
Fall 2023

Lecture 19: Consistency and Coherency

Credit: Brandon Lucia

“The memory consistency model of a
shared-memory system specifies the
order in which memory operations will
appear to execute to the programmer.
The memory consistency model affects
the process of writing parallel programs
and forms an integral part of the entire
system, including the architecture, the
compiler, and the programming
language.”

Excerpt from “Recent Advances in Memory Consistency
Models for Hardware Shared-Memory Systems”

Sarita Adve, et al, 1999

Memory Consistency

Memory Consistency
Model

Informal Definition:

“Defines the value a read operation may read
at each point during the execution”

“Defines the set of legal observable orders of memory
operations during an execution”

“Defines which reorderings of memory operations
are permitted”

Coherence is Ordering

Wr X

Wr X

Coherence defines the set of legal orders of
accesses to a single memory location

Wr X

Wr X
OR

Consistency is Ordering

Wr X

Wr Y

Consistency defines the set of legal orders of
accesses to multiple memory locations

Wr X

Wr Y
OR

Sequential Consistency (SC)
The simplest, most intuitive memory consistency model

Two Invariants to SC:

Invariant #1:
Instructions are
executed in program
order

Invariant #2:
All processors agree
on a total order of
executed instructions

The SC “Switch”
Wr X

Rd Y

Wr Y

Rd X

Rd X

Execution

The SC “Switch”
Wr X

Rd Y

Wr Y

Rd X

Rd X

Execution
Wr X

The SC “Switch”
Wr X

Rd Y

Wr Y

Rd X

Rd X

Execution
Wr X
Rd Y

The SC “Switch”
Wr X

Rd Y

Wr Y

Rd X

Rd X

Execution
Wr X
Rd Y
Wr Y

The SC “Switch”
Wr X

Rd Y

Wr Y

Rd X

Rd X

Execution
Wr X
Rd Y
Wr Y
Rd X

The SC “Switch”
Wr X

Rd Y

Wr Y

Rd X

Rd X

Execution
Wr X
Rd Y
Wr Y
Rd X
Rd X

Why is SC Important?

Wr X
Rd Y
Wr Y
Rd X
Rd X

Rd Y
Wr X

Rd X
Rd X
Wr Y

SC is the most complex model that we can ask
programmers to think about.

Intuitive (SC) Weird (not SC)

Wr X

Rd Y Rd X

Wr Y Rd X

SC prohibits all reordering of instructions (Invariant 1)

Real hardware does not enforce SC

https://developer.arm.com/documentation/den0024/a/Memory-Ordering

The ARMv8 Memory Model:

Reordering #1: Write Buffers

CPU can read its write
buffer, but not others’

Coherent

Buffered writes eventually end up in coherent
shared memory

CPU

Wri

M

CPU

Wri

M

te Bufferte Buffer

Reordering #1: Write Buffers

X=1

r1=Y

Y=1

r2=X

M M

Program

Initially X == Y == 0

Is r1==r2==0
a valid result?

Reordering #1: Write Buffers

X=1

r1=Y

Y=1

r2=X

M M

Program

Initially X == Y == 0

Is r1==r2==0
a valid result?

r1 == r2 == 0 is not SC, but it can happen with write buffers

Reordering #1: Write Buffers

Execution

r1=Y

Program

Initially X == Y == 0

Y=1

r2=X

M

X=1

M

Reordering #1: Write Buffers

Execution

r1=Y r2=X

Y=1

M

X= 1

M

Program

Initially X == Y == 0

Reordering #1: Write Buffers

Execution

r1=Y r2=X
Y= 1

M

X= 1

M

Program

Initially X == Y == 0

Reordering #1: Write Buffers

Program

Initially X == Y == 0

r2=X

Execution

Y= 1

M

r1=Y

X= 1

M

Reordering #1: Write Buffers

Execution

r2=X

Y= 1

M

r1=Y

X= 1

M

Program

Initially X == Y == 0

Reordering #1: Write Buffers

Execution
r1=Y [r1 <- 0]

r2=X

Y= 1

M

X= 1

M

Program

Initially X == Y == 0

Reordering #1: Write Buffers

Execution
r1=Y [r1 <- 0]
r2=X [r2 <- 0]

Y= 1

M

X= 1

M

Program

Initially X == Y == 0

Reordering #1: Write Buffers

Execution
r1=Y [r1 <- 0]
r2=X [r2 <- 0]

M M

Program

Initially X == Y == 0

Y=1
X=1 (Not SC!)

WBs let reads finish
before older writes

Reordering #2: Write Combining

Coalescing Write Buffer
Program

X,Z in same $ line

X=1
Y=1
Z=1

4 word cache line

Reordering #2: Write Combining

Coalescing Write Buffer
X=1

Program

X,Z in same $ line

X=1
Y=1
Z=1

X=1

Y=1

Reordering #2: Write Combining

Coalescing Write Buffer
Program

X,Z in same $ line

X=1
Y=1
Z=1

Reordering #2: Write Combining

Coalescing Write Buffer
X=1

Y=1

Z=1

Program

X,Z in same $ line

X=1
Y=1
Z=1

Reordering #2: Write Combining

X=1

Y=1

Z=1

Coalescing Write Buffer Coalescing Write Buffer
X=1 Z=1

Y=1

Combining the write to X & Z saves bandwidth,
but reorders Z=1 and Y=1

Reordering #3: Interconnect

Execution
X=1
Y=1

r1=X [r1 <- 1]
r2=Y [r2 <- 0]
r3=Y [r3 <- 1]
r4=X [r4 <- 0]

Program

X=1 r1=X Y=1

r2=Y

r3=Y

r4=X
X=1 Y=1

Y=1

X=1
Variable time cost traversing
routed on-chip network

Reordering #4: Compilers

X = 0
for (1 .. 100)

X = 1
print X

X = 0
X = 1
for (1 .. 100)

print X
X = 0

Hoisted!

The compiler hoists the write out of the loop,
permitting new (non-SC) results (e.g., “1 0 0 0 0 0 0...”)

When is an Execution Not SC?
When a memory operation happens before itself

Execution
r1=Y [r1 <- 0]
r2=X [r2 <- 0]

X=1
Y=1

X=1

r1=Y

Y=1

r2=X

Happens-Before Graph

When is an Execution Not SC?
When a memory operation happens before itself

Execution
r1=Y [r1 <- 0]
r2=X [r2 <- 0]

X=1
Y=1

X=1

r1=Y

Y=1

r2=X

Happens-Before Graph

Program Order HB Edge

When is an Execution Not SC?
When a memory operation happens before itself

Execution
r1=Y [r1 <- 0]
r2=X [r2 <- 0]

X=1
Y=1

X=1

r1=Y

Y=1

r2=X

Happens-Before Graph

Program Order HB Edge

Causal Order HB Edge

When is an Execution Not SC?
When a memory operation happens before itself

Execution
r1=Y [r1 <- 0]
r2=X [r2 <- 0]

X=1
Y=1

X=1

r1=Y

Y=1

r2=X

Happens-Before Graph

If there is a cycle in the happens-before graph, the
execution is not SC

When is an Execution Not SC?
When a memory operation happens before itself

X=1

Happens-Before Graph

Y=1 r1=X r3=Y

r2=Y r4=X

If there is a cycle in the happens-before graph, the
execution is not SC

Execution
X=1
Y=1

r1=X [r1 <- 1]
r2=Y [r2 <- 0]
r3=Y [r3 <- 1]
r4=X [r4 <- 0]

Two Design Constraints at Odds

SC is how programmers think, but restricts all reordering

Reordering allows optimization, but leads to unintuitive non-SC behavior.

Relaxed Memory Consistency

Relaxed Memory Models permit reorderings, unlike SC

x86-TSO (intel x86s)

“The Write Buffer Memory Model”

r1=Y

X=1

r1=Y

Total Store Order - loads may complete before older
stores to different locations complete.

Relaxes W->R
order

PSO(SPARC)

“The Write Combining Memory Model”

X=1
Z=1
Y=1
Z=1

Partial Store Order - loads and stores may complete
before older stores to different locations complete.

Relaxes W->W
order

In General

X=1
Z=1
Y=1
Z=1

r1=Y

X=1

r1=Y

W->R W->W

r1=Y

r2=X

Y=1

r2=X

r1=Y Y=1

R->R R->W

Starting with PSO and relaxing R->R and R->W yields
Weak Ordering or Release Consistency (alpha)

Depending on the implementation

Implementing Synchronization for Weak
Memory Models
• What does synchronization have to do to prevent SC violations?

• Flush WB, prevent coalescing/bypassing, impose ordering in network, prevent
compiler reorderings

• What does synchronization have to do to prevent other kinds of
problems?
• Enforce mutually exclusive execution by different threads of critical region,

force threads to wait at barriers, enforce wait/notify discipline

SC and Relaxed Consistency

SC is required for correctness and programmer sanity

+

Reordering is required* for performance

Goal: Ensure SC executions while permitting
Relaxed Consistency reorderings

*Usually; MIPS memory model is SC

Memory Models across the
System Stack

Language Compiler Architecture

Java/C++: SC
for data-race-
free programs

Conservative
with reordering
when d-r-f can’t
be proved

Usually very weak for
max optimization
(lots of reordering)

Note: fences from
“above” ensure SC

What did we just learn?

• Coherence and consistency are both memory ordering principles

• Understanding the memory model is compelling to understanding
the execution and correctness of the program

	Slide 1
	Slide 2
	Slide 3: Memory Consistency
	Slide 4: Memory Consistency Model
	Slide 5: Coherence is Ordering
	Slide 6: Consistency is Ordering
	Slide 7: Sequential Consistency (SC) The simplest, most intuitive memory consistency model
	Slide 8: The SC “Switch”
	Slide 9: The SC “Switch”
	Slide 10: The SC “Switch”
	Slide 11: The SC “Switch”
	Slide 12: The SC “Switch”
	Slide 13: The SC “Switch”
	Slide 14: Why is SC Important?
	Slide 15: Real hardware does not enforce SC
	Slide 16: Reordering #1: Write Buffers
	Slide 17: Reordering #1: Write Buffers
	Slide 18: Reordering #1: Write Buffers
	Slide 19: Reordering #1: Write Buffers
	Slide 20: Reordering #1: Write Buffers
	Slide 21: Reordering #1: Write Buffers
	Slide 22: Reordering #1: Write Buffers
	Slide 23: Reordering #1: Write Buffers
	Slide 24: Reordering #1: Write Buffers
	Slide 25: Reordering #1: Write Buffers
	Slide 26: Reordering #1: Write Buffers
	Slide 27: Reordering #2: Write Combining
	Slide 28: Reordering #2: Write Combining
	Slide 29: Reordering #2: Write Combining
	Slide 30: Reordering #2: Write Combining
	Slide 31: Reordering #2: Write Combining
	Slide 32: Reordering #3: Interconnect
	Slide 33: Reordering #4: Compilers
	Slide 34: When is an Execution Not SC? When a memory operation happens before itself
	Slide 35: When is an Execution Not SC? When a memory operation happens before itself
	Slide 36: When is an Execution Not SC? When a memory operation happens before itself
	Slide 37: When is an Execution Not SC? When a memory operation happens before itself
	Slide 38: When is an Execution Not SC? When a memory operation happens before itself
	Slide 39: Two Design Constraints at Odds
	Slide 40
	Slide 41: x86-TSO (intel x86s) “The Write Buffer Memory Model”
	Slide 42: PSO(SPARC) “The Write Combining Memory Model”
	Slide 43: In General
	Slide 44: Implementing Synchronization for Weak Memory Models
	Slide 45: SC and Relaxed Consistency
	Slide 46: Memory Models across the System Stack
	Slide 47: What did we just learn?

