Gourse UBSBIiDtiUH Lecture 4: ISAs: The RISC-V ISA

This course covers the design and implementation of computer systems from the perspective of the
hardware software interface. The purpose of this course is for students to understand the
relationship between the operating system, software, and computer architecture. Students that
complete the course will have learned operating system fundamentals, computer architecture
fundamentals, compilation to hardware abstractions, and how software actually executes from the
perspective of the hardware software/boundary. The course will focus especially on understanding
the relationships between software and hardware, and how those relationships influence the design
of a computer system's software and hardware. The course will convey these topics through a series

of practical, implementation-oriented lab assignments. Credit: Brandon Lucia

What is a Computer Architecture?

e Building up to our first architecture
Defining the ISA: Architecture vs. Microarchitecture
* RISCvs. CISC ISAs

RISCV ISA

Recap: What is a Computer Architecture?

e Building up to our first architecture
* Defining the ISA: Architecture vs. Microarchitecture
* RISCvs. CISC ISAs

* RISCV ISA

Basic Architecture: State + processing
elements

ALU/processing state

Process Maintain State
(combinational > (sequential
logic) logic)

control

Building up to our first architecture: ALU

A “single-cycle” design

Clock

PC+4
Inplj'tA Input B
Register Register
Control ~ Control
0 '. InAreg select‘ <
- 1 InB reg select _ . .
Program q > Register File
A ()
COUhtEI"(PC) Input A Input B
S Output
. Op select A Register
op=[+-x,/ Control
Mo ALU: output C
Out reg select
Branch: PC Source Select
Id: data
Branch Target Address Offset Op select st: data

op = [Id,st]

Key Idea:

Single-cycle design goes from reading an instruction
out of memory all the way to writing results back to
registers before the next clock edge.

AA

Id/st: address

Where is the

PC+4

Program
Counter(PC

—

Branch: PC Source Select

W/SW Interface?

Input A Input B
Register Register
Control ~ Control
0 '. InAreg select‘ <
1 InB reg select _ . .
< > Register File
Input A Input B
S Output
. Op select A Register
op=[+-x,/ Control
O ALU: output C

Out reg select

Branch Target Address Offset

Id: data

Op select st: data

AA

op = [ld,st] Id/st: address

Big Idea: Instruction Bits are Control Signals

C
RS,
o

(@)

>

-
o

(%)

C

Input Register 1 | InputRegister 2 | Output Register | Operation Type
00000100 00000011 00000010 00000001
Register r4 Register r3 Register r2 Multiply

Binary encoded: signals
directly interface to datapath

Architecture vs. Microarchitecture

The ISA defines the architecture of the machine

C
RS,
o

(@)

>

-
o

(%)

C

A microarchitecture implements the features of

the architecture

Input Register 1 | InputRegister 2 | Output Register | Operation Type
00000100 00000011 00000010 00000001
Register r4 Register r3 Register r2 Multiply

B

Architecture vs. Microarchitecture

Architecture:

For a given architecture there are many perfectly
good microarchitectural implementations

Sequentially-numbered, general-purpose registers

Regi

A

F

A

Microarchitecture:

Two SRAM banks storing regs based on parity

Register-register ALU ops, registers numbering 0-4

X

Input Register 1 | InputRegister 2 | Output Register | Operation Type
Architecture:
00000100 00000011 00000010 00000001
Register r4 Register r3 Register r2 Multiply
ster File [v v ALU
SRAM Bank #1 SRAM Bank #2

Microarchitecture:

One ALU containing an adder; multiply w/ iterated addition,
physical register file with registers numbering 0-4

ISA Design and Diving into RISCV-RV32|

 What makes an ISA?
* The basics of the RISCV-RV32I ISA

A modern ISA engineered with clear goals from first principles

* More microarchitectural concepts
* Control hazards & branch prediction
* Pipelining our microarchitecture & instruction-level parallelism

What should go in the ISA?

Reduced Instruction Set Computer Complex Instruction Set Computer
Simple primitives: Simple & complex operations:
Let software compose complex operations Hardware provides complex functionality
Register operands: Many operations:
Decouple functionality from memory accesses Often several ways to do the same thing

Few total operations:
Usually only one way to do something

K4

Register and memory operands:
Operations may directly manipulate memory

What should go in the ISA?

Reduced Instruction Set Computer

rd
rd
rd
rd

Simple primitives:
Let software compose complex operations

Register operands:
Decouple functionality from memory accesses

Few total operations:
Usually only one way to do something

Few cases to map to control signals
M[imm] | in microarchitecture
M[regqg]
M[reg + imm]

M[PC + imm]

Complex Instruction Set Computer

Simple & complex operations:

Hardware must support complex functionality

Many operations:

Often several ways to do the same thing

Register and memory operands:
Operations may directly manipulate memory

Many cases to map to control
signals in microarchitecture

Source Dest Src,Dest

Reg movqg $0x4,%rax
Imm
Mem movg $-147, (%rax)

movq Reg Reg
Mem movqg %rax, (%rdx)

movqg %$rax, $rdx

Mem Reg movqg (%rax), %rdx

C Analog ‘?6’

temp = 0x4;
*p = -147;

temp2 = templ;
*p = temp;

temp = *p;

Plus all of these combinations

D(Rb,Ri,S)

Mem[Reg[Rb]+S*Reg[Ri]+ D]

What should go in the ISA?

Reduced Instruction Set Computer Complex Instruction Set Computer

Simple & complex operations:

Simple primitives: . .
p'ep Hardware must support complex functionality

Let software compose complex operations

Register and memory operands:

Register rands: . . .
egister operands Operations may directly manipulate memory

Decouple functionality from memory accesses

Many operations:

Few total rations: .
ewtotal operations Often several ways to do the same thing

Usually only one way to do something

What are the pros and cons of each?

How does RISC vs. CISC affect the microarchitecture,
compiler, program, programmer?

Principles of ISA Design

General Principles

Regularity — “Law of least astonishment”
Orthogonality — keep separable concerns separate
Composability — regular, orthogonal ops combine easily

Specific Principles

One vs. All - precisely one way to do it, or all ways should be possible
Primitives, not solutions — solve by coding, compiling, & synthesizing

“Blatant opinions” (matters of taste)

Addressing — not limited to simple arrays, etc.
Environment Support — exceptions, processes, debugging, etc

Deviations — deviate from these rules only in implementation-specific ways

An examination of the relation between architecture and compiler
design leads to several principles which can simplify compilers
and improve the object code they produce.

Compilers and Computer Architecture

William A. Wulf
Carnegie-Mellon University

The interactions between the design of a computer’s
instruction set and the design of compilers that generate
code for that computer have serious implications for
overall computational cost and efficiency. This article,
which investigates those interactions. should ideallv be

. , |) Some architectures have provided direct
Designing irregular structures at the chip level implementations of high-level concepts. In
IS very expensive. many cases these turn out to be more trouble

than they are worth.

simplify com; =
programs the
are absolutel
ever, they leac
neonle have ¢

.
<“.'

RISCV [SA

* We will learn about ISA design by learning about RISCV
 Modern, full-featured RISC ISA

* Developed in the last decade at UC Berkeley
* The fifth in a sequence of RISC ISAs originating in the 80s

e https://riscv.org/technical/specifications/
 The RISC-V Instruction Set Manual, Volume |: BaseUser-Level ISA, Waterman et al, 2011

« Goals
* Open-source
* Free
« Simple, but full-featured; avoids “over-architecting” for a particular uArch style (FPGA, ASIC,...)
» Extensible through extension specifications and variants
» Support heterogeneous & parallel systems efficiently
» Support 32- and 64-bit variants efficiently
* Fully virtualizable
» Supports (but does not require) IEEE 754 Floating Point

https://riscv.org/technical/specifications/

Base Version Status
RVWMO | 2.0 Ratified
: : RV32I | 2.1 Ratified
RISCV Variants & extensions RVGI |21 | Ratified
RV32E | 1.9 Draft
RV128I | 1.7 Draft
. . Extension | Version Status
* RV32| & RV64I| are base integer ISA versions M 50 R atifiod
. .« . A 2.1 Ratified
* M —Support for HW Multiply & Divide Basic Operations - > o Ratifod
* F —Support for single-precision Float 3 o Eatigej
. atllile
* D—Support for double-precision Float C 2.0 Ratified
o Counters | 2.0 Draft
e Q- Support for quad-precision Float Floating Point L 0.0 Draft
. . . B 0.0 Draft
* A —Support for Atomic instructions 7 0.0 Draft
. T 0.0 Draft
* RVWMO — Memory Consistency Model Concurrency - 0 D:ZJ’;
* LB,J,T,P,V — Extra weird stuff (read the spec) Zi(‘:/sr gé Ri’i‘-‘;{é .
Zifencei | 2.0 Ratified
Zam 0.1 Draft
Ztso 0.1 Frozen

RISCV Variants & extensions

* RV32| & RV64I| are base integer ISA versions
* XLEN: how many bits in a register?

* Memory: 2*XLEN bytes

 Word: 4B, Doubleword: 8B, Halfword: 2B

32-bit instructions in base encoding
nsn

Base Version Status
RVWMO | 2.0 Ratified
RV 321 2.1 Ratified
RV 641 2.1 Ratified
RV32E | 1.9 Draft
RVI128I | 1.7 Draft
Extension | Version Status
M 2.0 Ratified
A 2.1 Ratified
F 2.2 Ratified
D 2.2 Ratified
Q 2.2 Ratified
C 2.0 Ratified
Counters | 2.0 Draft
L 0.0 Draft
B 0.0 Draft
J 0.0 Draft
T 0.0 Draft
P 0.2 Draft
V 0.7 Draft
Zicsr 2.0 Ratified
Zifencei | 2.0 Ratified
Zam 0.1 Draft
Ztso 0.1 Frozen

RISCV-RV32I| Specification

* 32 Registers x0-x31 + PC register

* X0 is always zero

* x1 is the return address (by convention)
* x2 is the stack pointer (by convention)

* x5 is used as an “alternate link” register (by convention)
* E.g., Implementing exceptions / long jumps in software

* (Micro)architectural implications of this ISA choice?

XLEN-1

x0 / zero

x1

x2

x3

x4

x5

x6

X7

x8

x9

x10

x11

x12

x13

x14

x15

x16

x17

x18

x19

x20

x21

x22

x23

x24

x25

x26

x27

x28

x29

x30

x31

XLEN-1

XLEN

Pc

XLEN

RISCV-RV32I| Specification

32 Registers x0-x31 + PC register

X0 is always zero

x1 is the return address (by convention)
X2 is the stack pointer (by convention)

x5 is used as an “alternate link” register (by convention)
* E.g., Implementing exceptions / long jumps in software

(Micro)architectural implications of this ISA choice?
« Why not 16 registers? [RV32-E has 16 regs; why?]
 Why not 16-bit instructions?

* Power / Energy?
* Compilation & optimization?

XLEN-1

x0 / zero

x1

x2

x3

x4

x5

x6

X7

x8

x9

x10

x11

x12

x13

x14

x15

x16

x17

x18

x19

x20

x21

x22

x23

x24

x25

x26

x27

x28

x29

x30

x31

XLEN-1

XLEN

Pc

XLEN

Exercise: What about variable insn/reg size?

* What defines instruction size? Why? What defines register size?
Why?

e Can we support multiple instruction sizes? Why would we support
multiple sizes?

* How to support different sizes? Benefits & drawbacks?

Exercise: What about variable insn/reg size?

* What defines instruction size? Why? What defines register size? Why?
* |SA defines insn size. Lacking extensions, RV32l & RV64I both 32-bit insn

* [SAvariant defines reg size. Programmer must know, datapath must implement; must be ISA-level
spec.

e Can we support multiple instruction sizes? Why would we support multiple sizes?
 Canwe? Yes. Why? Code size optimization, longer constant immediates, longer jumps

 How to support different sizes? Benefits & drawbacks?

e Two options. Option 1: RVC (riscv-compressed) — 16-bit ops blowup at decode into 32bit ones.
Code size optimization. Longer jumps possible.

Option 2: steal some ISA bits to indicate variable width: 11 for 32,011111 for 48,0111111 for 64

Costs? Increased decode complexity. Need to figure out how big instruction word is and where
important signals are in the instruction word based on size.

RISCV-RV32I| Specification

* Four base instruction encoding formats
* R(egister), (mmediate), S(tore), U(pper Immediate)
* Mnemonics are non-binding and formats get flexibly used

31 20 24 20 19 15 14 12 11 76
funct7 rs2 rsl funct3 rd opcode
imm|11:0] rsl funct3 rd opcode
imm|[11:5] rs2 rsl funct3 | imm|4:0] opcode
imm|31:12] rd opcode

R-type
[-type
S-type

U-type

RISCV-RV32| Specification

* Four base instruction encoding formats
* R(egister), [[mmediate), S(tore), U(pper Immediate)
* Mnemonics are non-binding and formats get flexibly used

31 25 24 20 19 15 14 12 11 76 0
funct7 rs2 rsl funct3 rd opcode R-type

R-Type: 2 register input operands, 1 register output operand, opcode type, and function selection bits

RISCV-RV32| Specification

* Four base instruction encoding formats
* R(egister), [[mmediate), S(tore), U(pper Immediate)
* Mnemonics are non-binding and formats get flexibly used

31 25 24 20 19 15 14 12 11 76 0

imm|11:0] rsl funct3 rd opcode [-type

I-Type: 1 register input operands, 1 immediate input operand, 1 register output operand,

opcode type, and function selection bits

RISCV-RV32| Specification

* Four base instruction encoding formats
* R(egister), [[mmediate), S(tore), U(pper Immediate)
* Mnemonics are non-binding and formats get flexibly used

31 25 24 20 19 15 14 12 11 7 6 0

S-Type: 2 register input operands, 1 immediate input operand, [0 output operands],

Opcode type, and function selection bits

imm|[11:5] rs2 rsl funct3 | imm|4:0] opcode S-type

RISCV-RV32| Specification

* Four base instruction encoding formats
* R(egister), [[mmediate), S(tore), U(pper immediate)
* Mnemonics are non-binding and formats get flexibly used

31 25 24 20 19 15 14 12 11 7 6 0

U-Type: 1 immediate input operand, 1 register output operand, opcode selection bits

imm|31:12] rd opcode U-type

Example: R-type Arithmetic Operations
RVBEI En:uding https://metalcode.eu/2019-12-06-rv32i.html

[EXELY [24:20] [19:15] [14:12]
7 5 5 3
function 7 source 2 source 1 function 3 destination opcode
0000000 XR xL 000 : ADD xD 0110011 : OP
0100000 XR XL 000 : suB xD 0110011 : 0P
0000000 xR XL 001:SLL xD 0110011 : OP
000000D xR xL D10 :SLT xD 0110011 :0P
0000000 xR xL D11:5SLTU xD 0110011 : OP
000000D xR xL 100 : XOR xD 0110011 :0P
0000000 xR xL 101:SRL xD 0110011 : OP
0100000 xR XL 101 :SRA xD 0110011 : OP
0000000 xR xL 110:0R xD 0110011 : OP
0000000 xR XL 111 : AND xD 0110011 : 0P

OP
‘ 0000000 ‘ 00101 ‘ 00110 ‘ 000 ‘ 00111 ‘ 0110011 ‘

Example: R-type Arithmetic Operations
RVBEI En:uding https://metalcode.eu/2019-12-06-rv32i.html

[EXELY [24:20] [19:15] [14:12]
7 5 5 3
function 7 source 2 source 1 function 3 destination opcode
0000000 XR xL 000 : ADD xD 0110011 : OP
0100000 XR XL 000 : suB xD 0110011 : 0P
0000000 xR XL 001:SLL xD 0110011 : OP
000000D xR xL D10 :SLT xD 0110011 :0P
0000000 xR xL D11:5SLTU xD 0110011 : OP
000000D xR xL 100 : XOR xD 0110011 :0P
0000000 xR xL 101:SRL xD 0110011 : OP
0100000 xR XL 101 :SRA xD 0110011 : OP
0000000 xR xL 110:0R xD 0110011 : OP
0000000 xR XL 111 : AND xD 0110011 : 0P

Func7=0 regx5 regx6 ADD regx7 OP
X7 = X5 + X6 ‘ 0000000 ‘ 00101 ‘ 00110 ‘ 000 ‘ 00111 ‘ 0110011 ‘

Example: R-type Arithmetic Operations
RVBEI En:uding https://metalcode.eu/2019-12-06-rv32i.html

[EXELY [24:20] [19:15] [14:12]
7 5 5 3
function 7 source 2 source 1 function 3 destination opcode
0000000 XR xL 000 : ADD xD 0110011 : OP
0100000 XR XL 000 : suB xD 0110011 : 0P
0000000 xR XL 001:SLL xD 0110011 : OP
000000D xR xL D10 :SLT xD 0110011 :0P
0000000 xR xL D11:5SLTU xD 0110011 : OP
000000D xR xL 100 : XOR xD 0110011 :0P
0000000 xR xL 101:SRL xD 0110011 : OP
0100000 xR XL 101 :SRA xD 0110011 : OP
0000000 xR xL 110:0R xD 0110011 : OP
0000000 xR XL 111 : AND xD 0110011 : 0P

Func7=32 regx5 regxb6 SUB regx7 OP
X7 = X5 - X6 ‘ 0100000 ‘ 00101 ‘ 00110 ‘ 000 ‘ 00111 ‘ 0110011 ‘

Example: R-type Arithmetic Operations
RVBEI En:uding https://metalcode.eu/2019-12-06-rv32i.html

[EXELY [24:20] [19:15] [14:12]
7 5 5 3
function 7 source 2 source 1 function 3 destination opcode
0000000 XR xL 000 : ADD xD 0110011 : OP
0100000 XR XL 000 : suB xD 0110011 : 0P
0000000 xR XL 001:SLL xD 0110011 : OP
000000D xR xL D10 :SLT xD 0110011 :0P
0000000 xR xL D11:5SLTU xD 0110011 : OP
000000D xR xL 100 : XOR xD 0110011 :0P
0000000 xR xL 101:SRL xD 0110011 : OP
0100000 xR XL 101 :SRA xD 0110011 : OP
0000000 xR xL 110:0R xD 0110011 : OP
0000000 xR XL 111 : AND xD 0110011 : 0P

Func7=0 regx5 regx6 OR reg x7 OP
X7 = X5 | X6 ‘ 0000000 ‘ 00101 ‘ 00110 ‘ 110 ‘ 00111 ‘ 0110011 ‘

Example: I-type Reg/Imm Arithmetic Operations

IMMEDIATE[11:0] source 1 function 3 destination opcode
CONSTANT[11:0] xL 000 : ADDI xD 0010011 : OP-IMM
CONSTANT[11:0] xL 010 :SLTI xD 0010011 : OP-IMM
CONSTANT[11:0] xL 011 :SLTIU xD 0010011 : OP-IMM
CONSTANT[11:0] XL 100 : XORI xD 0010011 : OP-IMM
CONSTANT[11:0] xL 110 : ORI xD 0010011 : OP-IMM
CONSTANT[11:0] XL 111 : ANDI xD 0010011 : OP-IMM

Func7=0 reg x6 SLTI regx7 OP-IMM
«7=x5<<9 |00000000 1001 ‘00110 ‘ 010 ‘ 00111 ‘ 0100011 ‘

Example: S-type Store Operations

Base + offset: Why? Seem familiar?

IMMEDIATE[11:5] source 2 source 1 function 3 IMMEDIATE[4:0] opcode
OFFSET[11:5] X5 xB 00D :SB OFFSET 0100011 :STORE
OFFSET[11:5] x5 xB 001:5SH OFFSET 0100011 :STORE
OFFSET[11:5] x5S xB 010 :5W OFFSET 0100011 :STORE
OFFSET[11:5] xS xB 100 : SBU OFFSET 0100011 :STORE
OFFSET[11:5] xS xB 101 :SHU OFFSET 0100011 :STORE

imm[11:5] regx5 regx6 width imm[4:0] STORE
M[x6 + offset] = x5 ‘ 0100000 ‘ 00101 ‘ 00110 ‘ 010 ‘ 00111 ‘ 0100011 ‘

(4-bytes stored) offset value addr word offset
base

Example: S-type Store Operations

Base + offset: Why? Seem familiar?

IMMEDIATE[11:5] source 2 source 1 function 3 IMMEDIATE[4:0] opcode
OFFSET[11:5] X5 xB 00D :SB OFFSET 0100011 :STORE
OFFSET[11:5] x5 xB 001:5SH OFFSET 0100011 :STORE
OFFSET[11:5] x5S xB 010 :5W OFFSET 0100011 :STORE
OFFSET[11:5] xS xB 100 : SBU OFFSET 0100011 :STORE
OFFSET[11:5] xS xB 101 :SHU OFFSET 0100011 :STORE

imm[11:5] regx5 regx6 width imm[4:0] STORE

M[x6 + offset] = x5 ‘ 0100000 ‘ 00101 ‘ 00110 ‘ 001 ‘ 00111 ‘ 0100011 ‘

(2-bytes stored) offset value addr half- offset
base word

What type are Load instructions?

31 20 24 20 19 15 14 12 11 76
funct7 rs2 rsl funct3 rd opcode
imm|[11:0] rsl funct3 rd opcode
imm|[11:5] rs2 rsl funct3 | imm[4:0] opcode
imm|31:12] rd opcode

R-type
[-type
S-type

U-type

What information do we need to encode for a load instruction?

Load operations are |-Type Instructions

20 19 15 14 12 11 76

imm[11:0] rsl funct3 rd opcode

12 5! 3 D 7
offset[11:0] base width dest LOAD

Example: U-type Upper Immediate Operations

What in the world is this instruction type used for?

[31:12] [11:7] [6:0]
20 5 7
IMMEDIATE[31:12] destination opcode

UPPER[31:12] xD 0110111 : LUI

UPPER[31:12] xD 0010111 : AUIPC

LUI (Load Upper
20-bit Upper Immediate ~ regX7 |mmediate)

x7 = (2303 << 12) |0000 0000 10001111 1111 ‘ 00111 ‘ 0110111

= 2303

Example: U-type Upper Immediate Operations

Why bring the PC into the picture?

[31:12] [11:7] [6:0]
20 5 7
IMMEDIATE[31:12] destination opcode

UPPER[31:12] xD 0110111 : LUI

UPPER[31:12] xD 0010111 : AUIPC

x7 = PC+ (2303 << 12)
AUIPC (Add Upper
20-bit Upper Immediate ~ r€8X7 |mm to PC)

0000 0000 1000 1111 1111 ‘ 00111 ‘ 0010111

= 2303

Control Flow: Jump-and-link

[30:21]

10
1[20] I[10:1] I[11] IMMEDIATE[19:12] destination opcode

0[20] | o[10:1] 0[11] | 0[19:12] xD 1101111 : JAL

IMMEDIATE[11:0] source 1 function 3 destination opcode
OFFSET[11:0] xL 0 xD 1100111 : JALR
x8=PC+4;
jump to Jump & Link
((base+offset) & Immediate reg x7 reg x3 (Register)

Oxffttttte) 0000 0000 100| 00111 ooo‘ 01000 1100111

offset base Save PC+4

Control Flow: Call Jump-and-link

[30:21]

10
I[20] I[10:1]

IMMEDIATE[19:12]

0[20] | O[10:1]

0[11] | 0[19:12]

1101111 : JAL

IMMEDIATE[11:0]

OFFSET[11:0]

1100111 : JALR

x8=PC+4;
jump to
((base+offset) &
Oxfffffffe)

Why the mask?

Immediate

reg x/

reg x8

Jump & Link
(Register)

0000 0000 100 00111 ooo‘ 01000

offset

1100111

base

Save PC+4

Control Flow: Compare & Branch

[12] I[10:5] source 2 source 1 function 3 I[4:1] 1I[11] opcode
0[12] | 0[10:5] xR xL 000 : BEQ 0[4:1] 0[11] | 1100011 : BRANCH
0[12] | 0[10:5] xR xL 001 : BNE 0[4:1] 0[11] | 1100011 : BRANCH
0[12] | 0[10:5] xR xL 100 : BLT 0[4:1] 0[11] | 1100011 : BRANCH
0[12] | 0[10:5] xR xL 101 : BGE 0[4:1] 0[11] | 1100011 : BRANCH
0[12] | o[10:5] xR xL 110 : BLTU 0[4:1] 0[11] | 1100011 : BRANCH
0[12] | 0[10:5] xR xL 111 : BGEU 0[4:1] 0[11] | 1100011 : BRANCH
Imm[12,10:5] regx7 regx8 BGE Imm[4:1,11] Branch

1f(x8 >= x7)
PC=PC + 16

‘ooooooo 00111 01000‘ 101 \ 1000 0 ‘1100011

Imm: PC-relative branch target

Where is bit 0?

Design Goals Behind Instruction Encoding

 Why are all of the immediate bits all over the place?

 Why are the immediates apparently different sizes?

 Why are some immediate bits left unspecified?

31 20 24 20 19 15 14 12 11 76
funct7 rs2 rsl funct3 rd opcode
imm|11:0] rsl funct3 rd opcode
imm|[11:5] ﬂ rs2 rsl funct3d | imm|4:0] opcode
imm|31:12] rd opcode

R-type
[-type
S-type

U-type

Design Goals Behind Instruction Encoding

 Why are all of the immediate bits all over the place?

31 20 24 20 19 15 14 12 11 76
funct7 rs2 rsl funct3 rd opcode
imm|11:0] rsl funct3 rd opcode
imm|[11:5] ﬂ rs2 rsl funct3d | imm|4:0] opcode
imm|31:12] rd opcode

R-type
[-type
S-type

U-type

Design Goals Behind Instruction Encoding

 Why are all of the immediate bits all over the place?
* |Instruction decode is expensive & always performance critical
* Registers always in same place makes decoder simpler

31 25 24 20 19 15 14 12 11 76 0
funct7 rs2 T‘ funct3 rd opcode R-type
imm|1140] rsl ﬂ funct3 rd opcode I-type
imm|[11:5] rs2 rsl ﬂ funct3 | imm|4:0] opcode S-type
imm|31:12 rd opcode U-type

Fixed register position, simple decode logic

XLEN-1 0
x0 / zero
x1

x4
x5
x6
x7
x8
x9

x11
x12
x13
x14
x15
x16
x17
x18
x19
x20
x21
x22
x23
x24
x25
x26
x27
x28
x29
x30
x31
XLEN
XLEN-1 0
pc
XLEN

Instruction
Decode

000001 0101000011 000 00010 00000001

Fixed register position, simple decode logic

XLEN-1 0
x0 / zero

|
4
oy
=

Instruction
Decode

000001 0010001111 000 01000 00000001

XLEN-1 0

Design Goals Behind Instruction Encoding

 Why are the immediates apparently different sizes?

12 bits 12 bits 32* bits
31 \ 20 24 2/\10\14 12 11 76 / 0
funct?\ rs2 / rsl mnct?) rd / opcode R-type
\ . N /
imm|11:0] / rsl func)r,\ii rd / opcode I-type
imm|[11:5] ﬁ rs2 rsl funct3 | _unm[4:0] opcode S-type
imm|31:12] rd opcode U-type

Design Goals Behind Instruction Encoding

 Why are the immediates apparently different sizes?
» Different immediates have different uses!
e E.g., 12-bits are enough for PC-relative jump targets

12 bits 12 bits 32* bits
31 \ 20 24 20/\15 14 12 11 76 0
funct?\ rs2 rsl \\ funct3 rd opcode R-type
\ N
imm|11:0] / rsl fun\@@ rd / opcode I-type
imm|[11:5] { rs2 rsl funct3 | _im [4:0] opcode S-type
imm|31:12] rd opcode U-type

Design Goals Behind Instruction Encoding

* Why are some immediate bits left unspecified?

31 20 24 20 19 15 14 12 11 76
funct7 rs2 rsl funct3 rd opcode
imm|[11:0] rsl funct3 rd opcode
imm|[11:5] rs2 rsl funct3 | imm|4:0] opcode
imm|31:12] rd opcode

R-type
[-type
S-type

U-type

Design Goals Behind Instruction Encoding

* Why are some immediate bits left unspecified?

 To make large (like, 32-bit) values in a 32-bit insn., need to leave stuff out
e E.g., LUI: store high order bits of a large constant into a register

31 20 24 20 19 15 14 12 11 76
funct7 rs2 rsl funct3 rd opcode
imm|11:0] rsl funct3 rd opcode
imm|[11:5] rs2 rsl funct3 | imm|4:0] opcode
imm|31:12] rd opcode

R-type
[-type
S-type

U-type

Implications of Control Flow Design

 Benefits & limitations of PC-relative offsets?

[30:21] [19:12]
10 8
1[20] 1[10:1] 1I[11] IMMEDIATE[19:12] destination opcode
0[20] | 0[10:1] 0[11] | O[19:12] xD 1101111 : JAL
[31:20] [19:15] [14:12]
12 5 3
IMMEDIATE[11:0] source 1 function 3 destination opcode
OFFSET[11:0] XL 0 xD 1100111 : JALR
[30:25] [24:20] [19:15] [14:12]
6 5 5 E]
[12] 1I[10:5] source 2 source 1 function 3 I[4:1] 1[11] opcade
0[12] | o[10:5] xR xL 000 : BEQ 0[4:1] 0[11] | 1100011 : BRANCH
0[12] | o[10:5] xR xL 001 : BNE 0[4:1] 0[11] | 1100011 : BRANCH
0[12] | 0[10:5] xR xL 100 : BLT 0[4:1] 0[11] | 1100011 : BRANCH
0[12] | o[10:5] xR xL 101 : BGE 0[4:1] 0[11] | 1100011 : BRANCH
0[12] | 0[10:5] xR xL 110 : BLTU 0[4:1] 0[11] | 1100011 : BRANCH
0[12] | o[10:5] xR xL 111 :BGEU 0[4:1] 0[11] | 1100011 : BRANCH

Implications of Control Flow Design

 Benefits & limitations of PC-relative offsets?

* Compact encoding
* Easy to support position independent code (PIC) if all jumps PC-relative

* Limited reach for jump targets

[31] [30:21] [20] [19:12] [11:7] [6:0]

1 10 1 8 5 7
1[20] 1[10:1] 1I[11] IMMEDIATE[19:12] destination opcode
0[20] | Oo[10:1] 0[11] | 0[19:12] xD 1101111 : JAL

[31:20] [19:15] [14:12]
12 5 3
IMMEDIATE[11:0] source 1 function 3 destination opcode
OFFSET[11:0] XL 0 xD 1100111 : JALR
[30:25] [24:20] [19:15] [14:12]
6 5 5 E]

[12] 1I[10:5] source 2 source 1 function 3 I[4:1] 1[11] opcade
0[12] | o[10:5] xR xL 000 : BEQ 0[4:1] 0[11] | 1100011 : BRANCH
0[12] | o[10:5] xR xL 001 : BNE 0[4:1] 0[11] | 1100011 : BRANCH
0[12] | 0[10:5] xR xL 100 : BLT 0[4:1] 0[11] | 1100011 : BRANCH
0[12] | o[10:5] xR xL 101 : BGE 0[4:1] 0[11] | 1100011 : BRANCH
0[12] | 0[10:5] xR xL 110 : BLTU 0[4:1] 0[11] | 1100011 : BRANCH
0[12] | o[10:5] xR xL 111 :BGEU 0[4:1] 0[11] | 1100011 : BRANCH

Implications of Control Flow Design

* Benefits of combined compare & branch?

[30:21] [19:12]
10 8
1[20] 1[10:1] 1I[11] IMMEDIATE[19:12] destination opcode
0[20] | 0[10:1] 0[11] | O[19:12] xD 1101111 : JAL
[31:20] [19:15] [14:12]
12 5 3
IMMEDIATE[11:0] source 1 function 3 destination opcode
OFFSET[11:0] XL 0 xD 1100111 : JALR
[30:25] [24:20] [19:15] [14:12]
6 5 5 E]
[12] 1I[10:5] source 2 source 1 function 3 I[4:1] 1[11] opcade
0[12] | o[10:5] xR xL 000 : BEQ 0[4:1] 0[11] | 1100011 : BRANCH
0[12] | o[10:5] xR xL 001 : BNE 0[4:1] 0[11] | 1100011 : BRANCH
0[12] | 0[10:5] xR xL 100 : BLT 0[4:1] 0[11] | 1100011 : BRANCH
0[12] | o[10:5] xR xL 101 : BGE 0[4:1] 0[11] | 1100011 : BRANCH
0[12] | 0[10:5] xR xL 110 : BLTU 0[4:1] 0[11] | 1100011 : BRANCH
0[12] | o[10:5] xR xL 111 :BGEU 0[4:1] 0[11] | 1100011 : BRANCH

Implications of Control Flow Design

* Benefits of combined compare & branch?
 No management of implicit (& explicit) condition codes like x86, ARM, SPARC...
* Higher code density, reduced instruction fetch traffic,
* Execution reaches branch sooner in instruction stream allowing earlier prediction

[31] [30:21] [20] [19:12] [11:7] [6:0]
1 10 1 8 5 7
1[20] 1[10:1] 1I[11] IMMEDIATE[19:12] destination opcode

0[20] | Oo[10:1] 0[11] | 0[19:12] xD 1101111 : JAL

[31:20]
12
IMMEDIATE[11:0]

[19:15]
5

source 1

[14:12]
3

function 3

opcode

OFFSET[11:0]

XL

0

xD

1100111 : JALR

[30:25] [24:20] [19:15] [14:12]
6 5 5 E]
1[12] 1[10:5] source 2 source 1 function 3 1[4:1] 1[11] opcade
0[12] | O[10:5] XR XL 000 : BEQ 0[4:1] 0[11] | 1100011 : BRANCH
0[12] | o[10:5] xR xL 001 : BNE 0[4:1] 0[11] | 1100011 : BRANCH
0[12] | 0[10:5] xR xL 100 : BLT 0[4:1] 0[11] | 1100011 : BRANCH
0[12] | o[10:5] xR xL 101 : BGE 0[4:1] 0[11] | 1100011 : BRANCH
0[12] | 0[10:5] xR xL 110 : BLTU 0[4:1] 0[11] | 1100011 : BRANCH
0[12] | o[10:5] xR xL 111 :BGEU 0[4:1] 0[11] | 1100011 : BRANCH

Other Design Dissiderata

* Differences from x86 (for better and for worse)
* No complex addressing modes
* No conditional move (like x86 cmov) or predicated execution
* Much smaller basic ISA implementation (http://ref.x86asm.net/coder.html)

* Memory Model Considerations (more on this toward end of semester)

* Alignment Issues: “The base ISA supports misaligned accesses, but these might run extremely slowly depending
on the implementation. Furthermore, naturally aligned loads and stores are guaranteed to execute atomically,

whereas misaligned loads and stores might not, and hence require additional synchronization to ensure
atomicity.”

Memory Consistency Model: “We chose a relaxed memory model to allow high performance from simple machine
implementations, however a completely relaxed memory model is too weak to support programming language
memory models and so the memory model is being tightened.” [this point is basically the riscv team apologizing
for having punted on concurrency to begin with and walking back to something that makes sense]

http://ref.x86asm.net/coder.html)

What kind of ISA are we studying?

ALU/processing state

Process Maintain State
(combinational > (sequential
logic) logic)

control

RISCV is a “Register / Register” ISA

state —inputs &
outputs are in
register file

ALU/processing Register File

Input B

Input A

ode selector

pC

/)
(@)
(@]
-}
(o ol
-
o

RISCV is a “Register / Register” ISA

Input A
Register
Control

_ Control

Input B
Register

<

A

Register File

Output

Register
Control
ALU: output C >

Id: data

st: data

AA

Id/st: address

state —inputs &
outputs are in
register file
Register /
Register? we
have memory
tho?

Alternative: “Register / Memory” ISA

::pl_"ttA Input B
egister Register .
Control " Control state —inputs &

< outputs are in
. . register file
| Register File .

Zero or one 2 Register /
inputs comes Output Register?

from memoryina Register we have memor

. Control
R/M architecture ALU: output € ry tho?
Id: data
st: data

AA

Id/st: address

Example Register / Memory architectures?

Alternative: Stack Machine Architecture

Opcode selector

Output: Aop B
stored at stack top

state —in/out
operands from stack
only. there are no
registers in this
architecture!

(Access memory via
Id/st to stack top)

Alternative: Stack Machine Architecture

push (Oxabc)

push (0xacO)

addw

push (0x123)

push $10 //imm. 10
mulw

addw

pop (Oxdeadbeef)

What does this do?

Output: Aop B
stored at stack top

, %, /1

Opcode selector

state —in/out
operands from stack
only. there are no
registers in this
architecture!

Memory is weird:
push <addr> loads
<addr> and pushes
to stack top, pop
<addr> stores stack
top to <addr>

Alternative: Stack Machine Architecture
The 74 digital computer (1942 + later)

| state—in/out
operands from stack
only. there are no
registers in this
architecture!

push (Oxabc)

push (0xacO)

addw

push (0x123)

push $10 //imm. 10
mulw

addw

pop (Oxdeadbeef)

Memory is weird:
push <addr> loads
<addr> and pushes
to stack top, pop
<addr> stores stack
top to <addr>

What does this do?

Alternative: Stack Machine Architecture
The Java Virtual Machine is a stack machine

state —in/out
push (Oxabc) operands from stack
push (0xacO) only. there are no
addw registers in this
Pusi égglii) 10 a V a architecture!
pus 1mm. C——'"
) Memory is weird:

mulw
push <addr> loads

addw
<addr> and pushes
u/ to stack top, pop

pop (Oxdeadbeef)
<addr> stores stack

top to <addr>

What does this do?

Alternative: Accumulator Machine Architecture

Input B: .

i state — no registers

imm. or ’
load (Oxabc) mem. . Output: A op B Accumulator |mpI|C|t argumentis A
add (0OxacO0) g storedin A

(the accumulator), other
argis imm. / mem.

store (0x£00)

load (0x123) 3

mul 10 = Memory is less weird:

add (0x£00) 8l load (Oxabc) puts the

store (Oxdeadbeef) % " contents of Oxabcin A,
gl store (Oxabc) puts A into
S & control memory at Oxabc

What does this do?

Implicit argument A
always comes from
accumulator

IBM 701 (ca. 1952)

Input B:
imm. or
mem.

load (Oxabc)

v

e cloleslcleelele clole s
MEMORY

REGIS

Output:Aop B

add (Oxac0) storedin A R : R
store (0x£00) © wwuwqug\guuwwuffiuJJ./
load (0x123) 3 Sodootbodood Baskedoaeadoandos
mul 10 2
add (0x£00) 5l
store (Oxdeadbeef) %:

gls

¥

o & control

What does this do?

What did we just learn?

* A deep-ish dive into the RISCV ISA as a vehicle for learning about ISA
design

* Alook at how ISA design choices influence other aspects of the
system’s design

* How to we cross the hardware/software interface to go from software
to hardware

What to think about next?

* More microarchitectural concepts (next time)
* Pipelining our microarchitecture & instruction-level parallelism
e Control hazards & branch prediction

* Caches as a microarchitectural optimization (next next time)
* Implementation of cache hierarchies
* Cache design tradeoffs

e Performance Evaluation (looking forward)
* Design spaces, Pareto Frontiers, and design space exploration

	Slide 1
	Slide 2: What is a Computer Architecture?
	Slide 3: Recap: What is a Computer Architecture?
	Slide 4: Basic Architecture: State + processing elements
	Slide 5: Building up to our first architecture: ALU
	Slide 6: A “single-cycle” design
	Slide 7: Where is the HW/SW Interface?
	Slide 8: Big Idea: Instruction Bits are Control Signals
	Slide 9: Architecture vs. Microarchitecture
	Slide 10: Architecture vs. Microarchitecture
	Slide 11: ISA Design and Diving into RISCV-RV32I
	Slide 12: What should go in the ISA?
	Slide 13: What should go in the ISA?
	Slide 14: What should go in the ISA?
	Slide 15: Principles of ISA Design
	Slide 16: RISCV ISA
	Slide 17: RISCV Variants & extensions
	Slide 18: RISCV Variants & extensions
	Slide 19: RISCV-RV32I Specification
	Slide 20: RISCV-RV32I Specification
	Slide 21: Exercise: What about variable insn/reg size?
	Slide 22: Exercise: What about variable insn/reg size?
	Slide 23: RISCV-RV32I Specification
	Slide 24: RISCV-RV32I Specification
	Slide 25: RISCV-RV32I Specification
	Slide 26: RISCV-RV32I Specification
	Slide 27: RISCV-RV32I Specification
	Slide 28: Example: R-type Arithmetic Operations
	Slide 29: Example: R-type Arithmetic Operations
	Slide 30: Example: R-type Arithmetic Operations
	Slide 31: Example: R-type Arithmetic Operations
	Slide 32: Example: I-type Reg/Imm Arithmetic Operations
	Slide 33: Example: S-type Store Operations
	Slide 34: Example: S-type Store Operations
	Slide 35: What type are Load instructions?
	Slide 36: Load operations are I-Type Instructions
	Slide 37: Example: U-type Upper Immediate Operations
	Slide 38: Example: U-type Upper Immediate Operations
	Slide 39: Control Flow: Jump-and-link
	Slide 40: Control Flow: Call Jump-and-link
	Slide 41: Control Flow: Compare & Branch
	Slide 42: Design Goals Behind Instruction Encoding
	Slide 43: Design Goals Behind Instruction Encoding
	Slide 44: Design Goals Behind Instruction Encoding
	Slide 45: Fixed register position, simple decode logic
	Slide 46: Fixed register position, simple decode logic
	Slide 47: Design Goals Behind Instruction Encoding
	Slide 48: Design Goals Behind Instruction Encoding
	Slide 49: Design Goals Behind Instruction Encoding
	Slide 50: Design Goals Behind Instruction Encoding
	Slide 51: Implications of Control Flow Design
	Slide 52: Implications of Control Flow Design
	Slide 53: Implications of Control Flow Design
	Slide 54: Implications of Control Flow Design
	Slide 55: Other Design Dissiderata
	Slide 56: What kind of ISA are we studying?
	Slide 57: RISCV is a “Register / Register” ISA
	Slide 58: RISCV is a “Register / Register” ISA
	Slide 59: Alternative: “Register / Memory” ISA
	Slide 60: Alternative: Stack Machine Architecture
	Slide 61: Alternative: Stack Machine Architecture
	Slide 62: Alternative: Stack Machine Architecture The Z4 digital computer (1942 + later)
	Slide 63: Alternative: Stack Machine Architecture The Java Virtual Machine is a stack machine
	Slide 64: Alternative: Accumulator Machine Architecture
	Slide 65: IBM 701 (ca. 1952)
	Slide 66: What did we just learn?
	Slide 67: What to think about next?

