
Fall 2023

Lecture 21: Meltdown and Spectre

Credit: John Masers, RedHat, Meltdown and Spectre, USENIX Lisa 2018

Meltdown a n d Spectre

Jon Masters , Computer Architect, Red Hat, Inc.

jcm@redhat .com | @jonmasters

Usenix LISA 2018

mailto:jcm@redhat.com

2 Meltdown a n d Spectre

Side-channe l a t tacks

S ide-channe l at tacks

6 2 Meltdown a n d Spectre

• “In computer security, a side-channe l a t t ack is a n y at tack b a sed on information
g a i n ed from the phys i ca l implementat ion of a computer sys tem, rather than
weaknesses in the imp lemented algor i thm itsel f (e . g . cryptana lys i s a n d software
bugs) . ” – from the Wikipedia definition

• Examp les of s ide channe l s include

•

•

•

•

Monitoring a mach i ne ' s e lectromagnet ic emiss ions (“TEMPEST”-l ike remote attacks)

Measur ing a mach i ne ' s power consumption (di f ferentia l power ana lys i s)

Timing the length of operations to der ive mach i ne state

...

Caches a s s ide channe l s

6 3 Meltdown a n d Spectre

• Caches exist because they provide faster access to frequently used data

• The closer da t a is to the compute cores, the less t ime is required to load it when needed

• This difference in access time for an address can be measured by software

•

•

Data closer to the cores will take fewer cyc les to access

Data further a w a y from the cores will take more cyc les to access

• Consequently it i s poss ible to determine whether an address i s cached

•

•

Calibrate b y mea sur in g a c ce s s t ime for known cached/not c a ched data

Time acce s s to a memory location a nd compare with calibration

Caches a s s ide channe l s

• Consequent ly it is possib le to determine whether a speci f ic address is in the cache

•

•

Calibrate b y mea sur in g a c ce s s t ime for known cached/not c a ched data

Time acce s s to a memory location a nd compare with calibration

time = rdtsc();

maccess(&data[0x300]);

delta3 = rdtsc() - time;

time = rdtsc();

maccess(&data[0x200]);

delta2 = rdtsc() - time;

Execution t ime taken for

instruction is proportional

to whether it is in cache(s)

6 4 Meltdown a n d Spectre

Caches a s s ide channe l s (continued)

6 5 Meltdown a n d Spectre

• Many arches provide convenient high resolution cycle-accurate timers

• e . g . x86 provides RDTSC (Read Time S t a mp Counter) a nd RDTSCP instructions

•

•

But there are other ways to measure on arches without unprivi leged TSC

Some arches (e . g . x86) also provide conven ient unpr iv i leged cache f lush instructions

• CLFLUSH gua r antee s that a g i v en (virtual) address is not present in a n y level of cache

• But poss ible to also f lush us ing a “displacement” approach on other arches

• Create da t a structure the size of c a che a nd acce s s entry ma pp i n g to desired ca che line

• On x86 the t ime for a f lush is proportionate to whether the d a t a was in the cache

•

•

f l u sh+ f l u sh attack determines whether a n entry was c a ched without do ing a load

Harder to detect u s i n g CPU performance counter hardware (measur ing c a che misses)

Caches a s s ide channe l s (continued)

6 6 Meltdown a n d Spectre

• Some processors provide a m e a n s to prefetch da t a that will b e needed soon

•

•

•

Usual ly encoded a s “hint” or “nop space” instructions that m a y h a v e no effect

x86 processors provide severa l var iants of PREFETCH with a tempora l hint

This m a y result in a prefetched address be i n g a l located into a cache

• Processors will perform p a g e tab le wa lks a n d popu late TLBs on prefetch

• This m a y happen even if the address is not actua l l y fe tched into the cache

asm volatile ("prefetcht0 (%0)" : : "r" (p));

asm volatile ("prefetcht1 (%0)" : : "r" (p));

asm volatile ("prefetcht2 (%0)" : : "r" (p));

asm volatile ("prefetchnta (%0)" : : "r" (p));

Meltdown, Spectre , TLBleed,

NetSpectre, Foreshadow, etc . etc .

etc.

2018 : year of uarch side-channe l vulnerabi l i t ies

6 8 Meltdown a n d Spectre

The list of pub l ic ly d isc losed vulnerabi l i t ies so far this year inc ludes:

●

●

●

●

●

●

●

Spectre-v 1 (Bounds Check Bypass)

Spectre-v 2 (Branch Target Injection)

Meltdown (Rogue Data Cache Load)

“Variant 3a ” (Rogue S y s t e m Register Read)

“Variant 4” (Specu la t ive Store Bypass)

BranchScope (directional predictor attack)

Lazy FPU save/restore

●

●

●

●

●

●

Spectre-v1 . 1 (Bounds Check By p a s s Store)

Spectre-v1 . 2 (Read-only Protection Bypass)

“TLBleed” (TLB side-channe l introduced)

SpectreRSB / ret2spec (return predictor attack)

“NetSpectre” (Spectre over the network)

“Foreshadow” (L1 Terminal Fault)

Examp le vendor response strategy

6 9 Meltdown a n d Spectre

• We were on a specif ic timeline for public disclosure (a good thing!)

•

•

•

Limited amount of t ime to create , test, a nd prepare to deploy mitigations

Focus on mi t i g a t i ng the most egreg ious impac t first, enhance later

Report/Warn the level of mit igat ion to the user/admin

• Created “Omega” Team for microarchitecture vulnerabil it ies

•

•

Collaborate with others across industry a nd upstream on mitigations

Backport those mit igat ions (with tweaks a s needed) to Linux distros

•

•

Examp le : RH did 15 kernel backports, b a ck to Linux 2 .6 .18

Other compan ies /vendors did simi lar numbers of patches

Examp le vendor response s tra tegy (cont.)

7 0 Meltdown a n d Spectre

• Produce mater ia l s for u se dur ing disclosure

•

•

Blogs , whitepapers, per formance webinars , etc.

The “X in 3 minutes” v ideos intended to be informative

• Run per formance ana l y s i s a n d document best tun ing pract ices

•

•

Goal is to be “ sa f e b y defau lt” but to g i v e customers flexibil ity to choose

Your risk a s se s smen t m a y differ from another environment

• Threat mode l m a y be dif ferent for publ ic/private f ac ing

• Meltdown and Spectre alone cost 1 0 , 0 0 0 + hours Red Hat engineering time

In the f ie ld – Microcode, Mil l icode, Chicken Bits . . .

7 1 Meltdown a n d Spectre

•

•

Modern processors are des i gned to be ab l e to hand le (some) in-f ield i ssues

Microcoded processors leverage “ucode” ass i s t s to hand le certain operations

•

•

•

Ucode ha s existed for dec ades , adopted heav i l y b y Intel fol lowing (in famous) “FDIV” bug

Not a m a g i c bul let. It only hand l es certain instructions, doesn’t do p a g e tab le walks ,

c a che loads, a nd other critical pa th operations, or s imple instructions (e . g . a n “add”)

OS vendors sh ip s i g ned blobs provided by e . g . Intel a nd AMD a nd loaded by the OS

• Millicode is simi lar in concept to Microcode (but speci f ic to IBM)

• We secretly dep loyed upda tes internal ly dur ing the preparation for disclosure

• Chicken bits are used to control certain processor logic, a n d (de)features

•

•

RISC-ba sed mach i ne s tradit ional ly don’t use ucode but c an d isab le (broken) features

Contemporary x86 processors a lso h a v e on order of 10 , 000 indiv idua l chicken bits

In the f ie ld – Microcode, Mil l icode, Chicken Bits . . .

7 2 Meltdown a n d Spectre

• Everything else needs to be done in software (kernel, firmware, app…)

•

•

In real ity we leverage a combinat ion of hardware interfaces a n d software fixes

Remember : we can ’ t ch an ge hardware but we can tweak its behavior+software

Deploying a n d va l i da t i ng mit igat ions (e . g . Linux)

7 3 Meltdown a n d Spectre

• Operating S y s t em vendors provide tools to determine vulnerabi l i ty a n d mit igat ion

• The speci f ic mit igat ions vary from one architecture a nd Operating S y s t e m to another

•

•

Windows inc ludes new PowerShell scripts, var ious Linux tools h a ve been created

Very recent (upstream) Linux kernels include the fol lowing new “sys f s” entries:

$ grep . /sys/devices/system/cpu/vulnerabilities/*

/sys/devices/system/cpu/vulnerabilities/meltdown:Mitigation: PTI

/sys/devices/system/cpu/vulnerabilities/spectre_v1:Vulnerable

/sys/devices/system/cpu/vulnerabilities/spectre_v2:Vulnerable: Minimal

generic ASM retpoline

Meltdown

•

•

Imp lementat ions of Out-of-Order execution that strictly follow Tomasulo algorthim

hand le exceptions ar i s ing from specu la ted instructions at instruction retirement

Speculated instructions do not trigger (synchronous) exceptions

•

•

Loads that are not permitted will not be reported until they are no longer speculat ive

At that t ime, the appl icat ion will l ikely receive a “ segmenta t ion fault” or other error

• Some implementations may perform load permission checks in parallel

•

•

This improves per formance s ince we don’t wait to perform the load

Rat iona le is that the load is only specu la t i ve (“not observable”)

• A race condition m a y thus exist a l lowing acce s s to pr iv i leged data

7 4 Meltdown a n d Spectre

Meltdown (s ing le bit examp le)

7 5 Meltdown a n d Spectre

• A mal ic ious attacker ar ranges for exploit code similar to the fol lowing to specu la t i ve ly execute:

if (spec_cond) {

unsigned char value = *(unsigned char *)ptr;

unsigned long index2 = (((value>>bit)&1)*0x100)+0x200;

maccess(&data[index2]);

}

• “data” is a user controlled array to which the attacker has access, “ptr” contains privileged data

Meltdown (continued)

• A mal ic ious attacker ar ranges for exploit code similar to the fol lowing to specu la t i ve ly execute:

if (spec_cond) {

unsigned char value = *(unsigned char *)ptr;

unsigned long index2 = (((value>>bit)&1)*0x100)+0x200;

maccess(&data[index2]);

}

load a pointer to

which we don’t

h a v e acce s s
7 6 Meltdown a n d Spectre

Meltdown (continued)

• A mal ic ious attacker ar ranges for exploit code similar to the fol lowing to specu la t i ve ly execute:

if (spec_cond) {

unsigned char value = *(unsigned char *)ptr;

unsigned long index2 = (((value>>bit)&1)*0x100)+0x200;

maccess(&data[index2]);

}

bit shi ft extracts

a s ing l e bit of da ta

7 7 Meltdown a n d Spectre

Meltdown (continued)

• A mal ic ious attacker ar ranges for exploit code similar to the fol lowing to specu la t i ve ly execute:

if (spec_cond) {

unsigned char value = *(unsigned char *)ptr;

unsigned long index2 = (((value>>bit)&1)*0x100)+0x200;

maccess(&data[index2]);

}

genera te address

from da t a va l ue

7 8 Meltdown a n d Spectre

Meltdown (continued)

• A mal ic ious attacker ar ranges for exploit code similar to the fol lowing to specu la t i ve ly execute:

if (spec_cond) {

unsigned char value = *(unsigned char *)ptr;

unsigned long index2 = (((value>>bit)&1)*0x100)+0x200;

maccess(&data[index2]);

}

use address a s of fset to

pul l in c ache line

that we control
7 9 Meltdown a n d Spectre

Meltdown (continued)

0x000

0x100

0x200

0x300

char data[] ;

char v a l ue = *SECRET_KERNEL_PTR;

m a s k out bit I want to read

ca lcu la te of fset in “data”

(that I do h a v e ac ce s s to)

8 0 Meltdown a n d Spectre

Meltdown (continued)

0x000

0x100

0x200

0x300 DATA

char data[] ;

0x100

Cache

8 1 Meltdown a n d Spectre

• Access to “data” e lement 0x100 pul ls the corresponding entry into the cache

Meltdown (continued)

0x000

0x100

0x200

0x300 DATA

char data[] ;

0x300

Cache

8 2 Meltdown a n d Spectre

• Access to “data” e lement 0x300 pul ls the corresponding entry into the cache

Meltdown (continued)

• We use the ca che a s a s ide channe l to determine which e lement of “data” i s in the cache

• Access both e lements a n d t ime the dif ference in a c ce s s (we previously f lushed them)

time = rdtsc();

maccess(&data[0x300]);

delta3 = rdtsc() - time;

time = rdtsc();

maccess(&data[0x200]);

delta2 = rdtsc() - time;

Execution t ime taken for

instruction is proportional

to whether it is in cache(s)

8 3 Meltdown a n d Spectre

Meltdown: Specu la t i ve Execution
Entry

8 4 Meltdown a n d Spectre

RegRename Instruction Deps

1 P1 = R1 R1 = LOAD SPEC_CONDITION X Y N

2 TEST SPEC_CONDITION 1 Y N

3 IF (SPEC_CONDITION) { 1 N N

4 P2 = R1 R2 = LOAD KERNEL_ADDRESS X Y Y*

5 P3 = R2 R3 = (((R2&1)*0x100)+0x200) 2 Y Y*

6 P4 = R4 R4 = LOAD USER_BUFFER[R3] 3 Y Y*

Re a d y? S pe c?

f l a g s for

future

exception

Meltdown: Specu la t i ve Execution
Entry

8 5 Meltdown a n d Spectre

RegRename Instruction Deps

1 P1 = R1 R1 = LOAD SPEC_CONDITION X Y N

2 TEST SPEC_CONDITION 1 Y N

3 IF (SPEC_CONDITION) { 1 N N

4 P2 = R1 R2 = LOAD KERNEL_ADDRESS X Y Y*

5 P3 = R2 R3 = (((R2&1)*0x100)+0x200) 2 Y Y*

6 P4 = R4 R4 = LOAD USER_BUFFER[R3] 3 Y Y*

Re a d y? S pe c?

should kill

speculat ion

here

Meltdown: Specu la t i ve Execution
Entry

8 6 Meltdown a n d Spectre

RegRename Instruction Deps

1 P1 = R1 R1 = LOAD SPEC_CONDITION X Y N

2 TEST SPEC_CONDITION 1 Y N

3 IF (SPEC_CONDITION) { 1 N N

4 P2 = R1 R2 = LOAD KERNEL_ADDRESS X Y Y*

5 P3 = R2 R3 = (((R2&1)*0x100)+0x200) 2 Y Y*

6 P4 = R4 R4 = LOAD USER_BUFFER[R3] 3 Y Y*

Re a d y? S pe c?

real ly b ad

th ing (TM)

Meltdown (continued)

8 7 Meltdown a n d Spectre

• When the right conditions exist , this branch of code will run speculat ive ly

•

•

Privilege check for “value” will fai l , but only result in an entry tag in the ROB

The acce s s will occur a l though “va lue” will be discarded when speculat ion is undone

• The offset in the “data” user array is dependent upon the va l ue of pr iv i leged data

• We can use this a s a counter between severa l possib le entr ies of the user da t a array

• Cache s ide channe l t im ing ana l y s i s u sed to determine “data” locat ion accessed

•

•

Time acce s s to “data” locations 0x200 a nd 0x300 to infer v a l ue of desired bit

Access is done in reverse in m y code to account for c a che l ine prefetcher

Mit igat ing Meltdown

8 8 Meltdown a n d Spectre

• The “Meltdown” vulnerabi l i ty requires severa l conditions:

•

•

Privileged data must reside in memory for which active translations exist

On some processor des igns the data must also be in the L1 data cache

• Primary Mit igat ion: separate appl icat ion and Operating S y s t em p a g e tab les

•

•

•

Each appl icat ion cont inues to h a v e its own p a g e tab les a s before

The kernel h a s separa te p a g e tab les not shared with appl ications

Limited shared p a g e s exist only for entry/exit trampol ines a nd exceptions

Mit igat ing Meltdown

8 9 Meltdown a n d Spectre

• Linux ca l l s this p a g e tab le separat ion “PTI”: P a ge Table Isolation

•

•

Requires a n expens ive write to core control registers on every entry/exit from OS kernel

e . g . TTBR write on impac ted ARMv8, CR3 on impac ted x86 processors

• Only enab l ed by defau l t on known-vulnerable microprocessors

• An enumerat ion is de f ined to discover future non-impac ted sil icon

• Address S p a ce IDentifiers (ASIDs) c an s ign i f i cant ly improve performance

•

•

•

ASIDs on ARMv8, PCIDs (Process Context IDs) on x86 processors

TLB entries are t a g g e d with address spa ce so a full inval idation isn't required

S ign i f i cant per formance de l ta between older (pre-2 0 1 0 x86) cores a nd newer ones

Spectre : A primer on exploit ing “ g ad ge t s ” (g ad ge t code)

9 0 Meltdown a n d Spectre

• A “gadget” is a piece of existing code in an (unmodified) existing program binary

• For example code contained within the Linux kernel, or in another “victim” application

•

•

A malicious actor influences program control flow to cause gadget code to run

Gadget code performs some action of interest to the attacker

• For example loading sensitive secrets from privileged memory

• Commonly used in “Return Oriented Programming” (ROP) attacks

Spectre-v1 : Bounds Check Byp a s s (CVE-2017-2573)

•

•

Modern microprocessors m a y specu la te beyond a bounds check condition

What's wrong with the fol lowing code?

If (untrusted_offset < limit) {

trusted_value = trusted_data[untrusted_offset];

tmp = other_data[(trusted_value)&mask];

...

}

A bit “mask” extracts part of a word (memory location)

9 1 Meltdown a n d Spectre

Branch prediction (Speculat ion)

LOAD array1_size

FLAGS?

If (x < array1_size)Condition F l a g s

y = array2[array1[x] * 256] ;
True

False

LOAD x

9 2 Meltdown a n d Spectre

Spectre-v1 : Bounds Check Byp a s s (cont.)

9 3 Meltdown a n d Spectre

• The code fol lowing the bounds check is known a s a “ g ad ge t ” (see ROP attacks)

• Exist ing code conta ined within a di f ferent v ict im context (e . g . OS/Hypervisor)

• Code fol lowing the untrusted_offset bounds check m a y be executed speculat ively

•

•

Result ing in the specu la t i ve load ing of trusted da t a into a local var iab le

This trusted da t a is u sed to ca lcu la te a n offset into another structure

• Relat ive offset of other_data accessed can be used to infer trusted_value

•

•

L1D$ cache load will occur for other_data a t a n offset correlated with trusted_value

Measure which ca che location was loaded specu la t i ve ly to infer the secret va lue

Mit igat ing Spectre-v1 : Bounds Check Bypa s s

9 4 Meltdown a n d Spectre

•

•

Exist ing hardware l acks the capab i l i ty to limit speculat ion in this instance

Mitigat ion: modi fy software programs in order to prevent the specu lat i ve load

•

•

On most architectures this requires the insertion of a ser ia l iz ing instruction (e . g . “l fence”)

S ome architectures c an use a condit ional ma sk i n g of the untrusted_offset

• Prevent it from ever (even speculat ive ly) h a v i n g a n out-of-bounds va lue

• Linux adds new “nospec” accessor macros to prevent specu la t i ve loads

• Tooling exists to scan source an d b inary f i les for of fend ing sequences

• Much more work is required to ma k e this a less pa in fu l experience

Mit igat ing Spectre-v1 : Bounds Check Byp a s s (cont.)

• Examp le of mi t i ga ted code sequence :

If (untrusted_offset < limit) {

serializing_instruction();

trusted_value = trusted_data[untrusted_offset];

tmp = other_data[(trusted_value)&mask];

...

}

prevent load

speculat ion

9 5 Meltdown a n d Spectre

Mit igat ing Spectre-v1 : Bounds Check Byp a s s (cont.)

• Another examp le of mi t i ga ted code sequence (e . g . Linux kernel):

If (untrusted_offset < limit) {

untrusted_offset = array_index_nospec(untrusted_offset, limit);

trusted_value = trusted_data[untrusted_offset];

tmp = other_data[(trusted_value)&mask];

...

}

c l amps v a l ue of untrusted_offset

9 6 Meltdown a n d Spectre

Spectre-v2 : Reminder on branch predictors

0x5000 BRANCH B

0x000 T,T,N,N,T,T,N,N

Process A

0x5000 BRANCH A

9 7 Meltdown a n d Spectre

Process B OR Kernel / Hypervisor

Spectre-v2 : Branch Predictor Poisoning (CVE-2017-5715)

9 8 Meltdown a n d Spectre

•

•

Modern microprocessors m a y be suscept ib le to “poisoning” of the branch predictors

Rogue appl icat ion “trains” the indirect predictor to predict branch to “ g ad ge t ” code

•

•

Processor incorrectly specu l a tes down indirect branch into exist ing code but offset of the

branch is under mal ic ious user control – repurpose exist ing pr iv i leged code a s a “gadge t”

Rel ies upon the branch prediction hardware not ful ly d i s amb i gua t i n g branch targets

•

•

Virtual address of branch in mal ic ious user code constructed to u se s a m e predictor entry

a s a branch in another appl icat ion or the OS kernel runn ing at h igher privi lege

Priv i leged da t a is extracted us i n g a simi lar c a che acce s s pattern to Spectre-v1

Mit igat ing Spectre-v2 : B i g h ammer approach

9 9 Meltdown a n d Spectre

• Exist ing branch prediction hardware l acks capab i l i ty to d i samb i gua te contexts

• Relat ive ly e a s y to add this in future cores (e . g . u s i n g ASID/PCID t a g g i n g in branches)

• Init ial mit igat ion is to d i sab le the indirect branch predictor hardware (somet imes)

•

•

•

Completely d i sab l i ng indirect prediction would seriously harm core performance

Instead d isab le indirect branch prediction when it is most vu lnerab le to exploit

e . g . on entry to kernel or Hypervisor from less pr iv i leged appl icat ion context

• F lush the predictor state on context switch to a new appl icat ion (process)

• Prevents appl ication-to-appl icat ion attacks across a new context

• A fine gra ined solution m a y not be possib le on exist ing processors

Mit igat ing Spectre-v2 : B i g h am m e r (cont)

1 0 0 Meltdown a n d Spectre

•

•

•

Microcode can be used on some microprocessors to alter instruction behavior

. . .a lso used to add new “instructions” or sy s t em registers that exhibit s ide ef fects

On Spectre-v2 impacted x86 microprocessors, microcode add s new SPEC_CTRL MSRs

•

•

•

Model Speci f ic Reg isters are spec ia l memory addresses that control core behavior

Identi f ied u s i n g the x86 “CPUID” instruction which enumera tes ava i l ab le capabi l i t ies

IBRS (Indirect Branch Restrict Speculation)

• Used on entry to more pr iv i leged context to restrict branch speculation

• STIBP (S ing le Threaded Indirect Branch Predictor)

• Use to force a n SMT (“Hyperthreaded”) core to predict on only one thread

• IBPB (Indirect Branch Predictor Barrier)

• Used on context switch into a new process to f lush predictor entries

• What are the problems with us ing microcode interfaces?

Mit igat ing Spectre-v 2 with Retpolines

1 0 1 Meltdown a n d Spectre

• Microcoded mit igat ions are ef fect ive but expens i ve due to their implementat ion

•

•

Many cores do not h a v e convenient logic to d isab le predictors so “IBRS” must a lso disable

independent logic within the core. It m a y take m a n y thousands of cyc les on kernel entry

Google decided to try a n alternat ive solution us i ng a pure software approach

•

•

•

If indirect branches are the problem, then the solution is to avoid u s ing them

“Retpol ines” s tand for “Return Trampolines” which replace indirect branches

Se tup a fake function cal l s tack a nd “return” in p l ace of the indirect call

Mit igat ing Spectre with Retpol ines (cont)

• Examp le retpoline cal l sequence on x86 (source:

ht tps : / /support .goog le .com/faqs/answer/7625886)

call set_up_target;

capture_spec:

pause;

jmp capture_spec;

set_up_target:

mov %r11, (%rsp);

ret;

modi fy return stack to

force “return” to target

1 0 2 Meltdown a n d Spectre

https://support.google.com/faqs/answer/7625886

Mit igat ing Spectre with Retpol ines (cont)

• Examp le retpoline cal l sequence on x86 (source:

ht tps : / /support .goog le .com/faqs/answer/7625886)

call set_up_target;

capture_spec:

pause;

jmp capture_spec;

set_up_target:

mov %r11, (%rsp);

ret;

harmless inf inite loop for

the CPU to specu l a te :)

1 0 3 Meltdown a n d Spectre

* We migh t rep lace “pau se” with “ l fence” depend i n g upon power/uarch

https://support.google.com/faqs/answer/7625886

Mit igat ing Spectre-v 2 with Retpolines

(cont)

1 0 4 Meltdown a n d Spectre

• Retpol ines are a novel solution to a n industry-wide problem with indirect branches

• Credit to Google for re leas ing these freely without patent c la ims/encourag ing adoption

• However they present a number of cha l l enges for Operating S y s t ems an d users

• Requires recompilation of software, possib ly dynam i c pa tch ing to d isab le on future cores

• Mitigat ion should be temporary in nature, automat ica l l y d i sab led on future sil icon

• Cores speculate return path from funct ions us ing an RSB (Return Stack Buffer)

• Need to explicitly m a n a g e (stuf f) the RSB to avoid mal ic ious interference

• Certain cores will u se a l ternat ive predictors when RSB underf low occurs

Mit igat ing Spectre-v 2 with Retpolines

(cont)

• Retpol ines are a novel solution to a n industry-wide problem with indirect branches

• Credit to Google for re leas ing these freely without patent c la ims/encourag ing adoption

• However they present a number of cha l l enges for Operating S y s t ems an d users

• Requires recompilation of software, possib ly dynam i c pa tch ing to d isab le on future cores

• Mitigat ion should be temporary in nature, automat ica l l y d i sab led on future sil icon

• Cores speculate return path from funct ions us ing an RSB (Return Stack Buffer)

• Need to explicitly m a n a g e (stuf f) the RSB to avoid mal ic ious interference

• Certain cores will u se a l ternat ive predictors when RSB underf low occurs

s ee SpectreRSB,“ret2spec”,

a n d other RSB vulnerabi l t ies

1 0 5 Meltdown a n d Spectre

Variations on a theme : var iant 3 a (Sysreg read)

1 0 6 Meltdown a n d Spectre

•

•

Variations of these microarchitecture at tacks are likely to be found for m a n y years

An examp le is known a s “var iant 3a” . Some microprocessors will a l low specu lat ive

read of pr iv i leged sy s t em registers to which a n appl icat ion should not h a ve access

• Can be used to determine the address of key structures such a s p a g e tab le b a s e registers

• Sequence similar to meltdown but ins tead of da t a , a c ce s s s y s t em registers

• Extract the v a l ue b y crossing the uarch/arch boundary in s a m e w a y a s in “Meltdown”

Variant 4 : “Specu la t i ve Store Buffer Bypa s s ”

• Recal l that processors u se “load/store” queues

• These sit between the core a nd its c a che hierarchy

• Recent stores m a y be to addresses we later read

•

•

•

The store m i gh t be obvious (e . g . to stack pointer)

But store m a y use register conta in ing a n y address

Dynamica l l y determine memory dependency

• Search ing Load/Store queue takes some time

•

•

CAM (Content Addressable Memory)

Different a l i gnments a n d sub-word

• Processor specu lat ive ly b yp a s se s the store queue

•

•

•

Specu l a tes there are no confl ict ing recent stores

May specu la t ive ly u se older v a l ue s of var iables

Detect a t retirement/unwind (“Disambiguation”)

L1 I$

Instruction Fetch

Instruction DecodeBranch
Predictor

Register Renaming (ROB)

Integer Physica l
Register File

Vector Physica l
Register File

L1 D$

Execution Units

L2

$

Load/Store Queue

1 0 7 Meltdown a n d Spectre

Variant 4 : “Specu la t i ve Store Buffer Bypa s s ” (cont.)

1 0 8 Meltdown a n d Spectre

• Variant 4 targets s ame - context (e . g . JIT or scripted code in browser sandbox)

• Also web servers host ing untrusted third-party code (e . g . Java)

•

•

Can be creat ively u sed to steer speculat ion to extract sandbox runt ime secrets

Mit igat ion is to d i sab le specu lat i ve store byp a s s i n g in some cases

•

•

•

“Specu la t i ve Store By p a s s Disable” (SSBD) is a new microcode inter face on e . g . x86

We can tell the processor to d isab le this feature when needed (also on other arches)

Performance hit is typica l ly a few percent, but worst c a s e is 1 0 + percent hit

• Linux provides a g loba l knob or a per-process “prctl”

•

•

The “prctl” i s automat ica l l y u sed to enab l e the “SSBD” mitigation

e . g . Red Hat sh ip OpenJDK in a default-d i sab le S S B configuration

Variations on a theme : LazyFPU save/restore

1 0 9 Meltdown a n d Spectre

• Linux (and other OSes) u sed to perform “ lazy” f loat ing point “save/restore”

•

•

•

•

Float ing point unit u sed to be a separa te phys ica l ch ip (once upon a time)

Hence we ha v e a m e a n s to mark it “not present” a nd trap whenever it is used

On context switch from one process to another, don’t bother s ta sh ing the FP state

Many appl icat ions don’t use the FP, mark it unava i l ab le a nd wait to see if they u se it

•

•

The “f loat ing point” registers are used for m a n y vectorized crypto operations

Modern processors integrate the FPU an d perform speculat ion inc luding FP/AVX/etc.

•

•

It is possib le to specu la t i ve ly read the f loat ing point registers from another process

Can be used to extract cryptographic secrets b y monitoring the register state

• Mitigat ion is to d i sab le l a zy save/restore of the FPU

• Which Linux h a s done b y defau l t for some t ime a n y w a y (most ly vendor kernel issue)

Variations on a theme : Bounds Check By p a s s Store (var iant 1.x)

1 1 0 Meltdown a n d Spectre

• The original Spectre-v1 disclosure g ad ge t a s s u m ed a load fol lowing bounds check :

if (x < array1_size)

y = array2[array1[x] * 256];

• It is possib le to use a store fol lowing the bounds instead of a load

• e . g . set a var iab le b a s e d upon some va l ue within the array

• Mitigat ion is simi lar to load ca se but must locate+patch stores

• Scanners such a s “ smatch” upda ted to account for “BCBS”

TLBleed – TLBs a s a s ide-channe l

TLB is just another form of cache

(but not for program data)

Translation Lookaside Buf fer (TLB)

0x74000 0x07000

0x63000 0x6000

0x15000 0x45000

0x04000 0x74000

1 1 1 Meltdown a n d Spectre

SMT (S imu l taneous Multi-Threading)

L2 $

•

•

1 1 2 Meltdown a n d Spectre

Recal l that most “processors” are multi-core

Cores m a y be partit ioned into hw threads

•

•

Increases overal l throughput b y up to 3 0 %

Can decrease perf. due to competition

• SMT productized into m a n y des i gn s including

Intel ’s “Hyper-threading” (HT) technology

•

•

This is what you see in “/proc/cpuinfo” a s

“s ib l ing” threads of the s a m e core

Lightweight per-thread dup l icated resources

•

•

•

Shared L1 cache , shared ROB, shared…

Separa te context registers (e . g . arch GPRs)

Partitioning of some resources

• TLB part ial ly compet i t ively shared

TLBleed – TLBs a s a s ide-channe l

1 1 3 Meltdown a n d Spectre

• TLBs similar to other cache s (but c a che memory translat ions, not their contents)

•

•

Formed from a n (undocumented) hierarchy of leve l s , s imi lar to caches

L1 i-s ide a nd d-s ide TLBs with a shared L2 sTLB

• Intel Hyper-threaded cores share data-s ide TLB resources between s ib l ing threads

•

•

TLB not ful ly assoc ia t i ve , possib le to cau se evictions in the peer

= > Can observe the TLB act iv i ty of a peer thread

• TLBleed relies upon temporal a cce s s to da t a be ing measured

•

•

•

Requires co-resident hyper-threads between vict im a nd attacker

Requires vu lnerab le software (e . g . some bui lds of l ibgcrypt)

Uses a novel mach i ne learn ing approach to monitor TLBs

• Mitigat ion requires careful ana l y s i s of e . g . vu lnerable crypto code

• Can disab le HT or app l y process p inn ing stra teg ies a s well

NetSpectre – Spectre over the network

1 1 4 Meltdown a n d Spectre

• Spectre at tacks can be performed over the network by us i n g two combined gadge t s

• A “ leak” g a d g e t sets some f l a g or sta te dur ing specu la t i ve out of bounds access :

if (x < bitstream_length)

if(bitstream[x])

flag = true

• A “transmit” g a d g e t u se s the f l a g dur ing arbitrary operation that is remotely observable

• e . g . dur ing the transmiss ion of some packet , check the f l a g va lue

• An attacker trains the leak g ad ge t then extracts d a t a with the transmit g ad ge t

•

•

Rate l imited to bits per hour over the internet, detectable e v e n a m o n g noise

Acceleration possib le u s i n g e . g . a n AVX2 power-down side-channe l (Intel)

L1 Terminal Fault (ak a “Foreshadow”)

1 1 5 Meltdown a n d Spectre

L1 Terminal Fault (ak a “Foreshadow”)

. . .

0x4080

0x4 040

0x4000

.. .

0x0080

0x0040

0x0000

Virtual Memory

Virtual Index

0x040 0x1000

DATA

Phys ica l Tag

1 1 6 Meltdown a n d Spectre

Cached Data

P a g e Table Walk

L1 Terminal Fault (ak a “Foreshadow”)

Process

A

Pa ge Tables

PA top bits Valid

0x55d776036 000

p a ge

offset

address forwarded

to L1 da t a cache

1 1 7 Meltdown a n d Spectre

L1 Terminal Fault (ak a “Foreshadow”)

Process

A

Pa ge Tables

PA top bits Valid

0x55d776036 000

p a ge

offset

address forwarded

to L1 da t a cache

1 1 8 Meltdown a n d Spectre

PA speculat ive ly

forwarded prior

to va l id check

L1 Terminal Fault (aka “Foreshadow”)

S t a g e 1 Translation

1 1 9 Meltdown a n d Spectre

Guest

Process

A

VM
0x55d776036

Page Tables

000
Hypervisor

Page Tables

PA top bits Valid

PA top bits Valid

S t a g e 2 Translation

L1 Terminal Fault (aka “Foreshadow”)

Process Page Tables

A

PA top bits Valid

Pa ge Tables

PA top bits Valid

S t a g e 1 Translation

Guest VM

0x55d776036 000
Hypervisor

S t a g e 2 Translation

PA specu lat ive ly

forwarded to L1 D$

(no s t a g e 2 translation)

1 2 0 Meltdown a n d Spectre

L1 Terminal Fault (ak a “Foreshadow”)

1 2 1 Meltdown a n d Spectre

• Operating S y s t ems use PTE (Page Table Entry) va l id bit for m an a gem en t

•

•

“pa g i n g ” (aka “swapp ing”) imp lemented by mark ing PTEs “not present”

Not present PTEs c an be used to store OS metada t a (disk addresses)

•

•

Spec i f icat ion s a y s that al l bits are ignored when not present

Linux stores the address on disk we swapped the p a g e to

• Intel processors will specu l a te on val id i ty of PTEs (Page Table Entries)

• Forward the PA to the L1D$ prior to complet ing va l id (“present”) check

• Common c a s e (fast path) is that the PTE is “present” (val id)

• “Terminal Fault” t a g g e d in ROB for at-retirement hand l ing

• S imi lar to “Meltdown” a nd a similar under ly ing fix

L1 Terminal Fault (ak a “Foreshadow”)

1 2 2 Meltdown a n d Spectre

• A “not present” PTE can be used to specu lat ive ly read secrets

• Contrive a not present PTE in the Operating S y s t e m (bare meta l attack)

• Mit igate this b y ensur ing OS never generates su i tab le PTEs

• All swapped out p a g e s are masked to genera te PAs outside RAM

• Terminating page walks do not undergo second stage translations

•

•

•

Intel second s t a g e (EPT) is ignored for not “present” PTEs

PA treated a s a host address a nd forwarded to the cache

Can extract c a ched da t a from other Vms/Hypervisor

• Mit igate this b y keep ing secrets a w a y from reach

•

•

•

F lush the L1D$ on entry into VM code (Linux)

Scrub secrets from the cache (e . g . Hyper-V)

Linux full mit igat ion m a y require HT disable

Related Research

1 2 3 Meltdown a n d Spectre

•

•

Meltdown an d Spectre are only recent examp les of microarchitecture at tack

A memorab le at tack known a s “Rowhammer” was discovered previously

•

•

•

•

Exploit the implementat ion of (espec ia l l y non-ECC) DDR memory

Possible to perturb bits in ad j acent memory l ines with frequent access

Can use this approach to fl ip bits in sensi t ive memory a nd by p a s s a c ce s s restrictions

For examp l e c h a n g e p a g e acce s s permiss ions in the sy s tem p a g e tables

• Another recent at tack known a s “MAGIC” exploits NBTI in silicon

•

•

•

Negative-b i a s temperature instabi l i ty impac ts reliabil ity of MOSFETs (“transistors”)

Can be exploited to arti f ic ia l ly a g e sil icon dev i ces a nd decrease longevity

Proof of concept demonstra ted with code runn ing on OpenSPARC core

Where do we go from here?

1 2 4 Meltdown a n d Spectre

• Changes to how we des i gn hardware are required

•

•

•

Addressing Meltdown, a nd Spectre-v 2 in future hardware is relat ively straightforward

Addressing Spectre-v 1 a nd v 4 (SSB) m a y be possib le through register tagg ing / ta int ing

A fundamen ta l re-ad jus tment in focus on security v s . per formance is required

• Changes to how we des i gn software are required

•

•

•

All self-respect ing software eng ineers should h a v e some notion of how processors behave

A professional race car driver or pilot is expected to know a lot about the mach ine

Communication. No more “hardware” a nd “software” people . No more “us” a nd “them”.

Where do we go from here?

1 2 5 Meltdown a n d Spectre

• Open Source can help

•

•

Open Architectures won’t mag i c a l l y solve our security problems (implementat ion v s spec)

However they c an be used to invest i ga te a nd understand , a nd col laborate on solutions

•

•

Many/most security researchers u s i n g RISC-V a lready , ma k e s a lot of sense

We can col laborate to explore novel solutions (yes , e ven us “software” people)

• Opening up processor microcode/designs . Can you ful ly trust what you can ’ t see ?

	Slide 1
	Slide 2: Meltdown and Spectre
	Slide 3
	Slide 4: Side-channel attacks
	Slide 5: Side-channel attacks
	Slide 6: Caches as side channels
	Slide 7: Caches as side channels
	Slide 8: Caches as side channels (continued)
	Slide 9: Caches as side channels (continued)
	Slide 10: Meltdown, Spectre, TLBleed, NetSpectre, Foreshadow, etc. etc. etc.
	Slide 11: 2018: year of uarch side-channel vulnerabilities
	Slide 12: Example vendor response strategy
	Slide 13: Example vendor response strategy (cont.)
	Slide 14: In the field – Microcode, Millicode, Chicken Bits...
	Slide 15: In the field – Microcode, Millicode, Chicken Bits...
	Slide 16: Deploying and validating mitigations (e.g. Linux)
	Slide 17: Meltdown
	Slide 18: Meltdown (single bit example)
	Slide 19: Meltdown (continued)
	Slide 20: Meltdown (continued)
	Slide 21: Meltdown (continued)
	Slide 22: Meltdown (continued)
	Slide 23: Meltdown (continued)
	Slide 24: Meltdown (continued)
	Slide 25: Meltdown (continued)
	Slide 26: Meltdown (continued)
	Slide 27: Meltdown: Speculative Execution
	Slide 28: Meltdown: Speculative Execution
	Slide 29: Meltdown: Speculative Execution
	Slide 30: Meltdown (continued)
	Slide 31: Mitigating Meltdown
	Slide 32: Mitigating Meltdown
	Slide 33: Spectre: A primer on exploiting “gadgets” (gadget code)
	Slide 34: Spectre-v1: Bounds Check Bypass (CVE-2017-2573)
	Slide 35: Branch prediction (Speculation)
	Slide 36: Spectre-v1: Bounds Check Bypass (cont.)
	Slide 37: Mitigating Spectre-v1: Bounds Check Bypass
	Slide 38: Mitigating Spectre-v1: Bounds Check Bypass (cont.)
	Slide 39: Mitigating Spectre-v1: Bounds Check Bypass (cont.)
	Slide 40: Spectre-v2: Reminder on branch predictors
	Slide 41: Spectre-v2: Branch Predictor Poisoning (CVE-2017-5715)
	Slide 42: Mitigating Spectre-v2: Big hammer approach
	Slide 43: Mitigating Spectre-v2: Big hammer (cont)
	Slide 44: Mitigating Spectre-v2 with Retpolines
	Slide 45: Mitigating Spectre with Retpolines (cont)
	Slide 46: Mitigating Spectre with Retpolines (cont)
	Slide 47: Mitigating Spectre-v2 with Retpolines (cont)
	Slide 48: Mitigating Spectre-v2 with Retpolines (cont)
	Slide 49: Variations on a theme: variant 3a (Sysreg read)
	Slide 50: Variant 4: “Speculative Store Buffer Bypass”
	Slide 51: Variant 4: “Speculative Store Buffer Bypass” (cont.)
	Slide 52: Variations on a theme: LazyFPU save/restore
	Slide 53: Variations on a theme: Bounds Check Bypass Store (variant 1.x)
	Slide 54: TLBleed – TLBs as a side-channel
	Slide 55: SMT (Simultaneous Multi-Threading)
	Slide 56: TLBleed – TLBs as a side-channel
	Slide 57: NetSpectre – Spectre over the network
	Slide 58: L1 Terminal Fault (aka “Foreshadow”)
	Slide 59: L1 Terminal Fault (aka “Foreshadow”)
	Slide 60: L1 Terminal Fault (aka “Foreshadow”)
	Slide 61: L1 Terminal Fault (aka “Foreshadow”)
	Slide 62: L1 Terminal Fault (aka “Foreshadow”)
	Slide 63: PA speculatively forwarded to L1 D$ (no stage2 translation)
	Slide 64: L1 Terminal Fault (aka “Foreshadow”)
	Slide 65: L1 Terminal Fault (aka “Foreshadow”)
	Slide 66: Related Research
	Slide 67: Where do we go from here?
	Slide 68: Where do we go from here?

