch Target RReegg AA Reg B Reg C Data Reg Select

Branch Control nstruction 
+ 

(Ld Only)
Target Signals C + 4

MUX PC Source 
Cont. RegisterSigs.:

Select Read Op. 
RReeaadd Writeback

IF/ Registe ID/ Input EX/ Select 
DaDattaa CC

A & B Read 
[Ld/St] Mem

ID Select EX Reg B Mem /WB Write Write
Reg C Reg C
Data Select

Reg 1 p

Reg 2 p

Reg 3
Reg 4

Instruction Fetch Instr. Decode Execute Memory Register Write-Back

Write Register C Select 

Write Register C Data

Write Reg C Data

What do we need to preserve in these pipeline registers?
For Example -- Store instruction: 

IF/ID: 32-bit instruction + 32-bit PC+4 result
ID/EX: address parts (base/offset) & value to store 

Ex/Mem: computed addr & value to store 
Mem/WB: nothing



Example: Pipelined Execution

Fetch Decode Execute Memory
Register 
Write-Back

add x7 x8 x9



Fetch Decode Execute Memory
Register 
Write-Back

add x7 x8 x9lw x12 (x15)

Example: Pipelined Execution



Fetch Decode Execute Memory
Register 
Write-Back

lw x12 (x15) add x7 x8 x9sw x0 (x13)

Example: Pipelined Execution



Fetch Decode Execute Memory
Register 
Write-Back

lw x12 (x15) add x7 x8 x9sub x6 x5 x4 sw x0 (x13)

Example: Pipelined Execution



Fetch Decode Execute Memory
Register 
Write-Back

lw x12 (x15) add x7 x8 x9sub x6 x5 x4 sw x0 (x13)sw x6 (x14)

Example: Pipelined Execution



Fetch Decode Execute Memory
Register 
Write-Back

lw x12 (x15) add x7 x8 x9sub x6 x5 x4 sw x0 (x13)sw x6 (x14)

Example: Pipelined Execution



Fetch Decode Execute Memory
Register 
Write-Back

lw x12 (x15) add x7 x8 x9sub x6 x5 x4 sw x0 (x13)sw x6 (x14)

Example: Pipelined Execution

Key Idea:Pipelining unlocks
Instruction Level Parallelism (ILP)
one of the great ideas in computer architecture
Practical Implications of adding ILP to the system?



sub x6 x5 x4

sw x6 (x14)

Pipeline Diagram Illustrates Parallelism

sw x0 (x13)

lw x12 (x15)

IF ID EX/AG

ID

IF

Mem

EX/AG

ID

IF

WB

Mem

EX/AG

ID

IF

IF WB

Mem

EX/AG

ID

WB

Mem

EX/AG

WB

Time (Cycles)

1 2 3 4 5 6 7 8

add x31 x30 x29 Mem WB



sub x6 x5 x4

sw x6 (x14)

Pipeline Diagram Illustrates Parallelism

sw x0 (x13)

lw x12 (x15)

IF ID EX/AG

ID

IF

Mem

EX/AG

ID

IF

IF WB

Mem

EX/AG

ID

WB

Mem

EX/AG

WB

Time (Cycles)

1 2 3 4 6 75

WB

Me m

EX /AG

ID

IF

8

Parallelism Factor = 5!
Question:
What is this machine’s rate
of Instructions per Cycle?

add x31 x30 x29 Mem WB



sub x6 x5 x4

sw x6 (x14)

Pipeline Diagram Illustrates Parallelism

sw x0 (x13)

IF ID EX/AG

ID

IF

Mem

EX/AG

ID

IF

IF WB

Mem

EX/AG

ID

WB

Mem

EX/AG

Time

1 2 3 4 6 75

WB

Me m

EX /AG

ID

IF

8

Pipeline Drain

Parallelism Factor = 5!
Question:
What is this machine’s rate
of Instructions per Cycle?

lw x12 (x15) WB

x29Pipeline Filladd x31 x30 Mem WB



sub x6 x5 x4

sw x6 (x14)

Pipeline Diagram: Single Cycle Design

sw x0 (x13)

lw x12 (x15)

IF ID EX/AG Mem WB

Clock Cycle

1

IF ID EX/AG Mem WB

IF ID EX

2 3

Parallelism Factor = 1
Question:
What is this machine’s rate
of Instructions per Cycle?



IF ID EX/AG Mem WB

IF ID EX/AG Mem WB

IF ID EX/AG Mem WB

IF ID EX/AG Mem WB

IF ID EX/AG Mem WB

IF ID EX/AG Mem WB

What gives? IPC is 1 for both and each
instruction’s latency is still 5ns.

5ns 5ns

IF ID EX/AG Mem WB



IF ID EX/AG Mem WB

IF ID EX/AG Mem WB

IF ID EX/AG Mem WB

IF ID EX/AG Mem WB

IF ID EX/AG Mem WB

IF ID EX/AG Mem WB

5ns 5ns

IF ID EX/AG Mem WB

What gives? IPC is 1 in both cases!
Key Idea: Pipelined Instruction Throughput is higher.
Shorter clock period + parallelism = 1 completed instruction per ns 
even though each instruction takes 5ns to complete

Instructions/Cycle

Vs

Instructions/Second

5ns = (up to) 25(*) stages of work

vs 

5ns = 5 stages of work

* 15 here due to pipeline filling



Iron Law of Computer Performance

instructions
/ program

cycles /
instruction

seconds
/ cycle

X X



Iron Law of Computer Performance

instructions
/ program

cycles /
instruction

seconds
/ cycle

X X

Question: what term does pipelining optimize? how else might we 
approach optimization in light of this performance expression?



p = 0xabc; 

x = y – z 

m = *p;

t = x + w;

Pipelining Code Example

What is interesting about this short program?

sub x6 x5 x4 

lw x16 0xabc 

add x12 x6 x14



Pipelining Code Example

sub x6 x5 x4 

lw x16 0xabc 

add x12 x6 x14

What happens to x6 as we execute this code?



Fetch Decode Execute Memory
Register 
Write-Back

sub x6 x5 x4

Example: Pipelined Execution



Fetch Decode Execute Memory
Register 
Write-Back

lw x16 0xabc sub x6 x5 x4

Example: Pipelined Execution



Fetch Decode Execute Memory
Register 
Write-Back

sub x6 x5 x4

Example: Pipelined Execution

add x12 x6 x14 

reads the value of x6 
sub x6 x5 x4

add x12 x6 x14 lw x16 0xabc

from

Read-After-Write (RAW) Hazard:
Input register does not contain updated data during 
register read cycle due to yet-to-be-completed 
register writeback from older instruction

x6 gets written back 
here 2 cycles later!



Types of Data Hazards

sub x6 x5 x4 

lw x16 0xabc

Read-After-Write (RAW) Write-After-Read (WAR)

sub x8 x16 x4

add x12 x6 x14 lw x16 0xabc

Write-After-Write (WAW)

Only Read-After-Write (RAW) hazards are possible in our simple pipeline

lw x6 0xabc

add x16 x6 x14 sub x6 x5 x4

add x12 x6 x14



Types of Data Hazards
lw x6 0xabc 

sub x6 x5 x4 

add x12 x6 x14

Write-After-Write (WAW)

Fetch Decode Execute Memory
Register 
Write-BackMemory Memory

lw x6 0xabc



Types of Data Hazards
lw x6 0xabc 

sub x6 x5 x4 

add x12 x6 x14

Write-After-Write (WAW)

Fetch Decode Execute Memory
Register 
Write-BackMemory Memory

lw x6 0xabc

sub x6 x5 x4



Types of Data Hazards
lw x6 0xabc 

sub x6 x5 x4 

add x12 x6 x14

Write-After-Write (WAW)

Fetch Decode Execute Memory
Register 
Write-BackMemory Memory

lw x6 0xabc

sub x6 x5 x4



Types of Data Hazards
lw x6 0xabc 

sub x6 x5 x4 

add x12 x6 x14

Write-After-Write (WAW)

lw x6 0xabc

Fetch Decode Execute Memory
Register 
Write-BackMemory Memory

sub x6 x5 x4



Types of Data Hazards
lw x6 0xabc 

sub x6 x5 x4 

add x12 x6 x14

Write-After-Write (WAW)

lw x6 0xabc

Fetch Decode Execute Memory
Register 
Write-BackMemory Memory

sub x6 x5 x4



Types of Data Hazards
lw x6 0xabc 

sub x6 x5 x4 

add x12 x6 x14

Write-After-Write (WAW)

Multi-cycle latency memory op
lw x6 0xabc lw x6 0xabc lw x6 0xabc

Fetch Decode Execute Memory
Register 
Write-BackMemory Memory

sub x6 x5 x4 sub x6 x5 x4

Non-mem-op, single memory cycle

Earlier lw instruction finishes after later sub 
instruction. Both write x6. Wrong final value in x6. 
Explicitly handled with logic to maintain ordering in 
processors that allow this behavior (not our datapath)



Types of Data Hazards

Write-After-Read (WAR)

Fetch Decode Execute Memory
Register 
Write-Back

Stalled at decode/reg. read
(why? wait a few lectures & more in 447)

sub x8 x16 x4

add x16 x6 x14

Completes quickly and writes reg.

Later add instruction writes x16 before earlier
sub instruction reads x16. sub sees wrong value!

sub x8 x16 x4 

add x16 x6 x14 

lw x11 0xabc



What can we do about these data hazards?

sub x6 x5 x4 

lw x16 0xabc

Read-After-Write (RAW) Write-After-Read (WAR)

sub x8 x16 x4

add x12 x6 x14 lw x16 0xabc

Write-After-Write (WAW)

Only Read-After-Write (RAW) hazards are possible in our simple pipeline

lw x6 0xabc

add x16 x6 x14 sub x6 x5 x4

add x12 x6 x14



Fetch Decode Execute Memory
Register 
Write-Back

sub x6 x5 x4

Example: Pipelined Execution w/ RAW Hazard

add x12 x6 x14 

reads the value of x6 
sub x6 x5 x4

add x12 x6 x14 lw x16 0xabc

from

Read-After-Write (RAW) Hazard:
Input register does not contain updated data during 
register read cycle due to yet-to-be-completed 
register writeback from older instruction

x6 gets written back 
here 2 cycles later!



Fetch Decode Execute Memory
Register 
Write-Back

sub x6 x5 x4

Example: Pipelined Execution w/ RAW Hazard

add x12 x6 x14



Fetch Decode Execute Memory
Register 
Write-Back

add x12 x6 x14 sub x6 x5 x4

Example: Pipelined Execution w/ RAW Hazard



Fetch Decode Execute Memory
Register 
Write-Back

sub x6 x5 x4

Example: Pipelined Execution w/ RAW Hazard

add x12 x6 x14
stall



Fetch Decode Execute Memory
Register 
Write-Back

sub x6 x5 x4

Example: Pipelined Execution w/ RAW Hazard

add x12 x6 x14
stall stall



Fetch Decode Execute Memory
Register 
Write-Back

Example: Pipelined Execution w/ RAW Hazard

add x12 x6 x14
stall stall



Fetch Decode Execute Memory
Register 
Write-Back

Example: Pipelined Execution w/ RAW Hazard

stall
add x12 x6 x14



Fetch Decode Execute Memory
Register 
Write-Back

Example: Pipelined Execution w/ RAW Hazard

add x12 x6 x14



Fetch Decode Execute Memory
Register 
Write-Back

sub x6 x5 x4

How do we avoid the stall cycles?

add x12 x6 x14
stall stall



Fetch Decode Execute Memory
Register 
Write-Back

sub x6 x5 x4

Example: Pipelined Execution w/ RAW Hazard

add x12 x6 x14

Value of x6 is available after sub Executes

We can forward the value to the add!



Fetch Decode Execute Memory
Register 
Write-Back

Value of x6 is available from Execute!

add x12 x6 x14 sub x6 x5 x4

Forwarding to avoid a pipeline RAW Hazard

“x6”

We can forward the value in the EX/MEM 
pipeline register from the sub back to Execute 
to act as the input operand for the add



Fetch Decode Execute Memory
Register 
Write-Back

Can also forward if there are 
intervening instructions

add x12 x6 x14 add x9 x8 x7 sub x6 x5 x4

Forwarding to avoid a pipeline RAW Hazard

“x6”

We can forward the value in the MEM/WB pipeline register 
from the sub back to Execute to act as the input operand for the 
add (going around the unrelated operation in the memory stage)



Fetch Decode Execute Memory
Register 
Write-Back

lw x6 0xabc

Pipeline Can Forward Between Different Stages

add x12 x6 x14

lw x6 0xabc 

add x12 x6 x14

Value of x6 is available from Memory!

We can forward the value in Memory’s pipeline register
from the lw back to Execute’s input for the add

(Still requires stalling…)

stall



Adding Forwarding Support

ALU

ALU: output C data 
Branch: PC Source Select

Instruction 
Memory

Instruction 
Fetch

Control Signals:
Op select
op = [+, -, x, /]

Memory
Unit

Data 
Memory

4

+

MUX

PC

PC Source 
Select

Reg 1
Reg 2

Reg 3
Reg 4

Control 
Signals

Read 
Register 
A & B 
Select

Input 
Read 
Reg B

Write Reg C Data

+

Instruction PC+4 

Branch Target

PC Source Select (1 if branch taken)

Branch 
Target

Branch 
Target 
Offset

Instruction 
PC + 4

Read
Data C

Read Data C (Ld)

Register
Writeback

Output/Read 
Reg C Data

Output/Read 
Reg Select

Write 
Reg C 
Data

Write 
Reg C 
Select

Cont. 
Sigs.: 
Op. 
Select
[Ld/St]

Instruction Fetch Instr. Decode Execute

Read Regs A & B Data 

Write Register C Select

Write Register C Data

Memory Register Write-Back

Branch Target

Exec/Exec Forward

Mem/Exec Forward

MUX

W
B

/E
x 

Fw
d

Ex
/E

x 
Fw

d
 

M
em

/E
x 

Fw
d

Input 
Read 
Reg A

MUX

W
B

/E
x 

Fw
d

Ex
/E

x 
Fw

d
 

M
em

/E
x 

Fw
d

MUXMUX

W
B

/M
em

 F
w

d
M

em
/M

em
 F

w
d

 
A

d
d

r 
R

eg
 A

MUX

W
B

/M
em

 F
w

d
M

em
/M

em
 F

w
d

D
at

a 
R

e
g 

B



Fetch

What if one of our instructions were to throw an
exception (e.g., illegal instruction in decode or page fault 
on a memop)?

Decode Execute Memory
Register 
Write-Back

lw x12 (x15) add x7 x8 x9sub x6 x5 x4 sw x0 (x13)sw x6 (x14)

Question: What is time in a pipelined system?



Fetch Decode Execute Memory
Register 
Write-Back

lw x12 (x15) add x7 x8 x9invalid inssw x6 (x14)

Exception Handling

sw x0 (x13)

Exception!

What if one of our instructions were to throw an
exception (e.g., illegal instruction in decode or page fault 
on a memop)?



Fetch Decode Execute Memory
Register 
Write-Back

lw x12 (x15) add x7 x8 x9invalid inssw x6 (x14)

Exception Handling

sw x0 (x13)

Basic Exception Idea: Nuke everything that started after the 
current instruction, finish everything that started before the 
current instruction, jump to exception handler

Exception!



Fetch Decode Execute Memory
Register 
Write-Back

lw x12 (x15) add x7 x8 x9BNE <ehreg>sw x6 (x14)

Exception Handling

sw x0 (x13)

Basic Exception Idea: Nuke everything that started after the 
current instruction, finish everything that started before the 
current instruction, jump to exception handler, no new insns

Exception! Exception Handler

Exception Reason

stall



What did we just learn?

• Basics of pipelining as a first technique for Instruction-level 
parallelism

• Datapath decomposition to support pipelined execution

• Hazards and their impediment to pipelined execution

• Forwarding in the pipeline to avoid stalling on data hazards



What to think about next?

• More microarchitectural concepts (next time)
• Control hazards & branch prediction

• Caches as a microarchitectural optimization (next time)
• Implementation of cache hierarchies

• Cache design tradeoffs

• Performance Evaluation (next next time)
• Design spaces, Pareto Frontiers, and design space exploration


	Slide 1
	Slide 2: Pipelined Microarchitectural Implementation
	Slide 3: Pipelining in the abstract: A laundry efficiency problem
	Slide 4: Pipelining in the abstract: A laundry efficiency problem
	Slide 5: Pipelining in the abstract: A laundry efficiency problem
	Slide 6: Pipelining in the abstract: A laundry efficiency problem
	Slide 7: Pipelining in the abstract: A laundry efficiency problem
	Slide 8: Pipelining in the abstract: A laundry efficiency problem
	Slide 9: Pipelining in the abstract: A laundry efficiency problem
	Slide 10: Pipelining in the abstract: A laundry efficiency problem
	Slide 11: Pipelining in the abstract: A laundry efficiency problem
	Slide 12: Pipelining in the abstract: A laundry efficiency problem
	Slide 13: Pipelining in the abstract: A laundry efficiency problem
	Slide 14: Pipelining in the abstract: A laundry efficiency problem
	Slide 15: Pipelining in the abstract: A laundry efficiency problem
	Slide 16: Pipelining in the abstract: A laundry efficiency problem
	Slide 17: Pipelining in the abstract: A laundry efficiency problem
	Slide 18: Pipelining in the abstract: A laundry efficiency problem
	Slide 19: Pipelining in the abstract: A laundry efficiency problem
	Slide 20: Pipelining in the abstract: A laundry efficiency problem
	Slide 21: Pipelining in the abstract: A laundry efficiency problem
	Slide 22: Pipelining in the abstract: A laundry efficiency problem
	Slide 23: Pipelining in the abstract: A laundry efficiency problem
	Slide 24: Pipelining in the abstract: A laundry efficiency problem
	Slide 25: Pipelining in the abstract: A laundry efficiency problem
	Slide 26: Pipelining in the abstract: A laundry efficiency problem
	Slide 27: Pipelining in the abstract: A laundry efficiency problem
	Slide 28: Pipelining in the abstract: A laundry efficiency problem
	Slide 29: Pipelining in the abstract: A laundry efficiency problem
	Slide 30: Pipelining in the abstract: A laundry efficiency problem
	Slide 31: Let’s do some grouping together of functionality
	Slide 32: Let’s do some grouping together of functionality
	Slide 33: Let’s do some grouping together of functionality
	Slide 34: A Simple 5-Stage Pipelined Processor Datapath
	Slide 35: What about an alternative decomposition?
	Slide 36: 4-stage? Pro / con?
	Slide 37: What does ALU op do in Mem? Memop in EX?
	Slide 38: Cost of pipelining:
	Slide 39: Cost of pipelining:
	Slide 40: Need to store state between pipeline stages
	Slide 41: Need to store state between pipeline stages
	Slide 42: Need to store state between pipeline stages
	Slide 43: Need to store state between pipeline stages
	Slide 44: Need to store state between pipeline stages
	Slide 45: Need to store state between pipeline stages
	Slide 46: Example: Pipelined Execution
	Slide 47: Example: Pipelined Execution
	Slide 48: Example: Pipelined Execution
	Slide 49: Example: Pipelined Execution
	Slide 50: Example: Pipelined Execution
	Slide 51: Example: Pipelined Execution
	Slide 52: Example: Pipelined Execution
	Slide 53: Pipeline Diagram Illustrates Parallelism
	Slide 54: Pipeline Diagram Illustrates Parallelism
	Slide 55: Pipeline Diagram Illustrates Parallelism
	Slide 56: Pipeline Diagram: Single Cycle Design
	Slide 57
	Slide 58
	Slide 59: Iron Law of Computer Performance
	Slide 60: Iron Law of Computer Performance
	Slide 61: Pipelining Code Example
	Slide 62: Pipelining Code Example
	Slide 63: Example: Pipelined Execution
	Slide 64: Example: Pipelined Execution
	Slide 65: Example: Pipelined Execution
	Slide 66: Types of Data Hazards
	Slide 67: lw x6 0xabc sub x6 x5 x4 add x12 x6 x14
	Slide 68: lw x6 0xabc sub x6 x5 x4 add x12 x6 x14
	Slide 69: lw x6 0xabc sub x6 x5 x4 add x12 x6 x14
	Slide 70: lw x6 0xabc sub x6 x5 x4 add x12 x6 x14
	Slide 71: lw x6 0xabc sub x6 x5 x4 add x12 x6 x14
	Slide 72: lw x6 0xabc sub x6 x5 x4 add x12 x6 x14
	Slide 73: sub x8 x16 x4 add x16 x6 x14 lw x11 0xabc
	Slide 74: What can we do about these data hazards?
	Slide 75: Example: Pipelined Execution w/ RAW Hazard
	Slide 76: Example: Pipelined Execution w/ RAW Hazard
	Slide 77: Example: Pipelined Execution w/ RAW Hazard
	Slide 78: Example: Pipelined Execution w/ RAW Hazard
	Slide 79: Example: Pipelined Execution w/ RAW Hazard
	Slide 80: Example: Pipelined Execution w/ RAW Hazard
	Slide 81: Example: Pipelined Execution w/ RAW Hazard
	Slide 82: Example: Pipelined Execution w/ RAW Hazard
	Slide 83: How do we avoid the stall cycles?
	Slide 84: Example: Pipelined Execution w/ RAW Hazard
	Slide 85: Forwarding to avoid a pipeline RAW Hazard
	Slide 86: Forwarding to avoid a pipeline RAW Hazard
	Slide 87: Pipeline Can Forward Between Different Stages
	Slide 88: Adding Forwarding Support
	Slide 89: Question: What is time in a pipelined system?
	Slide 90: Exception Handling
	Slide 91: Exception Handling
	Slide 92: Exception Handling
	Slide 93: What did we just learn?
	Slide 94: What to think about next?

