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What is a Computer Architecture?

• Building up to our first architecture

• Defining the ISA: Architecture vs. Microarchitecture

• RISC vs. CISC ISAs

• RISCV ISA



Recap: What is a Computer Architecture?

• Building up to our first architecture

• Defining the ISA: Architecture vs. Microarchitecture

• RISC vs. CISC ISAs
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Basic Architecture: State + processing 
elements
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control
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Opcode selector
op = [+, -, x, /]

Building up to our first architecture: ALU

ALU

Input A Input B

Output: 
A op B



A “single-cycle” design
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registers before the next clock edge.



Where is the HW/SW Interface?
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Architecture vs. Microarchitecture
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The ISA defines the architecture of the machine

A microarchitecture implements the features of 
the architecture



Architecture vs. Microarchitecture

Input Register 1 Input Register 2 Output Register Operation Type

00000100 00000011 00000010 00000001

Register r4 Register r3 Register r2 Multiply

Reg 2Reg 1

Reg 3 Reg 4

+

For a given architecture there are many perfectly 
good microarchitectural implementations

Architecture:
Register-register ALU ops, registers numbering 0-4

x

Microarchitecture:
One ALU containing an adder; multiply w/ iterated addition, 
physical register file with registers numbering 0-4

ALU

SRAM Bank #1 SRAM Bank #2
Register File

Microarchitecture:
Two SRAM banks storing regs based on parity

Architecture:
Sequentially-numbered, general-purpose registers



ISA Design and Diving into RISCV-RV32I

• What makes an ISA?

• The basics of the RISCV-RV32I ISA
• A modern ISA engineered with clear goals from first principles

• More microarchitectural concepts
• Control hazards & branch prediction

• Pipelining our microarchitecture & instruction-level parallelism



What should go in the ISA?

Reduced Instruction Set Computer
Simple primitives:
Let software compose complex operations

Register operands:
Decouple functionality from memory accesses

Few total operations:
Usually only one way to do something

Complex Instruction Set Computer
Simple & complex operations:
Hardware provides complex functionality

Many operations:
Often several ways to do the same thing

Register and memory operands:
Operations may directly manipulate memory



What should go in the ISA?

Reduced Instruction Set Computer
Simple primitives:
Let software compose complex operations

Complex Instruction Set Computer
Simple & complex operations:
Hardware must support complex functionality

Register operands:
Decouple functionality from memory accesses

Few total operations:
Usually only one way to do something

Register and memory operands:
Operations may directly manipulate memory

Many operations:
Often several ways to do the same thing

Many cases to map to control 
signals in microarchitecturerd = M[imm] 

rd = M[reg]

rd = M[reg + imm] 

rd = M[PC + imm]

Plus all of these combinations

Few cases to map to control signals 
in microarchitecture



What should go in the ISA?

Reduced Instruction Set Computer Complex Instruction Set Computer

Simple primitives:
Let software compose complex operations

Register operands:
Decouple functionality from memory accesses

Few total operations:
Usually only one way to do something

Simple & complex operations:
Hardware must support complex functionality

Register and memory operands:
Operations may directly manipulate memory

Many operations:
Often several ways to do the same thing

What are the pros and cons of each?

How does RISC vs. CISC affect the microarchitecture,
compiler, program, programmer?



Principles of ISA Design

General Principles
Regularity – “Law of least astonishment”
Orthogonality – keep separable concerns separate 
Composability – regular, orthogonal ops combine easily

Specific Principles
One vs. All – precisely one way to do it, or all ways should be possible
Primitives, not solutions – solve by coding, compiling, & synthesizing

“Blatant opinions” (matters of taste)
Addressing – not limited to simple arrays, etc.
Environment Support – exceptions, processes, debugging, etc
Deviations – deviate from these rules only in implementation-specific ways



RISCV ISA

• We will learn about ISA design by learning about RISCV

• Modern, full-featured RISC ISA

• Developed in the last decade at UC Berkeley
• The fifth in a sequence of RISC ISAs originating in the 80s
• https://riscv.org/technical/specifications/
• The RISC-V Instruction Set Manual, Volume I: BaseUser-Level ISA, Waterman et al, 2011

• Goals
• Open-source

• Free

• Simple, but full-featured; avoids “over-architecting” for a particular uArch style (FPGA, ASIC,…)

• Extensible through extension specifications and variants

• Support heterogeneous & parallel systems efficiently

• Support 32- and 64-bit variants efficiently

• Fully virtualizable

• Supports (but does not require) IEEE 754 Floating Point

https://riscv.org/technical/specifications/


RISCV Variants & extensions

• L,B,J,T,P,V – Extra weird stuff (read the spec)

• RV32I & RV64I are base integer ISA versions

• M – Support for HW Multiply & Divide Basic Operations

• F – Support for single-precision Float

• D – Support for double-precision Float

• Q – Support for quad-precision Float Floating Point

• A – Support for Atomic instructions

• RVWMO – Memory Consistency Model Concurrency



RISCV Variants & extensions

• RV32I & RV64I are base integer ISA versions

• XLEN: how many bits in a register?

• Memory: 2^XLEN bytes

• Word: 4B, Doubleword: 8B, Halfword: 2B

Insn 1
Insn 2
Insn 3
Insn 4
…

32-bit instructions in base encoding



RISCV-RV32I Specification

• 32 Registers x0-x31 + PC register

• x0 is always zero

• x1 is the return address (by convention)

• x2 is the stack pointer (by convention)

• x5 is used as an “alternate link” register (by convention)
• E.g., Implementing exceptions / long jumps in software

• (Micro)architectural implications of this ISA choice?



RISCV-RV32I Specification

• 32 Registers x0-x31 + PC register

• x0 is always zero

• x1 is the return address (by convention)

• x2 is the stack pointer (by convention)

• x5 is used as an “alternate link” register (by convention)
• E.g., Implementing exceptions / long jumps in software

• (Micro)architectural implications of this ISA choice?
• Why not 16 registers? [RV32-E has 16 regs; why?]
• Why not 16-bit instructions?
• Power / Energy?
• Compilation & optimization?



Exercise: What about variable insn/reg size?

• What defines instruction size? Why? What defines register size? 
Why?

• Can we support multiple instruction sizes? Why would we support 
multiple sizes?

• How to support different sizes? Benefits & drawbacks?



Exercise: What about variable insn/reg size?

• What defines instruction size? Why? What defines register size? Why?
• ISA defines insn size. Lacking extensions, RV32I & RV64I both 32-bit insn
• ISA variant defines reg size. Programmer must know, datapath must implement; must be ISA-level 

spec.

• Can we support multiple instruction sizes? Why would we support multiple sizes?
• Can we? Yes. Why? Code size optimization, longer constant immediates, longer jumps

• How to support different sizes? Benefits & drawbacks?
• Two options. Option 1: RVC (riscv-compressed) – 16-bit ops blowup at decode into 32bit ones.

Code size optimization. Longer jumps possible.
• Option 2: steal some ISA bits to indicate variable width: 11 for 32, 011111 for 48, 0111111 for 64
• Costs? Increased decode complexity. Need to figure out how big instruction word is and where 

important signals are in the instruction word based on size.



RISCV-RV32I Specification

• Four base instruction encoding formats
• R(egister), I(mmediate), S(tore), U(pper Immediate)

• Mnemonics are non-binding and formats get flexibly used



RISCV-RV32I Specification

• Four base instruction encoding formats
• R(egister), I(mmediate), S(tore), U(pper Immediate)

• Mnemonics are non-binding and formats get flexibly used

R-Type: 2 register input operands, 1 register output operand, opcode type, and function selection bits



RISCV-RV32I Specification

• Four base instruction encoding formats
• R(egister), I(mmediate), S(tore), U(pper Immediate)

• Mnemonics are non-binding and formats get flexibly used

I-Type: 1 register input operands, 1 immediate input operand, 1 register output operand,
opcode type, and function selection bits



RISCV-RV32I Specification

• Four base instruction encoding formats
• R(egister), I(mmediate), S(tore), U(pper Immediate)

• Mnemonics are non-binding and formats get flexibly used

S-Type: 2 register input operands, 1 immediate input operand, [0 output operands], 
Opcode type, and function selection bits



RISCV-RV32I Specification

• Four base instruction encoding formats
• R(egister), I(mmediate), S(tore), U(pper immediate)

• Mnemonics are non-binding and formats get flexibly used

U-Type: 1 immediate input operand, 1 register output operand, opcode selection bits



Example: R-type Arithmetic Operations

0000000 00101 00110 000 00111 0110011

OP

https://metalcode.eu/2019-12-06-rv32i.html



Example: R-type Arithmetic Operations

0000000 00101 00110 000 00111 0110011x7 = x5 + x6

OPADD reg x7reg x6reg x5Func 7 = 0

https://metalcode.eu/2019-12-06-rv32i.html



Example: R-type Arithmetic Operations

0100000 00101 00110 000 00111 0110011x7 = x5 - x6

OPSUB reg x7reg x6reg x5Func 7 = 32

https://metalcode.eu/2019-12-06-rv32i.html



Example: R-type Arithmetic Operations

0000000 00101 00110 110 00111 0110011x7 = x5 | x6

OPOR reg x7reg x6reg x5Func 7 = 0

https://metalcode.eu/2019-12-06-rv32i.html



Example: I-type Reg/Imm Arithmetic Operations

0000 0000 1001 00110 010 00111 0100011x7 = x5 << 9

OP-IMMreg x7SLTIreg x6Func 7 = 0



Example: S-type Store Operations

0100000 00101 00110 010 00111 0100011M[x6 + offset] = x5 
(4-bytes stored)

STOREimm[4:0]

word

reg x6reg x5imm[11:5]

value addr 
base

Base + offset: Why? Seem familiar?

width

offset offset



Example: S-type Store Operations

0100000 00101 00110 001 00111 0100011M[x6 + offset] = x5 
(2-bytes stored)

STOREwidth imm[4:0]

half- 
word

reg x6reg x5imm[11:5]

value addr 
base

Base + offset: Why? Seem familiar?

offset offset



What type are Load instructions?

What information do we need to encode for a load instruction?



Load operations are I-Type Instructions



Example: U-type Upper Immediate Operations

0000 0000 1000 1111 1111 00111 0110111x7 = (2303 << 12)

LUI (Load Upper 
Immediate)reg x720-bit Upper Immediate

What in the world is this instruction type used for?

= 2303



Example: U-type Upper Immediate Operations

0000 0000 1000 1111 1111 00111 0010111

x7 = PC + (2303 << 12)
AUIPC (Add Upper 
Imm to PC)reg x720-bit Upper Immediate

Why bring the PC into the picture?

= 2303



Control Flow: Jump-and-link

0000 0000 100 00111 000 01000 1100111

x8=PC+4;
jump to 
((base+offset) & 
0xfffffffe)

Jump & Link 
(Register)reg x7Immediate reg x8

Save PC+4baseoffset



Control Flow: Call Jump-and-link

0000 0000 100 00111 000 01000 1100111

x8=PC+4;
jump to 
((base+offset) & 
0xfffffffe)

Jump & Link 
(Register)reg x7Immediate reg x8

Save PC+4baseoffsetWhy the mask?



Control Flow: Compare & Branch

0 000000 00111 01000 101 1000 0 1100011
If(x8 >= x7) 

PC=PC + 16

Branchreg x7Imm[12,10:5] reg x8 BGE

Where is bit 0?

Imm[4:1,11]

Imm: PC-relative branch target



Design Goals Behind Instruction Encoding

• Why are all of the immediate bits all over the place?

• Why are the immediates apparently different sizes?

• Why are some immediate bits left unspecified?



Design Goals Behind Instruction Encoding

• Why are all of the immediate bits all over the place?



Design Goals Behind Instruction Encoding

• Why are all of the immediate bits all over the place?
• Instruction decode is expensive & always performance critical

• Registers always in same place makes decoder simpler
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Design Goals Behind Instruction Encoding

• Why are the immediates apparently different sizes?

12 bits 12 bits 32* bits



Design Goals Behind Instruction Encoding

• Why are the immediates apparently different sizes?
• Different immediates have different uses!

• E.g., 12-bits are enough for PC-relative jump targets

12 bits 12 bits 32* bits



Design Goals Behind Instruction Encoding

• Why are some immediate bits left unspecified?



Design Goals Behind Instruction Encoding

• Why are some immediate bits left unspecified?
• To make large (like, 32-bit) values in a 32-bit insn., need to leave stuff out

• E.g., LUI: store high order bits of a large constant into a register



Implications of Control Flow Design

• Benefits & limitations of PC-relative offsets?



Implications of Control Flow Design

• Benefits & limitations of PC-relative offsets?
• Compact encoding

• Easy to support position independent code (PIC) if all jumps PC-relative

• Limited reach for jump targets



Implications of Control Flow Design

• Benefits of combined compare & branch?



Implications of Control Flow Design

• Benefits of combined compare & branch?
• No management of implicit (& explicit) condition codes like x86, ARM, SPARC…

• Higher code density, reduced instruction fetch traffic,

• Execution reaches branch sooner in instruction stream allowing earlier prediction



Other Design Dissiderata

• Differences from x86 (for better and for worse)
• No complex addressing modes

• No conditional move (like x86 cmov) or predicated execution

• Much smaller basic ISA implementation (http://ref.x86asm.net/coder.html)

• Memory Model Considerations (more on this toward end of semester)
• Alignment Issues: “The base ISA supports misaligned accesses, but these might run extremely slowly depending 

on the implementation. Furthermore, naturally aligned loads and stores are guaranteed to execute atomically, 
whereas misaligned loads and stores might not, and hence require additional synchronization to ensure
atomicity.”

• Memory Consistency Model: “We chose a relaxed memory model to allow high performance from simple machine 
implementations, however a completely relaxed memory model is too weak to support programming language 
memory models and so the memory model is being tightened.” [this point is basically the riscv team apologizing 
for having punted on concurrency to begin with and walking back to something that makes sense]

http://ref.x86asm.net/coder.html)


What kind of ISA are we studying?

Maintain State 
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Process 
(combinational 

logic)

control

ALU/processing state



RISCV is a “Register / Register” ISA

control
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register file

O
p

co
d

e
 s

el
ec

to
r

o
p

 =
 [

+,
 -

, x
, /

]
A

LU

In
p

u
t 

A
In

p
u

t 
B

O
u

tp
u

t:
A

 o
p

 B Reg 1
Reg 2

Reg 3
Reg 4

Register File



RISCV is a “Register / Register” ISA
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Alternative: “Register / Memory” ISA
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Alternative: Stack Machine Architecture
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Alternative: Stack Machine Architecture
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pop (0xdeadbeef)

What does this do?



Alternative: Stack Machine Architecture 
The Z4 digital computer (1942 + later)
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Alternative: Stack Machine Architecture 
The Java Virtual Machine is a stack machine

state – in/out 
operands from stack 
only. there are no 
registers in this 
architecture!

Memory is weird: 
push <addr> loads
<addr> and pushes 
to stack top, pop
<addr> stores stack 
top to <addr>

push (0xabc) 

push (0xac0) 

addw

push (0x123)

push $10 //imm. 10 

mulw

addw

pop (0xdeadbeef)

What does this do?



Alternative: Accumulator Machine Architecture
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load (0xabc) 
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load (0x123) 

mul 10

add (0xf00)

store (0xdeadbeef)

What does this do?



IBM 701 (ca. 1952)
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load (0xabc) 

add (0xac0) 

store (0xf00) 

load (0x123) 

mul 10

add (0xf00)

store (0xdeadbeef)

What does this do?



What did we just learn?

• A deep-ish dive into the RISCV ISA as a vehicle for learning about ISA 
design

• A look at how ISA design choices influence other aspects of the
system’s design

• How to we cross the hardware/software interface to go from software 
to hardware



What to think about next?

• More microarchitectural concepts (next time)
• Pipelining our microarchitecture & instruction-level parallelism

• Control hazards & branch prediction

• Caches as a microarchitectural optimization (next next time)
• Implementation of cache hierarchies

• Cache design tradeoffs

• Performance Evaluation (looking forward)
• Design spaces, Pareto Frontiers, and design space exploration
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